芪附汤及其拆方干预阿霉素心脏毒性的药效学与作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过考察芪附汤及其拆方对阿霉素心脏毒性模型大鼠的一般状态、体质量与心脏质量及其心脏指数、心电图、心肌组织形态的变化,了解芪附汤及其拆方干预阿霉素心脏毒性的效应;通过检测心肌SOD与GSH-Px活性与含量、MDA含量以及心肌细胞凋亡率和Bax、Bcl-2、P53、Caspaes-3的mRNA表达水平的变化,探讨芪附汤及其拆方干预阿霉素心脏毒性的抗氧化应激和抑制细胞凋亡的作用机制。
     材料与方法:
     本实验采用阿霉素(2mg/kg,每周1次)腹腔注射的方法复制阿霉素心脏毒性损伤大鼠模型,同时予以芪附汤及其拆方进行干预。除正常组、模型组外,正常大鼠给予附子水煎液灌胃为附子1组,中药对照组以生脉饮作为中药阳性对照药灌胃给药,以芪附汤及其拆方——黄芪组、附子2组、芪附汤组作为药物治疗组。造模与给药均共4周,同时观察大鼠的一般状态。4周后检测心电图;处死动物并摘取心脏进行指标检测。称取心脏质量,计算心脏指数(心脏质量/体质量),留取一部分心肌标本,通过光镜与电镜观察心肌组织形态变化及心肌细胞超微结构改变,采用化学比色法检测SOD、GSH-Px活性和MDA含量,采用ELISA法检测SOD和GSH-Px的含量,以流式细胞术检测心肌细胞凋亡率,实时定量PCR检测Bax与Bcl-2的mRNA表达水平,并计算其比值,实时定量PCR检测P53、Caspaes-3的mRNA表达水平。
     结果:
     1.大鼠一般状态:与正常组相比,模型组大鼠出现不同程度的精神萎靡,活动减少,喜蜷卧,抓取时反抗力减弱;毛发干枯、无光泽,伴有脱毛现象,有些大鼠口鼻可见明显血渍,腹水,个别出现腹泻等症状;与模型组大鼠相比,中药对照组、黄芪组、芪附汤组大鼠上述症状均较轻,其中黄芪组大鼠一般状态相对最好。附子2组大鼠一般状态不及模型组。附子1组大鼠一般状态与正常组基本一致。
     2.大鼠体质量,心脏质量和心脏指数:与正常组比较,模型组大鼠体质量显著下降,有统计学意义(P﹤0.05);与模型组相比,中药对照组、黄芪组、芪附汤组大鼠体质量显著增长,有统计学意义(P﹤0.05)。与正常组比较,模型组心脏质量下降,有统计学意义(P﹤0.05);与模型组比较,中药对照组、附子2组、黄芪组、芪附汤组心脏质量均有不同程度增长(P﹥0.05)。与正常组比较,其他各组心脏指数均有所下降(P﹥0.05);与模型组相比,各给药组心脏指数无明显变化(P﹥0.05)。附子1组大鼠体质量、心脏质量和心脏指数与正常组基本一致。
     3.大鼠心电图变化:与正常组相比,模型组大鼠心率显著减慢(P﹤0.05),QRS波群电压和明显降低(P﹤0.05),与用药前心电图相比减低30%以上,Q-T间期明显延长(P﹤0.05),个别出现心律失常;与模型组相比,芪附汤组、黄芪组、中药对照组和附子2组大鼠心率增加显著,芪附汤组、黄芪组和附子2组大鼠QRS波群电压和明显增高,芪附汤组、黄芪组和中药对照组大鼠Q-T间期显著缩短,均有统计学意义(P﹤0.05)。附子1组大鼠心率、QRS波群电压和与Q-T间期和正常组基本一致。
     4.光镜下和电镜下心肌组织形态学变化:光镜下观察模型组大鼠心肌细胞呈颗粒变性,肌间隙增宽,部分心肌纤维断裂,少数淋巴细胞侵润;电镜下观察模型组大鼠心肌细胞超微结构明显损伤,肌丝断裂溶解,Z线排列宽窄不一、部分溶解,线粒体肿胀,部分嵴断裂模糊不清,个别形成大小不等空泡。附子2组大鼠心肌病理改变较模型组更为严重,中药对照组、黄芪组与芪附汤组大鼠心肌组织形态有不同程度改善。附子1组大鼠心肌有轻微病理改变,接近正常心肌组织。
     5.大鼠心肌细胞SOD活性和含量的变化:与正常组比较,模型组大鼠心肌细胞SOD活性减弱,含量降低,有统计学意义(P﹤0.05)。与模型组比较,中药对照组、黄芪组、芪附汤组大鼠心肌细胞SOD活性升高,均有统计学意义(P﹤0.05)。
     6.大鼠心肌细胞GSH-Px活性和含量的变化:与正常组比较,模型组大鼠心肌细胞GSH-Px活性降低,含量减少,有统计学意义(P﹤0.05);与模型组比较,中药对照组、黄芪组、芪附汤组大鼠心肌细胞GSH-Px活性升高,各用药组大鼠心肌细胞GSH-Px含量升高,均有统计学意义(P﹤0.05)。
     7.大鼠心肌细胞MDA含量测检的变化:与正常组比较,模型组大鼠心肌细胞MDA含量升高,有统计学意义(P﹤0.05);与模型组比较,中药对照组,黄芪组,芪附汤组大鼠心肌细胞MDA含量降低,有统计学意义(P﹤0.05)。
     8.心肌细胞凋亡率显示:与正常组比较,模型组大鼠心肌细胞凋亡率显著上升,有统计学意义(P﹤0.05);与模型组比较,中药对照组、附子2组、黄芪组、芪附汤组大鼠心肌细胞凋亡率均有显著下降,有统计学意义(P﹤0.05)。
     9.大鼠心肌Bax与Bcl-2的mRNA表达结果:与正常组比较,模型组大鼠心肌Bax的mRNA表达水平上调,Bcl-2的mRNA表达水平下调,Bcl-2/Bax降低,均有统计学意义(P﹤0.05)。与模型组比较,附子2组、黄芪组、芪附汤组大鼠心肌Bax的mRNA表达水平下调;中药对照组,黄芪组,芪附汤组大鼠心肌Bcl-2的mRNA表达水平上调,有统计学意义(P﹤0.05);中药对照组、黄芪组、芪附汤组Bcl-2/Bax升高,有统计学意义(P﹤0.05)。
     10.大鼠心肌P53的mRNA表达结果:与正常组比较,模型组P53的mRNA表达水平上调,有统计学意义(P﹤0.05);与模型组比较,中药对照组、黄芪组、芪附汤组P53的mRNA表达水平下调,有统计学意义(P﹤0.05)。
     11.大鼠心肌Caspase-3的mRNA表达显示:与正常组比较,模型组Caspase-3的mRNA表达水平上调,有统计学意义(P﹤0.05);与模型组比较,中药对照组、附子2组、黄芪组、芪附汤组Caspase-3的mRNA表达水平下调,均有统计学意义(P﹤0.05)。
     结论:
     在本实验条件下,
     1.附子与阿霉素合用具有心脏毒性叠加作用。
     2.芪附汤和黄芪对阿霉素心脏毒性具有防护作用。
     3.芪附汤和黄芪防护阿霉素心脏毒性损伤的机制与抗氧化应激、抑制凋亡相关。
Purpose:To observe the general conditions, the survival rate, body weight, heart weight and radio of heart/body weight, electrocardiogram changes, myocardial histomorphological changes in the rats with adriamycin-induceded cardiotoxicity, Qi-fu Decoction was given simultaneously, the effect of Qi-fu Decoction and its decomposed recipes on the adriamycin- induceded cardiotoxicity has been demonstrated. To measure the activity and content of superoxide dismutase (SOD) and glutathione peroxidase(GSH-Px), the content of malondialdehyde (MDA), cardiomyocyte apoptosis rate, the mRNA expression of Bax, Bcl-2, P53 and Caspaes-3, which might be related with antioxidant stress and the inhibiting apoptosis of Qi-fu Decoction and its decomposed recipes on the adriamycin- induceded cardiotoxicity.
     Material and method:The method of injecting adriamycin(ADR) intraperitoneally was adopted to duplicat the rat model of ADR-induced cardiotoxicity. Qi-fu Decoction and its decomposed recipes were given simultaneously.besides the the normal group and the model group, fuzi water solution was given intragastrically to the rats of fuzi 1 group without duplicating ADR-induced cardiotoxicity model. Shengmai Yin was given intragastrically to the rats of Chinese herb control group, Qi-fu Decoction and its decomposed recipes--- fuzi group, Huangqi group and Qifu decoction group were taken as drug treatment groups. There were 4 weeks in administrating ADR and giving medicine, in the same tiame, the general conditions of the rats were observed. After 4 weeks, the rats were sacrificed and their hearts were removed.the indexes about the heart were measured. heart weight, radio of heart/body weight, myocardial histomorphological changes observd by light and light and electron microscopy, the activity SOD, GSH-Px and the content of MDA measured by chemical colorimetric assay, and the content of SOD,GSH-Px and MDA by Enzyme-linked immunosorbent assay,the cardiomyocyte apoptosis rate by flow cytometry., the mRNA expression of Bax, Bcl-2, P53 and Caspaes-3 by real time polymerase chain reaction.
     Results:
     1. The general condition: compared with the general condition of the normal group, that of the model group were manifested by listlessness, activity decreased, curl up lie, grabbed resistance weakened, hair without luster, accompanied depilate, blood in the mouth and nose of some rats can be obviously observed, individual occurrence of ascites, diarrhea. Compared with that of the model group, the symptoms of Chinese herb control, huangqi group, Qifu decoction group were better, that of fuzi group were worse. The general conditions of fuzi 1 group were similar to that of the normal group.
     2.The body weight, the heart weight and the heart index of the rats: the body weight of the rats fell much than that of the model group, with statistical significance (P﹤0.01). Compared with the body weight of the rats in the model group, that of control Chinese medicin group, huangqi group, Qifu decoction group were increased, with statistical significance (P﹤0.05),that of huangqi group is the most. the heart weight of the rats fell much than that of the model group, with statistical significance (P﹤0.05). Compared with the heart weight of the rats in the model group, that of control Chinese medicin group,fuzi group, huangqi group, Qifu decoction group were increased in a degree(P﹥0.05).the heart index of the model group is decreased slightly compared with that of the normal group (P﹥0.05), compared with that of the model group, there were no obvious changes in the heart index of the other groups(P﹥0.05). The body weight, the heart weight and the heart index of the rats in fuzi 1 group were similar to that of the normal group.
     3. Electrocardiogram: compared with that of the normal group, the heart rate group was slower(P﹤0.01), QRS volvage sum decreaced(P﹤0.05), Q-T interphase extended(P﹤0.05)of the model group, individual appeard arrhythmia. Compared with that of the model group, the heart rate was more quicker of all administrated groups, QRS volvage sum increased of huangqi group, qifu decoction group and fuzi2 group, Q-T interphase shorten of , huangqi group, qifu decoction group and chinese herb control,all with statistical significance(P﹤0.05). The heart rate, QRS volvage sum and Q-T interphase of the rats in fuzi 1 group were similar to that of the normal group.
     4.Cardiac histomorphologic chang observed by light microscope and electron microscope: Observed by light microscope, there were flocular degeneration in cardiac myocytes, myocardial gap widened, part of myocardial fiber fractured, and a few lymphocytes penetration embellished in the rats’cardiomyocytes of the model group. Observed by electron microscope, there were myocardial filaments fractured and dissolved, Z line arrangement in disorder, part of Z line dissolved, mitochondrial swelling and its crista ruptured, vacuole foumed in the cardiac myocyte of the model group. The pathological changes of the rats’cardiomyocytes of fuzi group were worse than that of the model group, Cardiac histomorphologes were improved in different degree of Chinese herb controlgroup, huangqi group and qifu decoction group. There were slight pathological chang in the rats’cardiomyocytes of fuzi 1 group.
     5. The activity and content of SOD of the rat’s cardiac myocyte: Compared with that of the normal group, the activity is weakened, and the content is deduced of SOD of the model group, with statistical significance (P﹤0.05). Compared with that of the model group, SOD activity is enhanced of Chinese herb controlgroup, huangqi group and qifu decoction group, with statistical significance (P﹤0.05), qifu decoction group is the most, that of fuzi group is weakened (P﹥0.05). SOD content is increased of chinese herb control and huangqi group, with statistical significance (P﹤0.05).
     6. The activity and content of GSH-Px of the rat’s cardiac myocyte: Compared with that of the normal group, the activity is weakened, and the content is deduced of GSH-Px of the model group, with statistical significance (P﹤0.05). Compared with that of the model group, GSH-Px activity is enhanced of chinese herb control, huangqi group and qifu decoction group, GSH-Px content is increased of all administrated group, all with statistical significance (P﹤0.05).
     7. MDA content of the rat’s cardiac myocyte: Compared with that of the normal group, MDA content of the model group is increased, with statistical significance (P﹤0.05). Compared with that of the model group, MDA content of chinese herb control, huangqi group and qifu decoction group is decreased, with statistical significance (P﹤0.05).
     8. Apoptosis rate of cardiac myocyte: Compared with that of the normal group, apoptosis rate of the model group is increased, with statistical significance (P﹤0.05). Compared with that of the model group, apoptosis rate is increased of chinese herb control, fizi group, huangqi group and qifu decoction group,all with statistical significance (P﹤0.05).
     9. Bax mRNA and Bcl-2mRNA expression and Bcl-2/Bax of the myocardium of the rats: Compared with that of the normal group, BaxmRNA expression is increased, Bcl-2 mRNA expression is decreased, Bcl-2/ Bax decreased, of the model group, all with statistical significance (P﹤0.05). Compared with that of the model group, Bax mRNA expression is decreased of fizi group, huangqi group and qifu decoction group, Bcl-2 mRNA expression and Bcl-2/ Bax are increased of chinese herb control, huagnqi group and qifu decoction group, all with statistical significance (P﹤0.05).
     10. P53 mRNA expression of the myocardium of the rats: Compared with that of the normal group, P53mRNA expression of the model group is increased, with statistical significance (P﹤0.05). Compared with that of the model group, P53mRNA expression is decreased, of all administrated group, all with statistical significance (P﹤0.05).
     11. caspase-3mRNA expression of the myocardium of the rats: compared with that of the normal group, caspase-3 mRNA expression of the model group is increased, with statistical significance (P﹤0.05). Compared with that of the model group, caspase-3 mRNA expression is decreased, of all administrated group, all with statistical significance (P﹤0.05) and the huangqi group is the most.
     Conclusion:
     1.Fuzi can increase adriamycin-induced cardiotoxicity。
     2.Qifu decoction and Huangqi can protect the rats from adriamycin-induced cardiotoxicity。
     3.The mechanisms is related to antioxidant stress and inhibiting apoptosis.
引文
[1]刘建荣,张强.芪附汤为主治疗病毒性心肌炎100例[J].上海中医药杂志. 2001, 11: 41-42.
    [2]马玉霞.中西医结合治疗急性病毒性心肌炎的临床观察[J].四川中医. 2005, 23 (2): 49-50.
    [3]秦会生.芪附汤加味治疗室性早搏30例疗效观察[J].四川中医,2004,24(4): 50-51.
    [4]张燕,虞红新,等.关继华主任医师治疗心力衰竭体会[J].新疆中医药. 2008, 26(2): 14-16.
    [5]马望盛,潘树刚,等.大剂量附子治愈定时高热1例[J].中国中医急症. 2002, 11(3): 232.
    [6]彭义士.芪附汤治疗顽固性口腔溃疡例[J].中医杂志.
    [7]李丽萍,王海霞,等.芪附汤治疗顽固性口腔溃疡45例[J].现代中西医结合杂志. 2007, 16(11): 1503.
    [8]王立岩,张大方.附子炮制前后对急性心衰大鼠血流动力学的影响[J].时珍国医国药. 2009, 20(6): 1327-1328.
    [9]王立岩,张大方,等.附子炮制前后有效部位强心作用的实验研究[J].中国中药杂志. 2009, 34: 596-599.
    [10]张俊平,杨卫平.附子对慢性充血性心力衰竭模型大鼠NO、TNF-α水平的影响[J].浙江中医药大学学报. 2009, 33(1): 38-40.
    [11]展海霞,彭成.附子与干姜配伍对心衰大鼠血流动力学的影响[J].中药药理与临床. 2006, 22(1): 42-44.
    [12]由凤鸣,刘军,李文军.细胞膜吸附/LC-MS分析附子中对兔心肌具毒效作用的成分[J].华西药学杂志. 2010, 25(4): 414-415.
    [13]秦永刚,张美荣.不同蒸煮时间对附子强心作用及心脏毒性的影响[J].医学信息. 2002, 15(10): 618.
    [14]沈少华,张宇燕,杨洁红,等.附子甘草配伍与炮制对乌头碱含量影响的比较研究[J].中华中医药学刊. 2009, 27(2): 367-369.
    [15]徐姗珺,陈长勋,高建平.甘草与附子配伍减毒的有效成分及作用环节研究[J].中成药, 2006, 28(4): 526-530.
    [16]徐姗珺,陈长勋,高建平.干姜与附子配伍减毒的物质基础探讨[J].时珍国医国药, 2006, 17(4):518-520.
    [17]越皓,皮子凤,宋凤瑞,等.附子不同配伍药对中生物碱成分的电喷雾质谱分析[J].药学学报. 2007, 42 (2): 201-205.
    [18]李岩,武乾,林谦.补气药党参黄芪对慢性心衰大鼠血流动力学的影响[J].中国中医基础医学杂志.2010, 16(7):597-598.
    [19]刘艳霞,刘在萍,焦建杰,等.黄芪苷Ⅳ对正常和心功能受抑制大鼠左心室心肌力学的影响[J].中草药,2001,32(4):332-334.
    [20]刘洋,华树东,等.黄芪对心房收缩力及心房钠尿肽分泌的影响[J].中国中药杂志. 2008, 33(19) : 2226-2229.
    [21]李玉芹.黄芪注射液治疗阿霉素致乳腺癌心肌损害的临床观察[J].黑龙江医药科学. 2008,31(5):37-38.
    [22]李丽,李双杰.黄芪甲甙对阿霉素心肌损伤的保护作用的研究[J].医药论坛杂志,2009,30(1):1-7.
    [23]李丽,陶辉宇,李双杰,等.黄芪甲甙保护阿霉素心肌损伤大鼠抗凋亡作用的机制研究[J].中国中西医结合杂志.2006, 26(11): 1011-1014.
    [24]张冬青,汪德清.黄芪总黄酮生物学活性作用研究进展[J].中国中药杂志. 2010, 35(2): 253-256.
    [25]Shao-hui ZHANG, Wen-quan WANG, Jia-ling WANG. Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo[J]. Acta Pharmacologica Sinica. 2009, 30: 1479-1487.
    [26]Ping Xiang, Hai Yan Deng, Karen Li, et al. Dexrazoxane protects against doxorubicin-induced cardiomyopathy: upregulation of Akt and Erk phosphorylation in a rat model[J]. Cancer Chemother Pharmacol. 2009, 63: 343-349.
    [27]黄洁,严文华.左卡尼汀对大鼠阿霉素心肌病的干预作用[J].苏州大学学报(医学版). 2009, 29(2): 259-261.
    [28]Chotiros Daosukho, Yumin Chen, Teresa Noel, et al. Phenylbutyrate, a histone deacetylase inhibitor, protects against Adriamycin-induced cardiac injury[J]. Free Radical Biology & Medicine. 2007, 42: 1818-1825.
    [29]张卓然,徐长庆,等。白藜芦醇对小鼠阿霉素性心肌损伤的保护作用及机制[J]。中国药理学通报。2007, 23 (6):769-772。
    [30]胡英,管迅行.乳腺癌术后予含蒽环类方案化疗并放疗对心肌的损伤[J].实用医学杂志, 2004, 20 (1): 96-99.
    [31] Chaiswing L, Cole MP, St Clair DK, et al. Oxidative damage precedes nitrative damage in adriamycin-induced cardiac mitochondrial injury[J]. Toxicol Pathol. 2004, 32: 536-547.
    [32] Oliveira PJ, Bjork JA, Santos MS, et al. Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity[J]. Toxicol Appl Pharmacol. 2004, 200: 159-168.
    [33] Muraoka S, Miura T. Free radicals mediate cardiac toxicity induced by adriamycin[J]. Yakugaku Zasshi. 2003, 123: 855-866.
    [34] Mihm MJ, Yu F, Weinstein DM, Reiser PJ, Baner JA. Intracellular distribution of peroxynitrite during doxorubicin cardiomyopathy: evidence for selective impairment of myofibrillar creatine kinase[J]. Br J Pharmacol. 2002, 135: 581–588.
    [35] Varin R, Mulder P, Richard V, Tamiom F, Devaux C, Henry JP, et al. Exercise improves flow-mediated vasodilation of skeletal muscle arteries in rats with chronic heart failure: role of nitric oxide, prostanoids and oxidant stress[J]. Circulation. 1999, 99: 2951–2957.
    [36] Haywood GA, Tsao PS, Von der Leyen HE, Mann MJ, Keeling PJ, Trindade PT, et al. Expression of inducible nitric oxide synthase in human heart failure[J]. Circulation. 1996, 15: 1087–1094.
    [37] Adams V, Jiang H, Yu J, Mobims-Winkler S, Fiehn E, Linke A, et al. Apoptosis in skeletal myocytes of patients with chronic heart failure is associated with exercise intolerance[J]. J Am Coll Cardiol. 1999, 33: 959–965.
    [38] Lind DS, Kontaridis MI, Eduards PD, Josephs MD, Moldauer LL, Copeland EM. Nitric oxide contributes to adriamycin's antitumor effect[J]. Surg Res. 1997, 69: 283–287.
    [39] Garner AP, Paine MJ, Rodriguez-Crespo I, Chinje EC, Ortiz De MontellanoP, Stratford IJ, et al. Nitric oxide synthases catalyse the activation of redoxcycling and bioreductive anticancer agents[J]. Cancer Res. 1999, 590: 929-1041.
    [40] Sayed-Ahmed MM, Khattab MM, Gall MZ, Osman AM. Increased plasma endothelin and cardiac nitric oxide during doxorubicin-induced cardiomyopathy[J]. Pharmacol Toxicol. 2001, 89: 140-144.
    [41] Olson RD, Mushlin PS. Doxorubicin cardiotoxicity: analysis of prevailing hypotheses[J]. FASEB J. 1990, 4: 3076-3086.
    [42]Matsushita T, Okamoto M, Toyama J, Kodama I, Ito S, Fukutomi T, et al. Adriamycin causes dual inotropic effects through complex modulation of myocardial Ca2+ handling[J]. Jpn Circ J. 2000, 64: 65-71.
    [43]Avishag K. Emanuelov, Asher Shainberg, et al.Yelena Chepurko, Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage[J]. Biochemical Pharmacology, 2010, 79: 180-187.
    [44] Shneyvays V, Mamedova L, Zinman T, Jacobson K, Shainberg A. Activation of A3 adenosine receptor protects against doxorubicin-induced cardiotoxicity[J]. JMol Cell Cardiol. 2001, 33: 1249-1261.
    [45] Shneyvays V, Mamedova L, Korkus A, Shainberg A. Cardiomyocyte resistance to doxorubicin mediated A3 adenosine receptor[J]. J Mol Cell Cardiol. 2002, 34: 493-507.
    [46]Kalyanaraman B, Joseph J , Kalvendi S, et al.Doxorubicin-induced apoptosis: implication in cardiotoxicity[J]. Mol Cell Biochem. 2002, 234-235 (1): 119-124.
    [47] Nakamura T, Ueda Y, Juan Y, et al. Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats in vivo study [J]. Circulation, 2000, 102: 572-578.
    [48]Kalivendi SV , Kono rev EA , Cunningham S, et al. Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium [J].Biochem J. 2005, 389 (Pt2): 527-539.
    [49] Delpy E, Hatem SN, Andrieu N, et al. Doxorubicin induces slow ceramideaccumulation and late apoptosis in cultured adult rat ventricular myocytes [J]. Cardiovasc Res. 1999, 43(2): 398-407.
    [50] Boatright KM, Salvesen GS. Caspase activation[J]. Biochem Sex Symp. 2003, 70(3): 233-242.
    [51] Rao RV, Hermel E, Castro-Obregon S, et al. Coupling endoplasmic reticulum stress to the cell death program[J]. J Biol Chem. 2001, 276(8): 33869-33874.
    [52] Xie Q, Khaoustov V I, Chung CC, et al. Effect of tauroursodeoxy cholic acid on endoplasmic reticulum stress-induced caspase-12 activation[J].Hepatology. 2002, 36 (3) : 592-601.
    [53]Morishima N,Nakanishi K,Tsuchiya K,et a1.Translocation of Bim to the endoplasmic reticulum mediates ER stress signaling for activation of caspase-12 during ER stress-induced apoptosis[J].Biol Chen. 2004,279:50375-50381.
    [54] Fan TJ, Han LH, Cong RS, et al. Caspase Family Proteases and Apoptosis[J]. Acta Biochim Biophys Sin. 2005, 37(11): 719-727.
    [55] Cohn GM. Caspase: the executioners of apoptosis[J]. Biochem J, 1997, 326 (Pt1): 1-16.
    [56]Gianni L, Herman EH, L ip shultz SE, et al. Anthracycline cardiotoxicity: frombench to bedside [J]. J Clin Oncol. 2008, 26 (22): 3777-37841
    [57]Conklin KA. Coenzyme Q10 for prevention of anthracycline-induced Cardiotoxicity [J]. Integr Cancer Ther. 2005, 4 (2):110-130.
    [58] HensleyML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants [J]. J Clin Oncol. 2009, 27 (1): 127-145.
    [59] Junjing Z, Yan Z, Baolu Z. Scavenging effects of dexrazoxane on free radicals [J]. J Clin Biochem Nutr. 2010 Nov, 47(3): 238-245.
    [60]Ioanna Andreadou, Fragiska Sigala c, Efstathios K. Iliodromitis, et al. Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress[J]. Journal of Molecular and Cellular Cardiology. 2007, 42: 549–558.
    [61]Chotiros Daosukho, Yumin Chen, Teresa Noel, et al. Phenylbutyrate, a histonedeacetylase inhibitor, protects against Adriamycin-induced cardiac injury[J]. Free Radical Biology & Medicine. 2007, 42: 1818–1825.
    [62]邱超学,张琴琴.门冬氨酸钾镁防治阿霉素急性心脏毒性30例[J].实用医学杂志, 2006, 22(22): 2671-2672.
    [63]Avishag K. Emanuelov, Edith Hochhauser, Asher Shainberg, et al. Adenosine A3 receptor-mediated cardioprotection against doxorubicin-induced mitochondrial damage[J]. Biochemical Pharmacology. 2010, 79: 180-187.
    [64]Iglesias, M.J., Pi n?eiro, R., Blanco, M., et al. Growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes[J]. Cardiovasc. 2004, 62: 481-488.
    [65]Zhiwei Xu, Shiqing Lin, Weikang Wu, et al. Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-B pathways and mitochondrial protective mechanisms[J]. Toxicology. 2008, 247:133–138.
    [66]帅怡,郭隽,彭双清,等.金属硫蛋白抑制阿霉素引起的心肌细胞凋亡作用研究[J].四川大学学报(医学版). 2007, 38(4): 620-623.
    [67] Kim KH, Oudit GY, Backx PH. Erythropoietin protects against doxorubicin—induced cardiomyopathy via a PI3 K-dependent pathway [J]. J Pharmacol Exp Ther. 2008, 324 (1): 160-169.
    [68]Zhang C, Feng Y, Qu S, et al. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of P53[J]. Cardiovasc Res. 2011, 2: 16.
    [69]Shao-hui ZHANG, Wen-quan WANG, Jia-ling WANG. Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo[J]. Acta Pharmacologica Sinica. 2009, 30: 1479-1487.
    [70]Huda Alkreathy, Zoheir A. Damanhouri, Abdel-Moneim M. Osman, et al. Aged garlic extract protects against doxorubicin-induced cardiotoxicity in rats[J]. Food and Chemical Toxicology. 2010, 48: 951–956.
    [71]刘宏杰,王文海,周荣耀,等.华蟾素拮抗阿霉素心脏毒性及其作用机制[J].上海中医药杂志. 2008: 42 (11):75-77.
    [72]江英强,宋高平,郑连喜,等.红花注射液防治阿霉素相关性心脏毒性的临床研究[J].现代中西医结合杂志. 2010, 19(25): 3146-3147.
    [73]邹文俊,李忌,刘忠荣,等.黄芪注射液拮抗阿霉素心脏毒性作用的研究[J].中成药. 2001, 23(5): 348-350.
    [74]李玉芹.黄芪注射液治疗阿霉素致乳腺癌心肌损害的临床观察[J].黑龙江医药科学. 2008, 31(5): 37-38.
    [75]王瑞芹,解英,赵素珍.生脉注射液防治阿霉素相关性心脏毒性的临床观察[J].中西医结合心脑血管病, 2006, 4 (12): 1092-1093.
    [76]朱奔奔,郭维,等。真武汤对慢性充血性心力衰竭模型大鼠ET、CGRP水平的影响[J].江苏中医药. 2005, 26(8): 49-51.
    [77]赵明奇,吴伟康,段新芬,等.四逆汤对阿霉素性心衰大鼠心肌线粒体功能的影响[J].中药材. 2005, 28(6): 486-489.
    [78]吴天敏,陈金水,王华军,等.复方黄精口服液对阿霉素致心衰大鼠左室肥厚的影响[J].福建中医学院学报, 2007, 17(2): 30-32.
    [79]丁纯志.炙甘草汤防治阿霉素心脏毒性的疗效观察[J].新中医. 2001, 33(6): 50-51.
    [80]程剑华,陈春泳,李柳宁,等.益心补气胶囊治疗阿霉素所致心脏毒性例疗效观察[J].新中医. 2003, 35(11): 23-24.
    [81]陈奇.中药药理研究方法学[M].北京:人民卫生出版社,2000,33.
    [82]Muraoka S, Miura T. Free radicals mediate cardiac toxicity induced by adriamycin [J]. Yakugaku Zasshi, 2003, 123(10): 85.
    [83]Quiles J, HuertasJ R, Battino M, et al. Antioxdant nutrients and adriamycin toxicity[J]. Toxicology. 2002, 180 (1) :79-95.
    [84]陈德芳,蔡丹,谢贤和,等.阿霉素心脏毒性的表现分析.中国综合临床. 2001, 17(5): 340-341.
    [85]罗群,陈素芬,等.恶性淋巴瘤阿霉素化疗的心电图分析[J].实用心电学杂志,2008, 17(6):419-420.
    [86]沈映君主编.中药药理学[M].北京:人民卫生出版社.2004,3,第三版:492.
    [87]王洪军,赵明,于影.黄芪总黄酮对急性心肌梗死大鼠心脏血流动力学及心肌细胞钙电流的作用.中国心血管病研究, 2008, 6(4): 291-293.
    [88]帅怡,郭隽,彭双清,等.金属硫蛋白抑制阿霉素引起的心肌细胞凋亡作用研究[J].四川大学学报(医学版). 2007, 38(4): 620-623.
    [89]刘洪智,高传玉,曹林生,等.阿霉素心肌病大鼠模型的建立及评价[J].武汉大学学报(医学版).2007,28(4):500-503.
    [90]李书国,毛小波,张峰,等.阿霉素诱导慢性充血性心力衰竭模型制作的改良方案[J].中国比较医学杂志.2006,16(7):415-418.
    [91]戴金,毛威,阮善明.阿霉素心脏毒性的中医防治.现代中西医结合杂志[J]. 2008,17 (22):3485-3486.
    [92] Luksana Chaiswing, Marsha P Cole, Wanida Ittarat, et al. Manganese superoxide dismutase and inducible nitric oxide synthase modify early oxidative events in acute Adriamycin-induced mitochondrial toxicity [J]. Mol Cancer Ther. 2005, 4(7): 1056.
    [93]CHEN L i - juan, GUO Jia bin, PENG Shuang - qing. Experimental on adriamycin induced cardiotoxicity in rats[J]. Toxicol. 2006, 20(3): 147 - 149.
    [94]吴其夏,余应年,卢建.自由基损伤与疾病[J].病理生理学. 2003: 247-269.
    [95]Boucke RJ, Ol son RD, Brener DE, et al. The major metabolite of doxirubicin is a potent inhibitor of membrane-associated ion pumpa[J]. J biol Chem. 1987, 262: 15815-15816.
    [96]栾荣华.阿霉素心脏毒性作用机制的研究进展[C].心血管学进展, 1998, 19 (2): 108-110.
    [97]师润,刘雳,霍杨,程翼宇.三七皂苷对阿霉素致心肌损伤保护作用的研究[J] .中国中药杂志. 2007, 32(24): 2632-2635.
    [98]Hamza A, Amin A, Daoud S. The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats[J]. Cell Biol Toxicol. 2008, 24: 63-73.
    [99]李文娜,钱之玉.西红花酸对多柔比星致大鼠心脏毒性的影响[J].中国新药杂志. 2005,14(10):1165-1169.
    [100]Kalyanaraman B, Joseph J , Kalivendi S, et al. Doxorubicin-induced apop osis: implications in cardiotoxicity [J]. Mol Cell Biochem. 2002, 234-235 (122): 1192.
    [101]Robert J. Long-term and short-term models for studying anthracyclinecardiotoxicity and protectors [J]. Cardiovasc Toxicol. 2007, 7: 135-139.
    [102]Xiang P, Deng HY, Li K, Huang GY, Chen Y, Tu L, et al. Dexrazoxane protects against doxorubicin-induced cardiomyopathy: upregulation of Akt and Erk phosphorylation in a rat model[J]. Cancer Chemother Pharmacol. 2009, 63: 343-349.
    [103]Kang YJ , Zhou ZX, W ang GW, et al. Supression by metallothionein of doxorubicin-induced cardiomyocyte apoptosis through inh ibition of p38 mitogen-activated protein kinases[J]. J Biol Chem. 2000, 275 (18): 13690-13698.
    [104]刘安恒,张卫卫,王晓明,等. Staurosporine诱导乳鼠心肌细胞凋亡与Bcl-2 /Bax的关系[J].心脏杂志. 2009, 21(2): 169-173.
    [105]Tang Y, Zhang DY, Wu XM. Progress in small-molecule inhibitors of Bcl-2 family proteins[J]. Acta Pharm Sin. 2008, 43: 669 ? 677.
    [106]Akyurek O, Akyurek N, Savin T, et al. Association between the severity of heart failure and the susceptibility of myocytes to apoptosis in patients with idiopathic dialated cardiomyopathy [J]. Int J Cardiol. 2001, 80 (1): 29-36.
    [107]Wang L, MaW, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by insulin2like growth factor I [J]. Circ Res. 1998, 83(5): 516-522.
    [108]Nithipongvanitch R, Ittarat W, Cole MP, et al. Mitochondrial and nuclear P53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin) [J]? Antioxid Redox Signal. 2007, 9(7): 1001-1008.
    [109]Sh izukuda Y, M atoba S, M ian OY, et al. Targeted disruption of P53 attenuates doxorubicin-induced cardiactoxicity in mice[J]. Mol CellBiochem. 2005, 273(122): 25-32.
    [110]Youn HJ , Kim HS, JeonMH, et al. Induction of caspase-independent apoptosis in H9C2 cardiomyocytes by adriamycin treatment [J]. Mol Cell Biochem. 2005, 270(122): 13-19.
    [111]L'Ecuyer T, Sanjeev S, Thomas R, et al. DNA damage is an early event in doxorubicin-induced cardiac myocyte death [J]. Am J Physiol Heart Circ Physiol. 2006, 291(3): H1273-1280.
    [112]Chua, CC, Liu X, Gao J, et al. Multiple actions of pifithrin-alpha ondoxorubicin-induced apoptosis in rat myoblastic H9c2 cells[J]. Am J Physiol Heart Circ Physiol. 2006, 290(6): H2606-2613.
    [113]Cohn GM. Caspase: the executioners of apoptosis[J]. Biochem J. 1997, 326 (Pt1): 1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700