淀山湖浮游植物群落时空分布及与环境因子关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀山湖是上海市饮用水源保护地之一,兼具重要的生态、渔业、航道等功能。近年来,淀山湖富营养化程度不断加剧,夏季蓝藻水华频发,水环境安全受到严重威胁。为了了解淀山湖浮游植物群落的时空分布特点及与环境因子间的相互关系,分析浮游植物对不同生态修复工程的响应,为淀山湖富营养化防治提供基础资料,于2008年10月到2009年9月期间,在淀山湖设置了17个采样点,每月一次共计进行11次采样调查(2009年2月因天气原因未能采样),对各样点浮游植物的种类组成、数量变化、优势种、多样性指数及叶绿素a含量等进行了研究。主要研究结果如下:
     1调查期间共鉴定浮游植物8门147属503种(含变种、变型)。其中,绿藻门种类数最多,为65属204种,其次为硅藻门、蓝藻门和裸藻门,分别为32属148种,18属67种和7属59种。优势种主要由蓝藻门的色球藻属、微囊藻属、颤藻属,隐藻门的蓝隐藻属、隐藻属,绿藻门的小球藻属、丝藻属及硅藻门的直链藻属、菱形藻属等组成,尖尾蓝隐藻和小球藻为全年主要优势种,微囊藻属在夏末时成为部分区域主要优势种。
     淀山湖浮游植物类群密度受蓝藻水华期间情况影响较大。水华前:绿藻门、隐藻门、蓝藻门、硅藻门所占比例依次居前四位,而水华后:蓝藻门密度占55.61%,取代绿藻门成为浮游植物最主要的构成门类,绿藻门、隐藻门、硅藻门次之。
     2浮游植物种类数季节上表现为秋季>冬季>夏季>春季,空间分布特征为湖北>湖西及西南>湖南及湖东区域。浮游植物平均密度为6.16×106cells·L-1,呈双峰型变化,夏季峰远高于春季峰,夏季>春季>冬季>秋季。密度空间分布受水华影响较大。水华前,湖东、湖北区域密度较高,而水华后,湖西南、湖西区域密度更高,结合聚类分析结果,淀山湖西部、西南部为水华易发区域。Shannon-Weaver指数秋季>冬季>春季>夏季;Margalef指数秋季>冬季>春季>夏季;Pielou指数秋季>冬季>春季=夏季。空间上,大朱砂前置库、千墩浦前置库各点三种指数均高于其他,指示前置库附近物种丰富度,稳定性、均匀度相对更高。不同水深浮游植物群落差异较小,指示湖水上下分层并不明显。
     3浮游植物叶绿素a平均含量为20.51 mg/m3,春季>夏季>冬季>秋季,总体呈双峰型变化,夏季峰与春季峰水平相近。空间上,水华发生前,东部及北部水域叶绿素a含量高于西南部、西部,水华发生后,转变为西南部、西部和中部高于东部、南部等。不同深度叶绿素a含量随时间变化趋势基本一致,但变化幅度有所差距,总体上无显著差异。
     4调查期间,淀山湖除2008年11月和2009年3月为中营养外,其他各月均为轻度富营养状态。空间上,湖北区域营养状态指数较高,而西南部、南部区域相对偏低,指示湖北部富营养化程度高于南部。结合浮游植物调查结果分析可知,淀山湖营养盐和有机物含量丰富的水域具有更高的生物多样性指数。
     5利用SPSS软件分析浮游植物与环境因子的相关性,结果表明:影响淀山湖浮游植物的环境因子主要有水温、透明度、pH值、悬浮物、溶解氧、氨氮以及总氮,而总磷、BOD5、CODMn、浮游动物种类数、浮游动物密度等因子对浮游植物的影响较小。
     6对工程内外浮游植物群落各指标进行差异显著性分析,结果表明:除15号工程点和其对照点种类数、Margalef指数差异显著;5号工程点和其对照点浮游植物密度差异显著;7号工程点和其对照点Shonnon-Weaver和Pielou指数差异显著外,其余各指数在工程点和对照点间无显著差异。工程点内外浮游植物密度和叶绿素a含量差异随时间变化情况相近。2009年8月前,工程点浮游植物平均密度和叶绿素a含量分别低于对照点22.62%和31.89%。但水华后,工程点浮游植物平均密度和叶绿素a含量分别较对照点高了3.94倍和2.78倍。说明水华的发生对工程实施效果影响较大,需在水华易发季节加强维护。
Lake Dianshan is one of the drinking water conservation areas in Shanghai with other important functions in ecology, fishery, water transportation, etc. Recently, the aggravation of eutrophication and high frequency of algae bloom severely threaten the aquatic ecosystem security. In order to evaluate the spatial and temporal variation of phytoplankton community structure in Lake Dianshan and their relationship with environmental factors and also to analysis the impact of ecological restoration project on phytoplankton, an investigation was carried out from October 2008 to September 2009. In this period,17 sampling sites were selected and the samples were run once a month (the investigation was interrupted by heavy rain and wind in February 2009).The species composition, density variation, dominated species, bio-diversity indexes and chlorophyll-a content were studied and the main results are as follow:
     1 A total of 8 phylum,147genera,503 species of phytoplankton were identified(with varietas and metatype). The phytoplankton community was mainly composed of Chlorophyta(65 genera 204 species), Bacillariophyta (32 genera 148 species),Cyanophyta(18 genera 67 species) and Euglenophyta(7 genera 59 species). The dominated species were mainly Chroococcus, Microcystis, Oscillatoria in Cyanophyta, Chroomonas, Cryptomonas in Cryptophyta, Chlorella, Ulothrix in Chlorophyta and Melosira, Nitzschia in Bacillariophyta. In quantity, Chroomonas acuta, Chlorella vulgaris were the dominated species all year round and Microcystis was in the summer for some areas.The group density of phytoplankton in Lake Dianshan was affected deeply by the algal bloom. Before the algal bloom, Chlorophyta, Cryptophyta, Bacillariophyta, Cyanophyta were dominant. However, after the algal bloom, Cyanophyta replaced the Chlorophyta to be the main group with a proportion of 55.61% followed by Chlorophyta, Cryptophyta and Bacillariophyta.
     2 The seasonal order of phytoplankton species number from high to low was autumn,winter, summer, spring, while the spatial order is north,west and southwest,south and southeast. The phytoplankton density was on average 6.16×10cells·L-1 with double peaks in a year. Moreover, the summer peak was much higher than that in spring. Generally, the phytoplankton density ranged from high to low in the following season order:summer, spring, winter, autumn. In Lake Dianshan, the spatial variation was affected deeply by the algal bloom too. Before the algal bloom, the density in east and north areas were higher than the others, but after the bloom, the density in southwest and west area were higher. With regards to the results of cluster analysis, the west and southwest areas in Lake Dianshan are vulnerable spots for algal bloom.The seasonal order of Shannon-Weaver index from high to low was autumn, winter, spring, summer and the Margalef index was the same. Meanwhile, the Pielou index was in the order of autumn, winter, and spring equal to summer. In space, the bio-diversity indeces of front damming at Da Zhusha and Qian Dunpu were higher than that in the other areas.This observation showed that the abundance, stability and uniformity of phytoplankton species were better than the other areas. The otherness of phytoplankton at different depth was low which showed that the stratification effect of water in Lake Dianshan was not obvious.
     3 The chlorophyll-a content of phytoplankton was on average 20.51 mg/m3, and ranged from high to low in the following season order:spring, summer, autumn, winer. There were double peaks in a year, and the peak in summer was almost the same as that in the spring. Before the algal bloom, the chlorophyll-a content in east and north areas were higher than that in the southwest and west. However after the algal bloom, the northwest, west and middle areas had higher chlorophyll-a content. The trend of temporal variation on chlorophyll-a content was almost the same at different depth, but the range was different. Generally, there was no significant difference between the phytoplankton communities at different depth.
     4 During the investigation, most of the time, Lake Dianshan was at light eutrophication level, except for the November 2008 and March2009 which were at the middle level, in most months of the year. Spatially, the comprehensive nutrition index in the north part was higher than the others while the southwest and north areas were lower, which showed that the nutrition state in the north was more serious. Combined with the phytoplankton bio-diversity indices at different sites, the areas with higher nutrients and organism had higher bio-diversity indices in Lake Dianshan.
     5 The SPSS software was used to analysis the correlation between phytoplankton and environmental factors, and the results were as follows:the main factors that impact the distribution and variation of phytoplankton in Lake Dianshan were water temperature, transparency, pH, suspended substance, dissolved oxygen, ammonia nitrogen and total nitrogen. However, the total phosphorus, BOD5, CODMn, species number and density of zooplankton had smaller impact on phytoplankton.
     6 The results of significance difference analyses on phytoplankton community between interior and exterior sites of the project were as follows:no other significant difference of phytoplankton parameters was showed between the interior and exterior except for the species number and Margalef index at site 15, phytoplankton density at site 5 and Shonnon-Weaver and Pielou indices at site 7. The temporal variation trend of phytoplankton density was the same as that of chlorophyll-a content interior and exterior the restoration projects. Before August 2009, the phytoplankton density and chlorophyll-a content in the project were lower than the outside by about 22.62% and 31.89% respectively. On the contrary, after the algal bloom, the two parameters above for within the project were 3.94 and 2.78 times higher than that of the outside, respectively. The above phenomenon showed that the ecological restoration projects were easily affected by algal bloom, and stricter precautionary measure should be taken during the algal bloom.
引文
1. Benndorf J.Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe[J]. Hydrobiologia,1990,200/201:187-203.
    2. Beyruth Z. Periodic disturbances,trophic gradient and phytoplankton characteristics related to cyanobacterial growth in Guarapiranga Pesevior,Sao Paulo State,Brazil[J].Hydrobiologia,2000,424;51-65.
    3. Eker-Develi E E.Distribution of phytoplankton in the southern Black Sea in summer 1996,spring and autumn 1998[J]. Journal of Marine Systems,2003,39:23-211.
    4. Gonzalez E J.Nutrient entrchment and zooplankton effeets on the Phytoplankton community in microeosms from El Andino reservoir(Venezuela)[J].Hydrobiologia,2000,434:81-96.
    5. Gray J S. Eutrophication in the sea[A].In Columbo G,Ferrari I,Ceccherelli V U,et al. Marine Eutrophication and Population Dynamics[C].Olsen and Olsen,Frdensborg,1992:3-15.
    6. Gross E M, Erhard D,Ivanyi E. Allelopathic activity of Ceratophyllum demersum L.and Najas marina ssp[J]. Hydrobiologia,2003,506-509:583-589.
    7. Habib O A, Tippett R, Murphy KJ. Seasonal changes in phytoplankton community structure in relation to physico-chemical factors in Loch Lomond, Scotland[J]. Hydrobiologia,1997,350:63-79.
    8. Holm N P, Armstrong D E. Role of nutrient Limitation and competition in controlling the population Asterionella formosa and Microcystis aeruginosa in semicontinuous culture[J]. Limnology and Oceanography,1981,26(4): 622-634.
    9. Muylaert K,Sabbe K,Vyverman W. Spatial and temporal dynamic of phytoplankton communities in a freshwater tidal estuary (Schelde,Belgium)[J].Estuarine Coastal and Shelf Science,2000,50,673-687.
    10. Kairesalo T, Laine S, Luokkauen E,et al.Direct and indirect mechanisms behind successful biomanipulation[J]. Hydrobiogia,1999,395/396:96-106.
    11. Lopez-gonzalez P, Guerrero F&M,Castro C et al.Seasonal fluctuations in the plankton community in a hypersaline temporary lake (Honda, southern Spain)[J]. International Journal of salt lake research,1998,6:353-371.
    12. Sidik M F, Rashed-Un-Nabi R U, Hoque A.Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia[J].Estuarine,Coastal and Shelf Science,2008,80: 251-260.
    13. Margalef D R.Information theory in ecology[J].Genernal Systems,1958,3:36-71.
    14. Kalin M, Cao Y, et al.Development of the phytoplankton community in a pit-lake in relation to water quality changes[J]. Pergamon,35(13):3215-3225.
    15. Dellamano-Oliveira M J D, Senna P A C and Taniguchi G M. Limnological characteristics and ceasonal changes in density and diversity of the phyto- planktonic community at the Caco Pond, Maranhao State,Brazil[J]. Brazilian archives of biology and technology,2003,46(4):641-651.
    16. McNaughton S J.Relationship among functional prosperities of California grassland[J]. Nature,1967,216:168-168.
    17. Tolotti M, Thies H. Phytoplankton community and limnochemistry of Piburger Sea(Tyrol, Austria) 28 years after lake restoration[J]. Limnol,2002,61(1):77-88.
    18. Pielou E C. An Introduction to mathematical theroy ecology[M]. New York:Wiley-Interscience,1969.
    19. Guo Q H, Ma K M, Yang L.A comparative study of the impact of species composition on a freshwater phytoplankton community using two contrasting biotic indices[J].Ecological Indicators,2009.
    20. Shannon C E,Weaver W.The Mathematical theory of communication[M].Urbana,IL:University of Illinois Press,1949.
    21. Talling J F.The seasonality of phytoplankton in African lakes[J].Hydrobiologia,1986,138:139-160.
    22. Van Liere L,Parma S and Gulati R D.Working group water quality research Loosdreht Lakes:its history, seructure, research programme,and some results[J].Hydrobiologia,1992,233:19.
    23. Wetzel R G. Limnology[M]. Saunders College Publishing,1983:396.
    24. Gasiunaite Z R. Seasonality of coastal phytoplankton in the Baltic Sea:Influence of salinity and eutrophication[J]. Estuarine, Coastal and Shelf Science,2005,65:239-252.
    25. Zhang Y, Prepas E E.Regulation of the dominance of planktonic diatoms and cyanobacteria in four eutrophic hardwater lakes by nutrients,water column stability,and temperature[J].Can J Fish. Aquat.Science,1996,53:621-633.
    26. 薄芳芳,杨虹,左倬,等.上海公园水体夏季浮游植物群落与环境因子的关系[J].生态学杂志,2009,28(7):1259-1265.
    27. 蔡庆华.武汉东湖浮游生物间相互关系的多元分析[J].中国科学院研究生院学报,1995,12(1):97-102.
    28. 曹焕生,孔繁翔,谭啸,等.太湖水华蓝藻底泥中复苏和水柱中生长的比较[J].湖泊科学,2006,18(6):585-589.
    29. 柴夏,刘从玉,陈清,等.生态修复对浮游植物种群结构的影响[J].环境科技,2008,21(5),17-20.
    30. 陈荷生.太湖生态修复治理工程[J].长江流域资源与环境,2001,10(2):173-178.
    31. 陈开宁,周万平,鲍传和,等.浮游植物对湖泊水体生态重建的响应——以太湖五里湖大型围隔示范工程为例[J].湖泊科学,2007,19(4):359-366.
    32. 陈雷,徐兆礼,姚炜民,等.瓯江口春季营养盐、浮游植物和浮游动物的分布[J].生态学报,2009,29(3):1571-1577.
    33. 陈少莲,刘肖芳,胡传林,等.论鲢、鳙对微囊藻的消化利用[J].水生生物学报,1990,14(1):49-59.
    34. 程曦,李小平.淀山湖氮磷营养物20年变化及其藻类增长响应[J].湖泊科学,2008,20(4):409-419.
    35. 邓建明,蔡永久,陈宇炜,等.洪湖浮游植物群落结构及其与环境因子的关系[J].湖泊科学,2010,22(1):70-78.
    36. 邓平,马建敏,吴晓辉,等.武汉月湖水生植被重建过程中浮游植物的动态变化[J].湖泊科学,2007,19(5):552-557.
    37. 邓平.三种沉水植物对浮游植物的化感效应研究[D].湖北:中国科学研究院水生生物研究所,2007.
    38. 高伟生.淀山湖水源保护规划方案研究[J].华东师范大学学报(自然科学版),1988,2.
    39. 戈贤平,陈家长,吴伟.太湖蓝藻的暴发和生物治理[J].中国水产,2008,3:7-11.
    40. 郭沛勇,林育真,李玉仙.东平湖浮游植物与水质评价[J].海洋湖沼通报,1997,4:37-42.
    41. 国家统计局.中国统计年鉴[M].北京:中国统计出版社.1997-2007.
    42. 哈欢,朱宏进,朱雪生,等.淀山湖富营养化防治与生态修复技术研究[J].水资源管理,2009,13:46-48.
    43. 韩茂森等.淡水浮游生物图谱[M].北京:农业出版社,1980.
    44. 黄文成,徐延志.试论沉水植物在治理滇池草海中的作用[J].广西植物,1994,14(4):331-337.
    45. 黄钰铃,陈明曦,郭静.不同水温下蓝藻水华生消模拟与预测[J].三峡大学学报(自然科学版),2009,31(1),84-93.
    46. 黄钰铃,纪道斌,陈明曦,等.水体pH值对蓝藻水华生消的影响[J].人民长江,2008,39(2):63-65.
    47. 金相灿,屠清瑛.湖泊富营养化调查规范(第2版)[M].北京:中国环境科学出版社,1990.
    48. 金相灿等.中国湖泊环境[M].北京:海洋出版社,1995.
    49. 李秋华,韩博平.基于CCA的典型调水水库浮游植物群落动态特征分析[J].生态学报,2007,27(6):2355-2364.
    50. 李秋华.大镜山水库水质改善生态工程效果及浮游植物群落动态特征[D].广州:暨南大学,2008.
    51. 李燕,王丽卿,张瑞雷.淀山湖沉水植物死亡分解过程中营养物质的释放[J].环境污染与防治,2008,30(2):45-52.
    52. 李荫玺,王林,祁云宽,等.抚仙湖浮游植物发展趋势分析[J].湖泊科学,2007,19(2):223-226.
    53. 连民,陈传炜,俞顺章,等.淀山湖夏季微囊藻毒素分布状况及其影响因素[J].中国环境科学,2000,20(4):323~327.
    54. 林卫青,卢士强,陈义中.应用生态动力学模型评价上海淀山湖富营养化控制方案[J].上海环境科学,2010,29(1):1-10.
    55. 刘冬燕,达良俊,由文辉,等.绥宁河生态修复对粒径分级叶绿素a的影响[J].应用生态学报,2003,12(6):963-968.
    56. 孟顺龙,陈家长,范立民等.2007年太湖五里湖浮游植物生态学特征[J].湖泊科学,2009,21(6):845-854.
    57. 欧阳昊,韩博平.从东江调水后契爷石水库的水质和浮游植物群落结构特征[J].湖泊科学,2007,19(2):204-211.
    58. 曲克明,陈碧鹏,袁有宪,等.氮磷营养盐影响海水浮游硅藻种群组成的初步研究[J].应用生态学报,2001,11(3),445-448.
    59. 任健,商兆堂,蒋名淑,等.2007年太湖蓝藻暴发的气象条件分析[J].安徽农业科学,2008,36(27):11874-11877.
    60. 阮仁良,王云.淀山湖水环境质量评价及污染防治研究.[J]湖泊科学,1993,5(2):153-158.
    61. 商兆堂,任健,秦铭荣,等.气候变化与太湖蓝藻暴发的关系[J].生态学杂志,2010,29(1):56-61.
    62. 沈会涛,刘存歧.白洋淀浮游植物群落及其与环境因子的典范对应分析[J].湖泊科学,2008,20(1):773-779.
    63. 沈治蕊,卞小红,赵燕,等.1997.南京煦园太平湖富营养化及其防治[J].湖泊科学,12(4):377-380.
    64. 宋晓兰,刘正文,潘宏凯,等.太湖梅梁湾与五里湖浮游植物群落的比较[J].湖泊科学,2007,19(6):643-651.
    65. 孙菁煜,戴小杰,朱江峰,等.淀山湖鱼类多样性分析[J].上海水产大学学报,2007,16(5):454-459.
    66.唐汇娟,谢平,刘丽,等.武汉东湖浮游植物群落结构的时空变化与环境因子的关系[J].中山大学学报(自然科学版),2008,47(3):100-104.
    67. 王翠红,张金屯.汾河水库水源河着生硅藻群落DCCA研究[J].中国环境科学,2004,24(1):28-31.
    68. 王德玉,冯学智,周立国,等.太湖蓝藻爆发与水温的关系的MODIS遥感[J].湖泊科学,2008,20(2):173-178.
    69. 王国祥,濮培民.若干人工调控措施对富营养化湖泊藻类种群的影响[J].环境科学,1999.20(2):71-74.
    70. 王汉奎,董俊德,张偲,等.三亚湾氮磷比值分布及其对浮游植物生长的限制[J].热带海洋学报,2002,21(1),33-38.
    71. 王红兵,宋伟民,朱惠刚.上海淀山湖、黄浦江水系浮游藻类及藻类毒素的动态研究[J].环境与健康杂志,1995,12(5),196-199.
    72. 王丽卿,张军毅,王旭晨,等.淀山湖水体叶绿素a与水质因子的多元分析[J].上海水产大学学报,2008,17(1):58-64.
    73. 王丽卿,郑小燕.淀山湖轮虫现状及水质生态分析[A].2008水产科技论坛论文集[C],2008.
    74. 吴波,陈德辉,吴琼,等.黄浦江浮游植物群落结构及其对水环境的指示作用[J].武汉植物学研究,2007,25(5):467-472.
    75. 吴军林,王建萍.太湖底泥中蓝藻复苏的温度阈值研究[A].绿色论坛,2008,68-69.
    76. 吴生才,陈伟民等.太湖浮游植物生物量的周期性变化[J].中国环境科学,2004,24(2):151-154.
    77. 吴晓东,孔繁翔,张晓峰,等.太湖与巢湖水华蓝藻越冬和春季复苏的比较研究[J].环境科学,2008,29(5):1313-1318.
    78.吴晓辉,刘家寿,朱爱民,等.浮桥河水库浮游植物的多样性及其演变[J].长江流域资源与环境,2003,12(3),218-222.
    79. 吴雪峰,程曦,李小平.淀山湖浮游植物营养限制因子的研究[J].长江流域资源与环境,2010,19(3):292-298.
    80. 杨姣.惠州西湖浮游植物群落对生态修复的影响[D].广州:暨南大学,2009.
    81. 杨漪帆,朱永青,林卫青.淀山湖蓝藻水华及其控制因子的模型研究[J].环境污染与防治,2009,31(6):58-63.
    82. 由文辉.淀山湖的浮游植物及其能量生产[J].海洋湖沼通报.1995,1:48-52.
    83. 由文辉.淀山湖着生藻类群落结构与数量特征[J].环境科学,1999,20:59-62.
    84. 鱼京善,崔国庆.北京动物园水体水华发生的生态学机理[J].环境工程,2004,22(4):62-65.
    85. 原居林,沈锦玉,尹文林,等.应用浮游植物群落结构及富营养化指数评价南太湖底泥疏浚效果[J].水生态学杂志,2010,3(1):14-17.
    86. 袁伟玲,曹凑贵,汪金平,等.稻鱼共作生态系统浮游植物群落结构和生物多样性[J].生态学报,2010,30(1):0253-0257.
    87. 张立彬,王启山,丁丽丽,等.富营养化水体中浮游动物对藻类的控制作用[J].生态环境学报,2009,18(1):64-67.
    88. 张文涛.浅议湖库富营养化的评价方法和分级标准[J].珠江现代建设,2010,1:9-12.
    89. 张运林,秦伯强,陈伟民,等.太湖梅梁湾浮游植物叶绿素a和初级生产力[J].应用生态学报,2004,15(11):2127-2131.
    90. 张镇,陈非洲,周万平,等.南京玄武湖隆腺溞牧食对浮游植物的影响[J].湖泊科学,2009,21(3):415-419.
    91. 赵爱萍,刘福影,吴波,等.上海淀山湖的浮游植物[J].上海师范大学学报(自然科学版),2005,34(4):70-76.
    92. 赵倩,任文伟.蓝藻越冬机理研究进展[J].复旦学报(自然科学版),2009,48(1):117-124.
    93. 郑小燕,王丽卿,盖建军,等.淀山湖浮游动物的群落结构及动态[J].动物学杂志,2009,44(5):78~85.
    94. 周凤霞,陈剑虹.淡水微型生物图谱[M].北京:化学工业出版社,2005.
    95. 郑晓红,汪琴.淀山湖水质状况及富营养化评价[J].环境监测管理与技术,2009,21(2):68-70.
    96. 朱英,顾泳洁,王耘,等.苏州河水文条件变化对浮游植物群落的影响[J].华东师范大学学报(自然科学版),2008,2:30-36.
    97. 朱永春,蔡启铭.风场对藻类在太湖中迁移影响的动力学研究[J].湖泊科学,1997,9(2):152-158.
    98. 左涛,王荣,陈亚瞿.春季和秋季东黄海陆架区大型网采浮游动物群落划分[J].生态学报,2005,25(7),1531-1540.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700