面向三维复杂零件工艺优化关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据现代制造业中提出的合格加工质量、高生产效率、低成本和减少对环境的负面影响等新的要求,将复杂零件的制造工艺分为加工方法、工艺路线和切削参数三个局部优化,然后利用全局优化来进行评价,得到最优的工艺。
     介绍了课题的背景、来源及目的,描述了复杂零件在工艺设计与优化过程中的难点,从理论和实践展开了基于三维模型提取工艺数据并进行工艺设计与优化的研究和探索。
     分析了特征技术在工艺设计中的应用,利用几何面描述复杂零件的加工特征,不仅能表达原有的特征信息,而且还能表达加工基准、定位基准等信息。以面的几何信息和制造信息作为基础数据进行工艺设计与优化,实现了基于统一数据模型的工艺设计优化及管理的目的。
     采用分层的优化策略将工艺优化分解为加工方法、工艺路线和加工参数三部分。首先根据加工特征类型、加工资源能力等进行加工方法的推理;然后根据推理的结果和相关的几何与制造信息形成定量的约束矩阵,并以变换装夹、变换机床等优化目标进行加工单元顺序优化,其中以矩阵表达加工单元之间的约束关系不仅改变了定性、描述性的约束性信息难以参与运算的缺点,而且具有更高的效率和稳定性。
     构建了全局的评价的方法与模型,将定性分析与定量分析相结合,构造了多个目标,并按照层次分析法,对各目标进行处理,实现工艺的全局评价,获得最佳的优化结果。
     建立了动态资源模型,实现了工艺资源的动态监测,通过资源动态与静态信息,提供优化的约束条件和基础数据。
     介绍了原型系统的结构与功能,以某零件进行工艺设计与优化,并分析结果的实用性。
With the modern manufacturing requirements of better quality, higher efficiency, low cost and more environment-friendly. Complex parts’manufacturing process are disassembled manufacturing methods, process route planning as well as the cutting parameters, the Global evaluation is set up with the data of local optimization, and a best result is obtained.
     The background, source and research goal of this project and The difficulty of complex parts’process planning are introduced. The process design and optimization are researched and explored both in theory and practice based on the data which are picked-up from the 3D model,
     The application of feature technology on modeling and process design is analyzed. By using the geometric surface sets, the feature information, manufacturing datum, location datum etc can be expressed clearly. The process is designed and optimized based on the surface geometric and manufacturing information. By this way, the object of optimization and management of process design based on the unified data model is achieved. An open data management pattern is designed. The resource constraints of the process optimization are auto-set to meet the requirement of optimization.
     According to the hierarchical strategy, the optimization of process is divided into three parts: the manufacturing method, the process sequence and the manufacturing parameters optimization. First, the manufacturing method is reasoned by the type of the feature, the capability of manufacturing resources and the length of the method chain. Second, the quantitative constraint matrix is formed by the result of the reasoning, the relative geometric and manufacturing information, the sequence of manufacturing contents is optimized which aim is to reduce the time of clamping and changing of the machine. The qualitative, descriptive constraint information are usually unsuitable to used in this procedure, while the constraint which is expressed in the matrix improves the disadvantage and increases the calculate efficiency and stability.
     The global evaluation is given at last. The qualitative analysis is integrated with quantitative analysis and the object functions are constructed by this way. According to the hierarchical method, the global object is optimized to achieve the global evaluation of process planning and obtained the best result.
     A dynamic database is designed, with the dynamic and static data, the constraints and basic data are provided.
     After introducing the prototype, the practicability of the system is testified by a complex part’s process design and optimization.
引文
[1]邵新宇,蔡力钢.现代CAPP技术与应用.北京:机械工业出版社,2004.
    [2]王先逵.制造技术的未来.中国机械工程,1994,5(5):2-4.
    [3]徐正,张国军,邵新宇.三维环境下CAD/CAPP集成方法研究与实践,机械设计与制造,2005,8:55-57.
    [4] James A.Rehg, Henry W.Kraebber.Computer-Integrated Manufacturing.北京:机械工业出版社,2004.
    [5]董家骧.计算机辅助工艺过程设计系统智能开发工具.北京:国防工业出版社,1996.
    [6]章万国.基于遗传算法的工艺方法双层优化方法:[硕士学位论文].武汉:华中科技大学,2004.
    [7]张建设.工艺方法动态全局优化方法研究:[硕士学位论文].武汉:华中科技大学,2007.
    [8]陈万领.基于知识的CAPP系统关键技术研究与应用:[博士学位论文].武汉:华中科技大学博士论文,2007.
    [9]乔建民.面向工艺信息化CAPP技术的研究:[博士学位论文].西安:西北工业大学,2001.
    [10]蔡力钢,李培根.回转类零件基于分级约束的加工方法排序算法.机械工程学报,2000.2,36(2):42-46.
    [11]张伯鹏.数字化制造是先进制造技术的核心技术.制造业自动化,2000,22(02):1-5.
    [12]蔡力钢,李培根等.基于网络与数据库的CAPP集成平台.高技术通讯,1999,9(7):9-11.
    [13]蔡力钢,李培根等.基于Web的CAPP若干关键技术.中国机械工程,2000,11(5):516-519.
    [14]章万国,蔡力钢,高亮等.基于三维的定量化CAPP及其关键技术研究.中国机械工程,2003,14(22):1296—1299.
    [15]史俊友.基于PDM的三维变型工艺设计系统的研究.机械工程与自动化,2006,8,4(137):4-7.
    [16]王磊.基于特征的CAD/CAPP集成技术研究:[硕士学位论文].昆明:昆明理工大学,2007.
    [17]陆进琼,梁少明.CAPP系统中加工方法的优化决策及其实现.广西大学学报,1999,24:184-187.
    [18]颉潭成,徐彦伟,李庆军等.基于模糊综合评判的零件特征加工方法决策研究.农业机械学报,2005,36(8):129-131.
    [19]颉潭成,李庆军,李宝栋等.基于遗传算法的零件特征加工方法决策系统.农业机械学报,2005,36(9):119-122.
    [20]秦宝荣,姜少飞,王宁生.基于遗传算法的零件多加工方法组合优化方法.中国机械工程,2005,16(12):1076-1079.
    [21]秦宝荣.智能CAPP关键技术研究:[博士学位论文].南京:南京航空航天大学,2003.
    [22] Rho. H. M.,Geelink,R. Van’t Erve, A.H. and Kals,H.j.j. An Integrated cutting tool selection and operation sequencing method. Annals of CIRP, 1992,41:517-520.
    [23] Irani, S.A., Koo, H.Y.and Raman, S. Feature-based operation sequence generation in CAPP. International Journal of Production Research, 1995, 33:17-39.
    [24] Vancza, J. and Markus, A. Genetic algorithms in process planning. Computers in industry, 1991, 17:181-194.
    [25] Dutta, D. and Yip-Hoi, D. A genetic algorithm application for sequencing operations in process planning for parallel machining. HE Transactions, 1996, 28:55-68.
    [26]曹希彬,蔡力钢,李培根.多工艺方案二阶模糊综合评价.系统工程理论与实践,2000,6:25-31.
    [27]蒋伟进,许宇胜.基于多方法集成的复杂工艺优化设计研究.计算机集成制造系统,2006,12(4):523-539.
    [28] WANG Xian dong The application of feed forward neural networks in VLSI fabrication process optimization. International Journal of Computational Intelligence and Applications, 2001, 1 (1):83-90.
    [29] Zhang Y F, Nee A Y C. Using genetic algorithm in processing planning for job shop machining. IEEE Transom Evolutionary Computation, 1997, 1:278-289.
    [30] Xue Deyi. A multilevel optimization approach considering product realization process alternatives and parameters for improving manufacturability. Manufacturing System,1997,16(5):338-351.
    [31] Vancza J, Markus A. Genetic algorithm in process planning. Computers in Industry, 1991,17:181-194.
    [32] Rocha J, Ramos C, Vale Z. Process planning using a genetic algorithm approach [A]. Proc of the 1999 IEEE Int Symp on Assembly and Task Planning [C]. Porto, Portugal: IEEE,1999. 82-86.
    [33]王忠宾,王宁生,陈禹六.基于遗传算法的工艺路线优化决策.清华大学学报(自然科学版),2004,44(7):988-992.
    [34]张国辉,蔡力钢,高亮等.基于改进遗传算法的工艺路线优化.机械设计与制造:2006.8:14-16.
    [35] Rad-Tolouei, M. and Bidhendl, I. M. On the Optimization of machining parameters for milling operations. International Journal of Machine Tools & Manufacture, 1997, 37(1):1-16.
    [36] Sonmez, A. I., Baykasoglu, A., Dereli, T. and Filiz. I. H. Dynamic optimization of multipass milling operations via geometric programming. International Journal of Machine Tools and Manufacture, 1999, 39(2): 297-320.
    [37] Wang, J. Constrained optimization of rough peripheral and end milling operations. PhD Thesis. Australia: University of Melbourne. 1993.
    [38] Kayacan. M.C., Filiz, I.H., Sonmez, A. I., Baykasoglu, A. and Dereli, T. Oppsrot: an optimized process planning system for rotational parts. Computers in Industry, 1996, 32:181-195.
    [39] Wang, J. Multiple-objective optimization of machining operations based on neural networks. International Jorunal of Advanced Manufacturing Technology, 1993, 8:235-243.
    [40]邵辉,李国富,叶飞帆等.CAPP环境下的切削用量优化研究.机床与液压,2004,3:154-157.
    [41]姜彬,杨树财,郑敏利.数控切削加工工艺参数的多目标优化.工具技术,2002,36(7):23-25.
    [42]王芳林,徐国华,陈建军.机加零件可制造性研究中的工艺参数优化方法.西安电子科技大学学报(自然科学版),2000,27(4):405-407.
    [43]赵绪平.数控加工切削参数优化的研究:[硕士学位论文].沈阳工业大学.机械制造及自动化,2006.
    [44]楮学宁,王治森,马登哲等.CAPP技术的智能化发展思路.中国机械工程,2003.12,14(23):2062-2065.
    [45]黄乃康.CAPP技术发展现状与趋势.计算机辅助设计与制造,2001,5(5):1-5.
    [46] Soltes J W.A feature-based representation of parts for CAD. B S Thesis, ME Department MIT, June, 1978.
    [47] Kurt Hampe Jim Boyce AutoCAD.应用开发工具大全.北京:清华大学出版社,2004.
    [48]王芳林,徐国华,陈建军.机加工零件可制造性分析的特征识别.机械科学与技术,2003,7,22:67-72.
    [49] Mark W S,et al. Generative feature-based design-by-constraints as a means of integration with the manufacturing industry. Coputer-Aided Engineering Journal, 1991,12:86-94.
    [50] Bond A H and Chang K J. Feature-based process planning for machined parts. Computers in Engineering, 1988, 1: 571-576.
    [51]邢忠文,包军,杨玉英等.基于规则的汽车覆盖件孔和翻边特征识别方法研究.锻压技术,2006,5:154-156.
    [52]周惠群,莫蓉.箱体零件的基于加工特征的方位描述法.机械科学与技术,1998,1,17(1):100-103.
    [53]史俊友,翟红岩,岳东方等.基于SolidWorks的变型工艺设计系统的研究.机械设计与制造,2006,8:96-98.
    [54] Eimaraghy H, Patel V, Abdallah I B. Scheduling ofManufacturing Systems under Dual-resource Constrains Using Genetic Algorithms. Journal of Manufacturing Systems, 2000,19(3):186-203.
    [55]孙志峻,朱剑英,潘全科.基于遗传算法的多资源作业车间智能动态优化调度.机械工程学报,2002,38(4):120-125.
    [56] Leng Sheng , Wei X iaobin, Zhang Wenyi Improved aco scheduling algorithm based on flexible process, Transactions of Nanjing University of Aeronautics &Astronautics. 2006 ,l23 (2): 42-47.
    [57] Chang H C, Chen F F. A Dynamic Programming Based Process Planning Selection Strategy Considering Utilization of Machines. International Journal of Advanced Manufacturing Technology, 2002, 19(2): 97-105.
    [58] Jakeoo J, Sungsik P,Hyunbo C. Adaptive and Dynamic Process Planning Using Neural Networks. International Journal of Production Research, 2001, 39 (13): 2923-2936.
    [59]王忠宾,王宁生,陈禹六.动态CAPP系统及其制造资源决策方法的研究.中国机械工程,2004,5,15(9):779-782.
    [60]程光耀,孙厚芳,雷贺功等.CAPP多工艺设计方案的模糊综合评价.北京理工大学学报,2004,3,24(3):197-200.
    [61]盛步云,罗丹,杨明忠.CAPP系统中分布式制造资源决策研究.机械设计与制造,2001,4:78-79.
    [62]陈云,严隽琪,方明伦.基于面向对象与STEP技术的制造环境模型研究.机械工程学报,1996,32(4):5-10.
    [63]宋玉银,褚秀萍,蔡复之.基于STEP的制造资源能力建模及其应用研究.计算机集成制造系统,1999,5(4):46-50.
    [64]邵新宇,李培根,马卫东等.CIM及并行工程中设备环境建模.华中科技大学学报,1995,23(2):14-17.
    [65]陈冰,江平宇,郑镁等.基于e-制造模式的动态工艺规划技术研究.计算机工程,2007,32(1):227-229.
    [66]王小兵,蔡力钢,李培根.CAPP系统中的工艺资源库定制工具.高技术通讯,2001,12:51-54.
    [67]王小平,曹立明.遗传算法.西安:西安交通大学出版社,2002.
    [68]邓超,李培根,蔡力钢等.基于设备环境模型的多工艺方案决策.华中理工大学学报,1997,25(3):11-13.
    [69]朱孔来,于祥卿,吴自友等.用AHP法确定聚类因子的权重.农业系统科学与综合研究,1990,1:55-57.
    [70]郭志龙.面向工艺设计的制造资源建模与优化方法研究及实现:[硕士学位论文].西安:电子科技大学,2005.
    [71]曾令友,郁鼎文,张玉峰.通用CAPP系统中制造资源管理系统的研究.制造技术与机床,2003,1:76-77.
    [72]彭文利,张定华,姚倡锋等.面向CAPP的制造资源预配置研究.计算机工程与应用,2003,16:205-207.
    [73]张涛,陆晓春,凌晨等.CAXA-CAPP工艺设计与数据管理教程.北京:北京航空航天大学出版社,2004.
    [74]钱祥生,陈万领,袁惠敏等.开目CAPP软件自学敎程.北京:北京工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700