离子液体介质双酶串联L-肉碱及其酰化物制备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L-肉碱和酰基-L-肉碱广泛应用于食品、功能食品、化妆品及药品等领域。巴豆甜菜碱在肉碱脱水酶催化下合成L-肉碱是国内生物催化法生产L-肉碱所采用的方法。但该方法存在前体转化率低和产物分离纯化过程中底物巴豆甜菜碱不能回收利用的问题。国内酰基-L-肉碱种类较少,其脂肪酶催化合成中乙腈作为反应介质产品得率较低、酶活损失严重。针对以上问题,本论文提出以离子液体为介质的双酶串联催化工艺。
     建立了巴豆甜菜碱水合反应体系中的肉碱脱水酶和L-肉碱酯化体系中的酰基-L-肉碱的检测方法。采用紫外法测定的以巴豆甜菜碱消耗量表示的肉碱脱水酶活力经拟合方程校正后与DTNB法测定的以L-肉碱生成量表示的肉碱脱水酶活力两组数据之间无显著差异。拟合方程为:y=7.286-5.45/ [1+e(x-8.746)/ 2318],x为紫外法测定的L-肉碱脱水酶酶活力,y为DTNB法测定的L-肉碱脱水酶酶活力,该方法检测限为1.87 U。采用比色法测定酰基-L-肉碱,两相显色体系的酰基-L-肉碱含量在20-130μmol范围内同显色反应吸光度成线性关系(R2 > 0.99)。加标回收率为99.53-103.33%,相对标准偏差低于4.30%,检测限为1.85μmol,该方法不受L-肉碱的干扰。
     对肉碱脱水酶催化巴豆甜菜碱合成L-肉碱的反应条件进行了优化。适宜的反应条件为:温度40℃,pH7.0,巴豆甜菜碱浓度2.0%,酶添加量2.0 g/100 ml(湿重),富马酸添加量0.2%,反应时间5-8 h。Mg~(2+)降低肉碱脱水酶活力,Zn~(2+)、K~+、Cu~(2+)、Li~+、Ba~(2+)、Fe~(2+)均能提高酶活力,其中以Fe~(2+)对酶活力的提高最为明显。
     对脂肪酶催化的L-肉碱酰化反应条件进行了优化。异戊酰-L-肉碱、辛酰-L-肉碱和棕榈酰-L-肉碱在[Bmim]PF_6离子液体中的酶催化酯合成,体系L-肉碱含量均为0.4 mmol,[Bmim]PF_6均为2.0 ml,均以Novozyme 435(10000 PLU/g)作为催化剂,初始水分活度均为0.22,反应温度依次为60、60和65℃,脂肪酸和L-肉碱摩尔比为4:1、5:1和5:1,脂肪酶用量为50、40和40 mg,转速为150、200和200 r/min,反应时间为60、48和48 h。以上条件下三种酰基-L-肉碱的产品得率分别达到59.61%、90.79%和98.03%。异戊酰-L-肉碱合成反应的活化能(163.08 KJ/mol)高于辛酰-L-肉碱(130.74 KJ/mol)和棕榈酰-L-肉碱(127.16 KJ/mol)。同乙腈相比较,[Bmim]PF_6离子液体作为介质具有产品得率高、酶操作稳定性好、绿色环保等特点。上述三种酰基-L-肉碱的以脂肪酸烯酯作为酰基供体的酯交换合成,适宜的反应条件为:体系L-肉碱含量均为0.4 mmol,[Bmim]PF_6均为2.0 ml,均以Novozyme 435作为催化剂,初始水分活度均为0.22,反应温度均为60℃,脂肪酸烯酯和L-肉碱摩尔比依次为6:1、3:1和3:1,脂肪酶用量为40、30和30 mg,转速为120、150和150 r/min,反应时间为48、32和32 h。以上条件下三种酰基-L-肉碱的产品得率分别达到73.61%、96.76%和98.82%。
     提出了L-肉碱及其酰化物制备的双酶串联工艺:采用[Bmim]PF_6离子液体作为巴豆甜菜碱水合反应和L-肉碱酰化反应的介质,巴豆甜菜碱在肉碱脱水酶催化下转化为L-肉碱,L-肉碱又在脂肪酶催化下转化为酰基-L-肉碱,酰基-L-肉碱由叔戊醇萃取。酰基-L-肉碱可以作为终产品,也可以水解得到L-肉碱。通过5次间歇萃取,总L-肉碱摩尔产率达到87.20%。真空旋转蒸发器是目前最适宜作为双酶串联反应的反应器。双酶串联工艺提高了底物转化率、解决了产物分离和纯化的关键技术、生产出酰基-L-肉碱产品。
     对酰基-L-肉碱从离子液体中分离提取的关键技术进行了研究。丙酮能使三种酰基-L-肉碱从[Bmim]PF_6离子液体中沉淀分离,需要的丙酮/[Bmim]PF_6体积比为6-7:1,沉淀时间通常需要10-14 h,产品得率90%以上,冷冻离心有助于沉淀完全并缩短沉淀时间。异戊酰-L-肉碱和辛酰-L-肉碱较适宜的萃取剂是水,二者在水—离子液体中的分配系数分别为1.35和1.16;棕榈酰-L-肉碱较适宜的萃取剂为叔戊醇,分配系数达到5.31;萃取时间均控制在15-30 min;降低温度对萃取有利;萃取操作时极易发生乳化现象,采用1000 r/min、1 min离心可消除乳化。
L-carnitine and acyl-L-carnitine are widely useful in pharmaceutical, cosmetic, and food industries at present. L-carnitine can be biosynthesized through the hydration of crotonobetaine under the action of carnitine dehydratase. However, the conversion is relatively low, and crotonobetaine can not be recoveried in the process of L-carnitine extraction and separation. Acetonitrile is by far the best reaction medium for the enzymatic synthesis of acyl-L-carnitine, but the product yield is low and the lipase activity loss is serious in acetonitrile. In adition, compared to the foreign countries, there are only a few varieties of acyl-L-carnitine in china. In order to solve these problems, the synthesis of L-carnitine and its acylate catalyzed in series by two enzymes in ionic liquid medium was studied in the paper.
     The methods for determination of carnitine dehydratase and acyl-L-carnitine were established. The activity of carnitine dehydratase can be defined as the total mmols of crotonobetaine consumed per hour, or that of L-carnitine produced per hour. The former could be determined by UV. But the value (x) must be modified through curve fit by the latter, which could be accurately determined by DTNB (y). The curve fit formula was y=7.286-5.45/[1+e(x-8.746)/ 2318]. The detection limit was 1.87 U. Acyl-L-carnitine could be measured by colorimetry method. Color reaction was performed in organic solution-salt solution biphasic system. The organic solution was 1, 2-dichloroethane-isoamyl alcohol mixture (V/V=96:4) added bromophenol blue (per 100 ml added 0.05 g). The salt solution was 55% K2HPO4 aqueous solution added Na2CO3 (per 100 ml added 14 g). There was a linear relationship (R2>0.99) between OD value and acyl-L-carnitine content which range was 20-130μmol in the biphasic system. To analyze the system of L-arnitine esterification, the recovery was 99.53-103.33%, the RSD was below 4.30%, and the detection limit was 1.85μmol. The method was not disturbed by L-carnitine.
     The conditions for the bioconversion of L-carnitine from crotonobetaine were optimized. The optimal reaction conditions were: 40°C of reaction temperature, pH7.0, 2.0% crotonobetaine, 2.0 g/100ml carnitine dehydratase (wet weight), 0.2% fumarate, 5-8 h of reaction time. The medal ion including Zn~(2+), K~+, Cu~(2+), Li~+, Ba~(2+) and Fe~(2+) could increase the activity of carnitine dehydratase, and all of these, Fe~(2+) was the most effective to improve the enzymatic activity. Mg~(2+) could decrease the enzymatic activity.
     The conditions of lipase-catalyzed acyl-L-carnitine synthesis in ionic liquid were optimized. The optimal reaction conditions were: for isovaleryl-L-carnitine, 0.4 mmol L-carnitine, 2.0 ml [Bmim]PF_6, 50 mg Novozyme 435 (10 000 PLU/g), 0.22 a_W, 200 mg molecular sieves, 4:1 molar ratio of fatty acid and L-carnitine, 60 oC, 150 r/min and 60 h; for octanoyl-L-carnitine and palmitoyl-L-carnitine, 0.4 mmol L-carnitine, 2.0 ml [Bmim]PF_6, 40 mg Novozyme 435, 0.22 aW, 250 mg molecular sieves, 5:1 molar ratio of fatty acid and L-carnitine, 60 oC (octanoyl-L-carnitine) and 65 oC (palmitoyl-L-carnitine), 200 r/min, 48 h. Their overall yields could reach 59.14%, 90.79% and 98.03%, respectively. The activation energy of isovaleryl-L-carnitine (163.08 KJ/mol) was higher than that of octanoyl-L-carnitine (130.74 KJ/mol) and palmitoyl-L-carnitine (127.16 KJ/mol). The higher yield and operational stability were obtained in [Bmim]PF_6 than in acetonitrile. The optimal conditions for acyl-L-carnitine synthesis by transesterification were: for isovaleryl-L-carnitine, 0.4 mmol L-carnitine, 2.0 ml [Bmim]PF_6, 40 mg Novozyme 435, 0.22 aW, 6:1 molar ratio of Allylisovalerate and L-carnitine, 60oC, 120 r/min and 48 h; for octanoyl-L-carnitine and palmitoyl-L-carnitine, 0.4 mmol L-carnitine, 2.0 ml [Bmim]PF_6, 30 mg Novozyme 435, 0.22 aW, 3:1 molar ratio of fatty acid vinyl ester and L-carnitine, 60 oC, 150 r/min, 32 h. Their overall yields could reach 73.61%, 96.76% and 98.82%, respectively.
     The route“synthesis of L-carnitine and its acylate catalyzed in series by two enzymes”was established. Using [Bmim]PF_6 ionic liquid as the reaction medium, L-carnitine was biosynthesized through the hydration of crotonobetaine under the action of carnitine dehydratase, which was transformed into palmitoyl-L-carnitine by lipase. Palmitoyl-L-carnitine was extracted with 2-methyl-2-butano. With the removal of L-carnitine, the biotransformation of crotonobetaine into L-carnitine was continued in the reversible hydration reaction. The molar yield of total L-carnitine could attain 87.2% after the five times intermittent extraction. Vacuum-rotary evaporator was a suitable reactor to realize the strategy. Through the route, the conversion was improved, the key technology of L-carnitine separation and extraction was solved, and acyl-L-carnitine was synthesized in the meantime.
     The key technology of acyl-L-carnitine separation and extraction was studied. Acetone could precipitate the three acyl-L-carnitine from [Bmim]PF_6 ionic liquid, with 6-7:1 volume ritio of acetone and [Bmim]PF_6, and their precipitation rates could reach 90%. The centrifugation after refrigeration could lead to the complete precipitation and decrease the time of precipitation. Water could extract isovaleryl-L-carnitine and octanoyl-L-carnitine from [Bmim]PF_6. Their partition ratio between water and the ionic liquid were 1.35 and 1.16, respectively. Palmitoyl-L-carnitine could be extracted from the ionic liquid by 2-Methyl-2-butano, and partition ratio between 2-Methyl-2-butano and the ionic liquid was 5.31. The extraction time was 15-30 min. The decrease of temperature was favourable to the extraction. Emulsification easily occurred during the extraction, which could be eradicated by centrifugation at 1000 r/min for 10 min.
引文
1.孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005:503-532
    2. Sigma, Ltd. Product Category [EB/OL]. http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=C0158|SIGMA&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F, 2009-3-21
    3. Akira S, Eiko K, Motoaki K. Slimming skin external preparation and cosmetic containing the same. United States [P], 11/597884. 2007-10-4
    4. Sigma, Ltd. Product Category [EB/OL]. http://www.sigmaaldrich.com/catalog/Lookup.do?N5=Keyword%20(fulltext)&N3=mode+matchpartialmax&N4=carnitine&D7=0&D10=carnitine&N25=0&N1=S_ID&ST=RS&F=PR, 2009-3-21
    5. Ziegler HJ, Bruckner P, Binon F. O-Acylation of dlcarnitine chloride [J]. Journal of organic chemistry, 1966, 32: 3989-3991
    6. Cervenka J, Osmundsen H. Synthesis of unsaturated carnitine esters with N-acyl imidazoles [J]. Journal of Lipid Research Volume1982, 23: 1243-1246
    7. Blanchard G, Paragon B, Milliat F, et al. Dietary L-carnitine supplementation in obese cats alters carnitine metabolism and decrease ketoses during fasting and induced hepatic lipidosis [J]. Journal of Nutrition. 2002, 2: 204-210
    8.孙建琴. L-肉碱对儿童营养和健康作用的研究[ J ].中国儿童保健杂志,2002,6:406-409
    9. Schimmenti LA, Crombez EA, Schwahn B, et al. Expanded newborn screening identifiesmaternal primary carnitine deficiency [J]. Molecular Genetics and Metabolism, 2007, 90: 441–445
    10. Wachter S, Vogt M, Kreis R, et al. Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance [J]. Clinica Chimica Acta. 2002, 122: 51-61
    11. Lohninger A, Karlic H. Carnitine in Pregnancy [J]. Monatshefte fur Chemie. 2005, 136: 1523–1533
    12. Julius G, Goepp MD. Why aging humans need more carnitine [J].Live Extension Magazine. September 2006
    13. Savitha S, Tamilselvan J. Oxidative stress on mitochondrial antioxidant defense system in the aging process: role of DL-lipoic acid and L-carnitine [J]. Clinica Chimica Acta , 2005, 355: 173–180
    14. Colucci S, Mori G, Vaira S, et al. L-carnitine and isovaleryl-L-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro [J]. Calcified Tissue International, 2005, 76: 458–465
    15. Vanella A, Russo A, Acquaviva R, et al. L-propionyl-carnitine as superoxide scavenger, antioxidant, and DNA cleavage protector [J]. Cell Biology and Toxicology, 2000, 16: 99-104
    16.王京钟,王筱桂.L-肉碱对人体运动能力的影响[J].中国食品添加剂,2003,5:40-43
    17. Kraemer WJ, Volek JS, Barry A. L-carnitine supplementation: a new paradigm for its role in exercise [J]. Monatshefte f€uur Chemie, 2005, 136: 1383–1390
    18.黄宗锈,林健,林春芳.左旋肉碱对肥胖人员减肥作用的效果观察[J].预防医学论坛,2007,13(1):6-8
    19.朱晓萍. L-肉碱的提取检测及减肥抗疲劳功能的研究[D]:[硕士学位论文].天津:天津科技大学,2004
    20.刘丽芳,王玉柱.左旋肉碱在尿毒症血液透析患者中的应用[J].世界临床药物,2007,28(2):95-98
    21.芮海荣,刘小辉,赵养俊等.静脉补充左卡尼汀治疗透析相关性肉碱缺乏症88例[J].第四军医大学学报,2005,26 (11):985
    22. Savica V, Santoro D, Mazzaglia G, et al. L-carnitine infusions may suppress serum C-reactive protein and improve nutritional status in maintenance hemodialysis patients [J]. Journal of renal nutrition, 2005, 15 (2): 225-230
    23. Ko?an C, Sever L, Arisoy N, Cali?kan S, Kasap?opur O. Carnitine supplementationimproves apolipoprotein B levels in pediatric peritoneal dialysis patients [J]. Pediatr Nephrol, 2003, 18(11): 1184-1188
    24. Morishima I, Sone T, Okumura K, et al. Angiographic no-reflow phenomenon as a predictor of adverse long-term outcome in patients treated with percutaneous transluminal coronary ngioplasty for first acute myocardial infarction [J]. Journalism Association of Community Colleges, 2000, 36: 1202-1209
    25. Pauly DF, Pepine CJ. The role of carnitine in myocardial dysfunction [J]. American Journal of Kidney Disease, 2003, 41(4 Suppl 4): S35-43
    26. Cui J, Das DK, Bertelli A, et al. Effects of L-carnitine and its derivatives on postischemic cardiac function, ventricular fibrillation and necrotic and apoptotic cardiomyocyte death in isolated rat hearts [J]. Molecular and Cellular Biochemistry, 2003, 254 (1-2): 227-34
    27. Lango R, Ryszard T, Rogowski J, et al. Propiony-L-carnitine improves hemodynamics and metabolic markers of cardiac perfusion during coronary surgery in diabetic patients [J].Cardiovascular Drugs and Therapy.2005,19: 267–275
    28.陈扬波,罗书裕,徐名伟.国产左旋卡尼汀佐治不稳定型心绞痛临床观察[J].实用药物与临床,2005,8 (4):13-15
    29. Lenzi A, Lombardo F, Sgro P, et al. Use of carnitine therapy in selected cases of male factor infertility: a double-blindcrossover trial [J]. Fertility and Sterility, 2003, 79: 292-300
    30. Li K, Li W, Huang YF. Determination of free L-carnitine in human seminal plasma by high performance liquid chromatography with pre-column ultraviolet derivatization and its clinical application in male infertility [J]. Clinica Chimica Acta, 2007, 378:159-163
    31. Balercia G, Regoli F, Armeni T, et al. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia [J]. Fertility and Sterility, 2005, 84 (3): 662-671
    32. Cavallini G, Caracciolo S, Vitali G, et al. Carnitine versus androgen administration in the treatment of sexual dysfunction, depressed mood, and fatigue associated with male aging[J]. Urology, 2004, 63 (4) : 641-646
    33. Gramignano G, Lusso MR, Madeddu C, et al. Efficacy of L-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy [J]. Nutrition 2006, 22:136–145
    34. Waldner R, Laschan C, Lohninger A, et al. Effects of doxorubicin-containing chemotherapy and a combination with L-carnitine on oxidative metabolism in patientswith non-Hodgkinlymphoma [J]. Journal of Cancer Research and Clinical Oncology, 2006, 132: 121-128
    35. Iratam A, Ktan O, Zansoy O. Effects of L-carnitine treatment on oxidant/antioxidant state and vascular reactivity of streptozotocin-diabetic rat aorta [J]. Journal of Pharmacy and Pharmacology, 2003, 55(10): 1389-1395
    36. Rassoul F, Loster H, Richter V. Effects of L-carnitine on sucrose-induced hyperlipidaemia [J]. Monatshefte für Chemie, 2005,136: 1501-1507
    37. Nakadate T, Blumberg PM. Modulation by palmitoylcarnitine of protein kinase C activation [J]. Cancer Research, 1987, 47: 6537-6542
    38.梅长林,叶朝阳,徐虹.左旋卡尼汀和棕榈酰左旋卡尼汀对体外培养大鼠骨髓细胞红系克隆形成的影响[J].第二军医大学学报,2001,z1:40
    39. Sigma, Ltd. Product Category [EB/OL]. http://www.sigmaaldrich.com/catalog/ProductDetail.do?N4=P1645|SIGMA&N5=SEARCH_CONCAT_PNO|BRAND_KEY&F=SPEC, 2009-3-21
    40. Tsagris V, Adamidou GL. Serum carnitine levels in patients with homozygous beta thalassemia: a possible new role for carnitine [J]. European Journal of Pediatrics, 2005, 164: 131-134
    41. Yu ZP, Iryo Y, Matsuoka M, et al. Suppression of pentylenetetrazol-induced seizures by carnitine in mice [J]. Naunyn-Schmiedeberg’s Arch Pharmacol,1997, 355: 545– 549
    42. Guideri F, Acampa M, Hayek Y, et al. Effects of acetyl-L-carnitine on cardiac dysautonomia in rett syndrome: prevention of sudden death [J]. Pediatric Cardiology, 2005, 26 (5): 574-577
    43. ?zgüt-Uysal VN, Aga? A, Derin N, et al. Effect of carnitine on stress-induced lipid peroxidation in rat gastric mucosa [J]. Journal of Gastroenterology, 2001, 36: 231-236
    44. Cetinkaya A, Bulbuloglu E, Kantarceken B, et al. Effects of L-carnitine on oxidant/antioxidant status in acetic acid-induced colitis [J], Digestive Diseases and Sciences, 2006, 51(3): 488-494
    45.蔺小红,焦莉莉,徐国宾等.肝病患者血清肉碱水平的临床研究[J].中华肝脏病杂志,2006,14(5):367-369
    46. Sch?ls L, Zange J, Abele M, et al. L-carnitine and creatine in Friedreichs ataxia.A randomized, placebo-controlled crossover trial [J]. Journal of Neural Transmission, 2005, 112 (6): 789-796
    47. Filipek PA, Juranek J, Nguyen MT, et al. Relative carnitine deficiency in autism [J]. Journal of Autism and Developmental Disorders, 2004, 34 (6): 615-623
    48. Lohninger A, Pittner G, Pittner F. L-Carnitine: new aspects of a known compound–a brief survey [J]. Monatshefte für Chemie, 2005, 136 (8): 1255-1268
    49. Kamm B, Kamm M, Kiener A, et al. Polycarnitine—a new biomaterial [J]. Applied Microbiology and Biotechnology, 2005, 67 (1): 1-7
    50.向智男.左旋肉碱的制备、功能及其应用[J].中国食品添加剂,2007,G00:386-390
    51. Naidu GSN, Lee IY, Kang GH. Microbial and enzymatic production of L-carnitine [J].Bioprocess Engineering, 2000 (23): 627-635
    52.丁天兵,王智,翁良等.乙酰肉碱的化学合成与酶法拆分[J].吉林大学学报(理学版),2003,41(3):399-401
    53. Meyer HP, Robins KT. Large scale bioprocess for the production of optically pure L-carnitine [J]. Monatshefte für Chemie 2005, 136: 1269-1277
    54. Castellar MR, Obón JM, Marín A. L(-)-carnitine production using a recombinant Escherichia coli strain [J]. Enzyme and Microbial Technology, 2001, 28: 785–791
    55. Obón JM, Maiquez JR, Cánovas M. High-density Escherichia coli cultures for continuous L-carnitine production [J]. Applied Microbiology and Biotechnology, 1999, 51: 760-764
    56. Giuliano M, Schiraldi C, Maresca C. Immobilized Proteus mirabilis in poly (vinyl alcohol) cryogels for L-carnitine production [J]. Enzyme and Microbial Technology, 2003, 32: 507–512
    57. Cánovas M, Bernal V, González M. Factors affecting the biotransformation of trimethylammonium compounds into L-carnitine by Escherichia coli [J].Biochemical Engineering Journal, 2005, 26: 145–154
    58. Heinrich J, Buchholz M, Clausen J. CaiT of Escherichia coli, a new transporter catalyzing L-carnitine/γ-butyrobetaine exchange [J]. The Journal of biological chemistry, 2002, 42: 39251–39258
    59. Sevilla A, Schmid JW, Mauch K. Model of central and trimethylammonium metabolism for optimizing L-carnitine production by E. coli [J]. Metabolic Engineering, 2005, 7: 401-425
    60. Cánovas M, Sevilla A, Bernal V. Role of energetic coenzyme pools in the production of L-carnitine by Escherichia coli [J]. Metabolic Engineering, 2006, 8 (6): 603-618
    61. Guebel DV, Torres NV, Cánovas M. Modeling analysis of the L(-)-carnitine production process by Escherichia coli [J]. Process Biochemistry, 2006, 41: 281–288
    62. Cánovas M, García V, Bernal V. Analysis of Escherichia coli cell state by flow cytometry during whole cell catalyzed biotransformation for L-carnitine production [J]. Process Biochemistry, 2007, 42 (1): 25–33
    63. Obón JM, Maiquez JR, Canovas M. L(-)-Carnitine production with immobilized Escherichiu coli cells in continuous reactors [J].Enzyme and Microbial Technology, 1997, 21: 531-536
    64.王玉萍,谭训刚,陈师勇等.肉碱脱水酶突变株的获得及其休止细胞反应条件的优化[J].生物技术通讯,2000(4):261-263
    65. Setyahadi S, Harada E, Mori N. Production of L-carnitine from D-carnitine by partially purified D-and L-carnitine dehydrogenase of Agrobacterium sp.525a [J]. Journal of Molecular Catalysis B: Enzymatic.1998, 4: 205-209
    66. Mori N, Setyahadi S, Harada E. Production of L-carnitine from D-carnitine by dried cells of Agrobacterium sp. 525a [J]. Journal of Molecular Catalysis B: Enzymatic.1999, 6: 235-239
    67. Canovas M, Castellar MR, Obón JM. Racemisation of D(+)-carnitine into L(-)-carnitine by Escherichia coli strains [J]. Process Biochemistry, 2003, 39: 287-293
    68. Sulin S, Miyawaki O, Nakamura K. Continuous production of L-carnitine with NADH regeneration by a nanofiltration membrane reactor with coimmobilized L-carnitine dehydrogenase and glucose dehydrogenase [J]. Journal of Bioscience and Bioengineering, 1999, 87: 361-364
    69.陆建安.饲用左旋肉碱的制备与应用[J].饲料博览,2004(2):33-34
    70. Brass JM, Hoeks FWJMM, Rohner M. Application of modeling techniques for the improvement of Industrial bioprocesses [J]. Biotechnol, 1997 (59): 63-72
    71.程青芳,许兴友,李艳辉. L-肉碱和盐酸乙酰L-肉碱的合成[J].有机化学,2006,26(7):946-949
    72. Yuan Y, Bai S, Sun Y. Comparison of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquids and organic solvents [J]. Food Chemistry, 2006, 97:324-330
    73. Nara SJ, Harjani JR, Salunkhe MM. Lipase-catalysed transesterification in ionic liquids and organic solvents: a comparative study [J]. Tetrahedron Letters, 2002, 43: 2979-2982
    74. Lozano P, Daz M, de Diego T, et al. Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilized Candida antarctica lipase B [J]. Biotechnology and Bioengineering, 2003, 82: 352-358
    75. Li Z, Yang D, Jiang L, et al. Lipase-catalyzed esterification of conjugated linoleic acid with L-carnitine in solvent-free system and acetonitrile [J]. Bioprocess and biosystems Engineering, 2007, 30: 331-336
    76.杨得坡,李珍,梁淑明.新的共轭亚油酸衍生物及它的制备方法与用途[P].中国专利,200710028372,2007-11-7
    77. Odessey R, Chace KV. The determination of the specific activity of picomolar amounts of long-chain acylcarnitine esters [J]. Analytical Biochemistry, 1982, 122 (1): 41-46
    78. M?der M, Kie?ling A, L?ster H. Current methods for determination of L-carnitine and acylcarnitines [J]. Monatshefte f€ur Chemie 2005, 136: 1279–1291
    79.邹雨佳,聂实践,李东. L-肉碱的检测方法[J].生物工程进展,1999,19(5):72-75
    80. Poorthuis BJ, Jille-Vickova T, Onkenhout W. Determination of acylcarnitines in urine of patients with inborn errors of metabolism using high-performance liquid chromatography after derivatization with 4'-bromophenacylbromide [J]. Clinica Chimica Acta, 1993, 216 (1-2): 53-61
    81. Kagawa M, Machida Y, Nishi H. Enantiomeric purity determination of acetyl-L-carnitine by reversed-phase high-performance liquid chromatography using chiral derivatization [J]. Journal of Chromatography A, 1999, 857: 127-135
    82.丁峰,朱秋毓,顾勇等.高效液相色谱法测定血浆游离肉碱[J].药物分析杂志,2005(25)10:1195-1197
    83.赵亚明,李任,王得新等.高效液相色谱法检测血浆左旋肉碱方法的建立[J].中国临床神经医学,2006,14(5):528-532
    84. Mardones C, Vizioli N, Carducci C, et al. Separation and determination of carnitine and acyl-carnitines by capillary electrophoresis with indirect UV detection [J]. Analytica Chimica Acta, 1999, 382 (1-2) : 23-31
    85. Kamimori H, Hamashima Y, Konishi M. Determination of carnitine and saturated-acyl group carnitines in human urine by high-performance liquid chromatography with fluorescence detection [J]. Analytical Biochemistry, 1994, 218 ( 2): 417-424
    86. Vicchio D, Yergey AL. Thermospray liquid chromatography/mass spectrometry of quaternary ammonium salts [J]. Organic Mass Spectrometry, 2005, 24 (12): 1060 -1064
    87. Heinig K, Jack H. Determination of carnitine and acylcarnitines in biological samples by capillary electrophoresis–mass spectrometry [J]. Journal of Chromatography B: Biomedical Sciences and Applications1999, 735 ( 2): 171-188
    88. Osorio JH, Pourfarzam M, Brazilian J. Plasma free and total carnitine measured in children by tandem mass spectrometry [J]. Brazilian Journal of Medical and Biological Research, 2002, 35 (11): 1265-1271
    89. Vernez L, Hopfgartne G, Wenk M. Determination of carnitine and acylcarnitines in urine by high-performance liquid chromatography–electrospray ionization ion trap tandem mass spectrometry [J]. Journal of Chromatography A, 2003, 984 (2): 203-213
    90. Mueller P, Schulze A, Schindler I, et al.Validation of an ESI-MS/MS screening methodfor acylcarnitine profiling in urine specimens of neonates, children, adolescents and adults [J]. Clinica Chimica Acta, 2003, 327 (1-2): 47-57
    91. M?der M, L?ster H, Herzschuh R, et al. Determination of urinary acylcarnitines by ESI-MS coupled with solid-phase microextraction (SPME) [J]. Journal of Mass Spectrometry, 1997, 32 (11): 195-204
    92. Jain N, Kumar A, Chauhan S, et al. Chemical and biochemical transformations in ionic liquids [J].Tetrahedron, 2005, 61: 1015–1060
    93. Sakaki K, Aoyama A, Nakane T. Enzymatic synthesis of sugar esters in organic solvent coupled with pervaporation [J]. Desalination, 2006,193: 260–266
    94. Yadav GD, Lathi PS. Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 27: 113-119
    95. Hansson T, Andersson M, Wehtje E. Influence of water activity on the competition betweenβ-glycosidase-catalysed transglycosylation and hydrolysis in aqueous hexanol [J]. Enzyme and Microbial Technology, 2001, 29 (8-9): 527-534
    96.郭诤.非水相系统中脂肪酶催化酯化反应的研究[D]:[博士学位论文]天津:天津大学,2003
    97. Al-Zuhair S, Dowaidar A, Kamal H. Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase [J]. Biochemical Engineering Journal, 44 (2-3): 256-262
    98. Yadav GD, Dhoot SB. Immobilized lipase-catalyzed synthesis of cinnamyl laurate in non-aqueous media [J]. Journal of Molecular Catalysis B: Enzymatic 2009, 57 (1-4): 34-39
    99. Yang G, Wu J, Xu G , et al. Enhancement of the activity and enantioselectivity of lipase in organic systems by immobilization onto low-cost support [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 57(1-4): 96-103
    100.李宏亮,胡晶,谭天伟.固定化脂肪酶合成维生素A棕榈酸酯[J].生物工程学报,2008,5:817-820
    101.裘俊红,董树杰,谢海英. AOT/异辛烷反胶束体系含水量研究[J].高校化学工程学报,2008,22(3):515-518
    102.Nagayama K, Yamasaki N, Imai M. Fatty acid esterification catalyzed by Candida rugosa lipase in lecithin microemulsion-based organogels [J]. Biochemical Engineering Journal, 2002, (12): 231–236
    103.Jemel I, Fendri A, Gargouri Y, et al. Kinetic properties of dromedary pancreatic lipase: Acomparative study on emulsified and monomolecular substrate [J]. Colloids and Surfaces B: Biointerfaces, 2009, 70 (2) : 238-242
    104.刘伟东,聂开立,鲁吉珂.反胶束体系中脂肪酶催化合成生物柴油[J].生物工程学报,2008,24(1):142-146
    105.陈国华,陆瑶.在反胶束中酶促合成短肽的研究进展[J].四川理工学院学报(自然科学版),2007,20(1):104-106
    106.金宇.反胶束中酶催化反应研究进展[J].化学工程师,2008,153(6):34-35
    107.张海峰,谷克仁.超临界CO2下酶催化脂质水解反应,粮食与油脂,2007,12:14-16
    108.Wen D, Jiang H, Zhang K. Supercritical fluids technology for clean biofuel production [J]. Progress in Natural Science, 2009, 19(3) : 273-284
    109.Habulin M, ?abeder S, Sampedro MA. Enzymatic synthesis of citronellol laurate in organic media and in supercritical carbon dioxide [J]. Biochemical Engineering Journal, 2008, 42 (1): 6-12
    110.Matsuda T, Marukado R, Mukouyama M. Asymmetric reduction of ketones by Geotrichum candidum: immobilization and application to reactions using supercritical carbon dioxide [J].Tetrahedron: Asymmetry, 2008, 19 (19): 2272-2275
    111.SovováM, Zarevúcka P, Berná?ek. Kinetics and specificity of lipozyme-catalysed oil hydrolysis in supercritical CO2 [J].Chemical Engineering Research and Design, 2008, 86 (7): 673-681
    112.Habulin M, ?abeder S, Knez ?. Enzymatic synthesis of sugar fatty acid esters in organic solvent and in supercritical carbon dioxide and their antimicrobial activity [J]. The Journal of Supercritical Fluids, 2008, 45 (3): 338-345
    113.Kayrak DT, Akman U, Horta?su ?. Supercritical carbon dioxide immobilization of glucose oxidase on polyurethane/polypyrrole composite [J]. The Journal of Supercritical Fluids. 2008, 44 (3): 457-465
    114.Park S, Kazlauskas RJ. Biocatalysis in ionic liquids–advantages beyond green technology [J]. Current Opinion in Biotechnology, 2003, 14: 432–437
    115.Zhao H. Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids [J]. Journal of Molecular Catalysis B: Enzymatic 2005, 37: 16–25
    116.李汝雄,绿色溶剂——离子液体的合成与应用[M].北京:化学工业出版社,2004.158-175
    117.Fehér E, Major B, BakóKB. Semi-continuous enzymatic production and membrane assisted separation of isoamyl acetate in alcohol-ionic liquid biphasic system [J].Desalination, 2009, 241 (1-3): 8-13
    118.Cédric G, Richard D, Chauvin CN. Influencing the regioselectivity of lipase-catalyzed hydrolysis with [bmim]PF6 [J].Tetrahedron Letters, 2009, 50 (18): 2083-2085
    119.Vidya, Chadha A. The role of different anions in ionic liquids on Pseudomonas cepacia lipase catalyzed transesterification and hydrolysis [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 57( 1-4): 145-148
    120.Pfruender H, Jones R, Weuster BD. Water immiscible ionic liquids as solvents for whole cell biocatalysis [J]. Journal of Biotechnology, 2006 (124): 182–190
    121.王普,周丽敏,何军邀.离子液体中酵母细胞不对称还原合成(R)-3-羟基丁酸乙酯[J].高校化学工程学报,2008,22(5):833-838
    122.吴小梅,辛嘉英,张颖鑫.无溶剂体系中的脂肪酶催化反应研究进展[J].分子催化,2006,20(6):597-603
    123.Chang C, Wu P. Synthesis of triglycerides of phenylalkanoic acids by lipase-catalyzed esterification in a solvent-free system [J]. Journal of Biotechnology, 2007 (127): 694–702
    124.Sun SD, Shan L, Jin QZ, et al. Solvent-free synthesis of glyceryl ferulate using a commercial microbial lipase [J]. Biotechnology Letters, 2007, 29: 945–949
    125.Sun SD, Shan L, Liu Y, et al. Solvent-free enzymatic synthesis of feruloylated diacylglycerols and kinetic study [J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 57(1-4): 104-108
    1.孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005:503-532
    2.丁峰,朱秋毓,顾勇等.高效液相色谱法测定血浆游离肉碱[J].药物分析杂志,2005(25)10:1195-1197
    3.赵亚明,李任,王得新等.高效液相色谱法检测血浆左旋肉碱方法的建立[J].中国临床神经医学,2006,14(5):528-532
    4. Vicchio D, Yergey AL. Thermospray liquid chromatography/mass spectrometry of quaternary ammonium salts [J]. Organic Mass Spectrometry, 2005, 24 (12): 1060-1064
    5. Osorio JH, Pourfarzam M, Brazilian J. Plasma free and total carnitine measured in children by tandem mass spectrometry [J]. Brazilian Journal of Medical and Biological Research, 2002, 35 (11): 1265-1271
    6.王玉萍,陈师勇,李翔太等.测定巴豆甜菜碱的新方法及其在肉碱研究中的应用[J].食品科学,2000,21(11):44-46
    7.王蕾,郑璞,金梅等.紫外分光光度法测定肉碱转化液中巴豆甜菜碱的含量[J].生物技术,2001,11(5):42-43
    8. Odessey R, Chace KV. The determination of the specific activity of picomolar amounts of long-chain acylcarnitine esters [J].Analytical Biochemistry, 1982, 122 (1): 41-46
    9. Vernez L, Hopfgartne G, Wenk M. Determination of carnitine and acylcarnitines in urine by high-performance liquid chromatography–electrospray ionization ion trap tandem mass spectrometry [J]. Journal of Chromatography A, 2003, 984 (2): 203-213
    10. Mueller P, Schulze A, Schindler I, et al.Validation of an ESI-MS/MS screening method for acylcarnitine profiling in urine specimens of neonates, children, adolescents and adults [J]. Clinica Chimica Acta, 2003, 327 (1-2): 47-57
    11. Lonza AG (CH). Process for the production of crotonobetaine hydrochloride [P]. CA2023744,1991-03-08
    12. Person DJ, Chase JFA, Tubbs PK. Estimation of carnitine and derivatives [M]. Methods in Enzymology,1969 (l14): 612
    13. Yokozeki K, Takahashi S, Hirose Y. Asymmetric production of L-carnitine from trans-crotonbetaine [J]. Agriculture Biology Chemical, 1988, 52(10): 2415-2421
    14.丁明玉等.现代分离方法与技术[M].北京:化学工业出版社,2006:63-64
    15.王璋,许时婴,江波等译.食品化学(第三版)[M].北京:轻工业出版社,2003:34-35
    1. Jung H, Jung K, Kleber HP. Purification and properties of carnitine dehydratase from Escherichia coil - a new enzyme of carnitine metabolization [J]. Biochunica Biophysica Acta, 1989,1003: 270-276
    2. Yokozeki K, Takahashi S, Hirose Y. Asymmetric production of L-carnitine from trans-crotonbetaine [J]. Agriculture Biology Chemical, 1988, 52(10): 2415-2421
    3. Jung, K Jung, Kleber. Synthesis of L-carnitine by microorganisms and isolated enzymes [J]. Advances in Biochemical Engineering Biotechnology, 1993, 50: 22-42
    4. Maria J, Maiquez JR, Cánovas M. L(-)-carnitine production with immobilized Escherichiu coli cells in continuous reactors [J].Enzyme and Microbial Technology, 1997, 21: 531-536
    5. Guebel DV, Torres NV, Cánovas M. Modeling analysis of the L(-)-carnitine production process by Escherichia coli [J]. Process Biochemistry, 2006, 41: 281-288
    6. Cánovas M, Bernal V, González M. Factors affecting the biotransformation of trimethylammonium compounds into L -carnitine by Escherichia coli [J]. Biochemical Engineering Journal, 2005, 26:145-154
    7. Castellar MR, Obón JM, Marín A. L(-)-carnitine production using a recombinant Escherichia coli strain [J]. Enzyme and Microbial Technology, 2001, 28: 785-791
    8.王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,2003. 191-232
    9.孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005. 503-532
    10. Cánovas M, Bernal V, González M. Factors affecting the biotransformation of trimethylammonium compounds into L-carnitine by Escherichia coli [J]. Biochemical Engineering Journal, 2005, 26:145-154
    1. CalòLA, Pagnin E, Davis PA, et al. Antioxidant effect of L-carnitine and its short chain esters [J]. International Journal of Cardiology, 2006, 107: 54-60
    2. Colucci S, Mori G, Vaira S, et al. L-Carnitine and isovaleryl-L-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro [J]. Calcified Tissue International, 2005, 76, 458-465
    3. Gomez-Amores L, Mate A, Revilla E, et al. Antioxidant activity of propionyl-L-carnitine in liver and heart of spontaneously hypertensive rats, Life Sciences [J]. 2006, 78, 1945-1952
    4. Kamm B, Kamm M, Kiener A. Polycarnitine-a new biomaterial [J]. Applied Microbiology and Biotechnology, 2005, 67, 1-7
    5. Lango R, Smoleński R, Rogowski Siebert J, et al. Propionyl-L-Carnitine improves hemodynamics and metabolic markers of cardiac perfusion during coronary surgery in diabetic patients [J]. Cardiovascular Drugs and Therapy, 2005, 19, 267-275
    6. Johnson DW. Synthesis of dicarboxylic acyl-L-carnitines [J]. Chemistry and Physics of Lipids, 2004, 129, 161-171
    7. Kervenka J, Osmundsen H. Synthesis of unsaturated carnitine esters with N-acyl imidazoles [J]. Journal of Lipid Research, 1982, 23, 1243-1246
    8. Ziegler HJ, Bruckner P, Binon F, et al. O-Acylation of dlcarnitine chloride [J]. Journal of Organic Chemistry, 1966, 32, 3989-3991
    9. Li Z, Yang D, Jiang L, et al. Lipase-catalyzed esterification of conjugated linoleic acid with L-carnitine in solvent-free system and acetonitrile [J]. Bioprocess and biosystems Engineering, 2007, 30, 331-336
    10. Lozano P, Daz M, de Diego T, et al.Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilized Candida antarctica lipase B [J]. Biotechnology and Bioengineering, 2003, 82, 352-358
    11.孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005:503-532
    12. Yuan Y, Bai S, Sun Y. Comparison of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquids and organic solvents [J]. Food Chemistry, 2006, 97, 324-330
    13. Nara SJ, Harjani JR, Salunkhe MM. Lipase-catalysed transesterification in ionic liquids and organic solvents: a comparative study [J]. Tetrahedron Letters, 2002, 43, 2979-2982
    14. Ikeda I, Klibanov AM. Lipase-catalyzed acylation of sugars solubilized in hydrophobic solvents by complexation [J]. Biotechnology and Bioengineering, 1993, 42, 788-791
    15. Castillo E, Marti A, Combes D. Polar substrates for enzymic reactions in supercritical CO2: How to overcome the solubility limitation [J]. Biotechnology Letters, 1994, 16, 169-174
    16. Samey DB, Kapeller H, Fregapane G. Chemo-enzymatic synthesis of disaccharide fatty acid esters [J]. Journal of the American Oil Chemists Society, 1994, 71, 711-714
    17. Steverink-de Zoete MC, Kneepkens MFM, de Waard P, et al. Enzymatic synthesis and NMR studies of acylated sucrose acetates [J]. Green Chemistry, 1999, 1, 153-156
    18. Berger M, Laumen K, Schneider MP. Enzymatic esterification of glycerol I. Lipase-catalyzed synthesis of regioisomerically pure 1,3-sn-Diacylglycerols [J]. Journal of the American Oil Chemists Society, 1992, 69, 955-960
    19. Berger M, Laumen K, Schneider MP. Lipase catalyzed esterification of hydrophilic diols in organic solvents [J]. Biotechnology Letters, 1992, 14, 553-558
    20. Berger M, Schneider MP. Enzymatic esterification of glycerol II. Lipase-catalyzed synthesis of regioisomerically pure 1(3)-rac-Monoacylglycerols [J]. Journal of the American Oil Chemists Society, 1992, 69, 961-965
    21. Castillo E, Dossat V, Marty A, et al. The role of silica gel in lipase-catalyzed esterification reactions of high-polar substrates [J]. Journal of the American Oil Chemists Society, 1997, 74, 77-86
    22. Ferrer M, Cruces MA, BernabéM, et al. Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures [J]. Biotechnology and Bioengineering, 1999, 65, 10-15
    23. Pedersen NR, Wimmer R, Emmersen J, et al. Effect of fatty acid chain length on initial reaction rates and regioselectivity of lipase-catalysed esterification of disaccharides [J]. Carbohydrate Research, 2002, 337, 1178-1183
    24. Plou FJ, Cruces MA, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent [J]. Journal of Biotechnology, 2002, 96, 55-66
    25. Pedersen NR, Wimmer R, Matthiesen R, et al. Synthesis of sucrose laurate using a new alkaline protease [J]. Tetrahedron: Asymmetry, 2003, 14, 667-673
    26. Park S, Kazlauskas RJ. Biocatalysis in ionic liquids–advantages beyond green technology [J]. Current Opinion in Biotechnology, 2003, 14, 432-437
    27. Dang D, Ha S, Lee S, et al. Enhanced activity and stability of ionic liquid-pretreated lipase [J]. Journal of Molecular Catalysis B: Enzymatic, 2007, 45, 118-121
    28. Sheldon RA, Lau RM, Sorgedrager MJ, et al. Biocatalysis in ionic liquids [J]. Green Chemistry, 2002, 4, 147-151
    29. Persson M, Bornscheuer UT. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents [J]. Journal of Molecular Catalysis B: Enzymatic [J]. 2003, 22, 21-27
    30. Yadav GD, Lathi PS. Synthesis of citronellol laurate in organic media catalyzed by immobilized lipases: kinetic studies [J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 113-119
    31. Bell G, Halling PJ, Moore BD, et al. Biocatalyst behaviour in low-water systems [J]. Trends in Biotechnology, 1994, 13: 468–473
    32. Foresti ML, Pedernera M, BucaláV, et al. Multiple effects of water on solvent-free enzymatic esterifications [J]. Enzyme and Microbial Technology, 2007, 41, 62-70
    33. Janssen AEM, Sjursnes BJ, Vakurov AV, et al. Kinetics of lipase-catalyzed esterification in organic media: Correct model and solvent effects on parameters [J]. Enzyme and Microbial Technology, 1999, 24, 463-470
    34. Hu X, Liu A, Wang L, et al. Acylating activity of hydroxyl groups in 2'-hydroxyethyl 3α, 7α, 12α-trihydroxy-5β-cholan-24-ate [J]. Chemical Journal on Internet, 2007, 9, 1
    35. Noritaka O, Yukihiko I, Yasumasa K, et al. Solution viscosity behavior of polystyrene-based cationic ionomers: Effects of quaternary-group structure and counter ion [J]. Journal of Polymer Science Part B: Polymer Physics, 2003, 14, 2449-2454
    36. Lozano P, de Diego T, Guegan JP, et al. Stabilization ofα-chymotrypsin by ionic liquids in transesterification reactions [J]. Biotechnology and Bioengineering, 2001, 75, 563-569
    37. Kim HJ, Youn SH, Shin CS. Lipase-catalyzed synthesis of sorbitol–fatty acid esters at extremely high substrate concentrations [J]. Journal of Biotechnology, 2006, 123, 174-184
    38. Sun SD, Shan L, Jin QZ, et al. Solvent-free synthesis of glyceryl ferulate using a commercial microbial lipase [J]. Biotechnology Letters, 2007, 29: 945-949
    39.孙尚德.酶法合成阿魏酰基脂肪酰基结构酯的研究[D]:博士学位论文.无锡:江南大学食品科技学院,2009
    40.李军生,谭贤勇.脂肪酶催化合成蔗糖-6-月桂酸单酯的研究[J].广西工学院学报,2006,11(1):43-46
    1. Obón JM, Maiquez JR, Cánovas M. High-density Escherichia coli cultures forcontinuous L-carnitine production [J]. Applied Microbiology and Biotechnology, 1999, 51: 760-764
    2. Giuliano M, Schiraldi C, Maresca C. Immobilized Proteus mirabilis in poly (vinyl alcohol) cryogels for L(-)-carnitine production [J]. Enzyme and Microbial Technology, 2003, 32: 507–512
    3. Cánovas M, Bernal V, González M. Factors affecting the biotransformation of trimethylammonium compounds into l-carnitine by Escherichia coli [J]. Biochemical Engineering Journal, 2005, 26: 145–154
    4. Castellar MR, Obón JM, Marín A. L(-)-carnitine production using a recombinant Escherichia coli strain [J]. Enzyme and Microbial Technology, 2001, 28: 785–791
    5. Meyer HP, Robins KT. Large scale bioprocess for the production of optically pure L-carnitine [J]. Monatshefte fur Chemie, 2005, 136: 1269-1277
    6.孙志浩.生物催化工艺学[M].北京:化学工业出版社,2005:503-532
    7. Obón JM, Maiquez JR, Canovas M. L(-)-Carnitine production with immobilized Escherichiu coli cells in continuous reactors [J]. Enzyme and Microbial Technology, 1997, 21: 531-536
    8. M?der M, Kie?ling A, L?ster H. Current methods for determination of L-carnitine and acylcarnitines [J]. Monatshefte f€ur Chemie 2005, 136, 1279–1291
    9.吴平.食品分析[M].北京:轻工业出版社,1989:83-88
    10. Johnson DW. Synthesis of dicarboxylic acyl-L-carnitines [J]. Chem Phys Lipids, 2004, 129: 161–171
    11. Lozano P, Daz M, de Diego T, et al. Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilized Candida antarctica lipase B [J]. Biotechnology and Bioengineering, 2003, 82: 352-358
    12. Naidu GSN, Lee IY, Kang GH. Microbial and enzymatic production of L-carnitine [J]. Bioprocess Engineering, 2000, 23: 627-635
    13. Guebel DV, Torres NV, Cánovas M. Modeling analysis of the L(-)-carnitine production process by Escherichia coli [J]. Process Biochemistry, 2006, 41: 281–288
    14.寇秀芬,徐家立.酶法合成糖及糖醇酯[J].微生物学报,2000,40(2):193-197
    15. Sun SD, Shan L, Jin QZ, et al. Solvent-free synthesis of glyceryl ferulate using a commercial microbial lipase [J]. Biotechnology Letters, 2007, 29: 945–949
    1.李汝雄.绿色溶剂——离子液体的合成与应用[M].北京:化学工业出版社,2004:98-175
    2. Park S, Kazlauskas RJ. Biocatalysis in ionic liquids–advantages beyond green technology [J]. Current Opinion in Biotechnology, 2003, 14, 432-437
    3. Obón JM, Maiquez JR, Canovas M. L(-)-Carnitine production with immobilized Escherichiu coli cells in continuous reactors [J]. Enzyme and Microbial Technology, 1997, 21: 531-536
    4.丁明玉.现代分离方法与技术[M].北京:化学工业出版社,2004:41-43
    5.余燕影,张玮,曹树稳.离子液体萃取阿魏酸和咖啡酸的性能研究[J].分析化学,2007,35(12):1726-1730

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700