基于4D-CT数据的心脏重构方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管疾病是全世界发病率和死亡率最高的疾病,而且发病急、具有很强的隐蔽性,因此实现这类疾病的初期诊断有很重要的临床意义。十来年前问世的多层螺旋CT(MSCT)通过多排探测器技术显著提高了成像速度和扫描精度,已被广泛应用于心脏检查,诊断和评价冠心病;尤其是伴随着MSCT出现的心电同步扫描技术,能提供含有时间信息的四维心脏CT成像数据,这为观察心脏的动态特性提供了一种有效的手段。这些新技术的诞生,推动着医学图像处理和分析领域的研究步伐,摆在我们面前的任务是如何从这些海量图像数据中提取出心脏的病理信息和功能状态,以极大发挥这些高端成像设备在心血管疾病预防和诊断中的作用。因此,基于MSCT数据集的心脏分割与功能分析成为了当前国际上医学图像处理领域中一个新的研究热点。
     本论文根据从64层MSCT采集的3D心脏数据集和从256层MSCT采集的4D(3D+t)心脏数据集,研究了无训练数据集的自动和半自动心脏分割算法以及基于训练数据集的多心相分割算法,建立了心脏左心室的四维分割模型,并在此基础上对心脏的全局静态参数和动态参数进行了初步分析。本文主要的研究内容及其创新点包括:
     1.针对MSCT心脏数据集特点,通过分析MSCT心脏数据集分割的难点,完成了基于多心相数据集心脏分割的整体框架设计,主要包括对数据集的轴向翻转、灰度映射、噪声去除等预处理操作,根据层片的结构连续性设计的左心室自动定位算法以及左心室的分割算法等,为基于模型的参数提取和功能分析打下了坚实基础。
     2.在对基于边缘和区域水平集模型进行深入分析的基础上,针对水平集模型对初始位置敏感及边缘泄露的问题,本文结合心脏解剖结构和MSCT层片特点,提出了不需要训练数据集的无监督改进耦合水平集(ICLS)全自动分割模型。在用左心室自动定位算法准确确定水平集曲线的初始轮廓位置的基础上,通过对边缘检测函数的改进以及结合左心室形状对水平集函数进行耦合,形成了完整的ICLS心脏分割模型。该模型较好地抑制了曲线的演化泄露,避免了局部极值对曲线演化的影响,可以获得较为理想的内、外心膜边缘。
     3.对外心膜边缘模糊甚至缺失的心脏层片,ICLS模型严重依赖演化的结束条件和水平集参数设置,为此本文提出了人工交互的IFLW(Improved Fuzzy connectedness-based Live-Wire)半自动分割模型,通过可以自动选取种子点的融合骨架信息的模糊连接度函数,来表示心膜边缘模糊、缺失层片的区域模糊特性,并在极坐标下将模糊连接度嵌入联合矩阵代价函数,利用改进Livewire的IFLW模型实现了心脏数据的半自动分割。与传统Livewire算法相比,IFLW模型只需要较少特征点就可以接近甚至达到手工分割的精度,在降低人工干预的同时增加了算法的鲁棒性,特别是对模糊边缘层片分割的准确性。
     4.为减少人工干预和充分利用IFLW模型精确分割的优点,本文提出了基于IFLW分割训练样本集的改进形状统计模型分割算法。通过IFLW对样本层片的分割结果构建数据集的形状模型和局部灰度模型以及对定位算法和模型搜索算法的改进,实现了基于改进多阶形状统计模型的三维MSCT数据集分割。此外在4D多心相MSCT数据集中,通过引入基于信息量的Demons非刚性配准方法,获得从已分割三维数据集层片向待分割心相三维数据集对应层片的形变场,然后通过对分割结果进行形变获得对应层片的分割结果,从而实现了MSCT四维数据集的分割。
     5.在上述工作的基础上,初步进行了心脏静态和动态参数提取和功能分析的研究。
     最后,作者特别感谢国家自然科学基金(60771007)和安徽省自然科学基金(2006KJ097A)对本文工作的资助。
Cardiovascular diseases (CVDs) characterized by acute onset and great hidden nature, with the highest incidence and mortality rate, are the number one cause of death all over the world. The early quantitative diagnosis and accurate evaluation of CVDS have an important clinical significance. The occurence of Multi-Spiral CT (MSCT) detector based on multiple-detector technique, has significantly promoted imaging speed and scanning accuracy, which has been widely used in cardiac examination and diagnosis, the evaluation of coronary heart disease. Associated The Appearance of the ECG-synchronization scanning technique, the 4D cardiac CT imaging datasets included the temporal Information would be obtained from MSCT, which provide an effective means of clinical observation for dynamic characteristics of heart.
     As these new technology have been promoting the development of the medical image processing and analysis, the crucial task ahead of us is how to extract the heart morphology, function and cardiac Pathological Information from the massive imaging data, in order to make full use of the high-end imaging equipment in the field of CVDs early quantitative prevention and diagnosis . Hence the heart extraction and function analysis based on MSCT have become a hot issue in the medical image processing area in recent years.
     This paper based on 3D cardiac datasets from 64-slices MSCT and 4D cardiac datasets (3D+t) from 256-slices MSCT, have explored the automatic and semi-automatic cardiac segmentation without training sample set, the cardiac multi -phases segmentation with training sample set, and buildup of the 4D segmentation model of left ventricle(LV). Based on the segmentation model, this paper analyzes the cardiac global static parameters and dynamic parameters preliminarily. The main research work and contributions of this dissertation can be summarized as follows:
     1. According to the characteristic of cardiac MSCT datasets, with the analysis of difficulties of heart segmentation for MSCT imaging, the design of the integral segmentation framework based on multi-phase cardiac datasets have been accomplished, which mainly include pre-processing operation such as cardiac axis’s transformation for the datasets, intensity transformation, image denosing and so on, and automatic localization algorithm, automatic and semi-automatic LV segmentation algorithm, etc. the construction of segmentation models will lay a solid foundation for the further heart parameter extraction and function analysis .
     2. With the deep analysis of the edge- and region-based levelset model, according to the drawbacks of edge leakage and sensitivity to initial position, we proposed unsupervised improved coupled levelset (ICLS) automatic LV segmentation algorithm without training datasets,by combination of cardiac anatomy and MSCT slice characteristic. On the basis of the automatic location algorithm to determine the initial contour position of the level set curve accurately, through the improvement of edge detection function and coupled level set function with LV shape, a complete heart segmentation ICLS model is built. The model could inhibit edge leakage, and avoid the local minimum during the curve evolution, and by this model an ideal epicardium and endocardium could be obtained automatically.
     3. With regard to the LV segmentation of cardiac slices with edge blur and lack, ICLS model relies heavily on the termination conditions of the evolution and parameters of the level set model. This paper proposes a manual-interaction IFLW (Improved Fuzzy connectedness-based Live-Wire) semi-automatic LV segmentation model. By generating the seed points automatically, a new Fuzzy connectedness function incorporating myocardium position information is introduced to represent the region fuzzy features of the slices with edge blur and loss. The fuzzy connectedness of myocardium is then embedded into the joint cost matrix in polar coordinates, and with the improved Livewire algorithm (IFLW), the heart extraction from datasets is achieved semi-automatically. Compared with traditional Livewire algorithm, IFLW model requires much fewer feature points and the segmentation results are close to the accuracy of manual segmentation. IFLW model reduces extra manual intervention while increasing the robustness and accuracy of the LV segmentation algorithm.
     4. To reduce the manual intervention level and make full use of the advantages of IFLW accurate segmentation model, an improved shape statistical models segmentation algorithm based on IFLW model to segment the sample sets is proposed. On the basis of the segmentation results of the chosen slices by IFLW, The shape model and local intensity model are constructed. Through the new localization algorithm of the initial shape model and improved shape model search algorithm, the 3D segmentation of MSCT datasets based on improved multi-scale shape statistical model is proposed. In addition, by the Demons registration algorithm based on mutual Information in the cardiac multi-phase 4D MSCT datasets, the deformation field from the slice of the segmented 3D datasets to the corresponding slice of the 3D dataset to be segmented could be obtained, which is used to deform the segmented results of the segmented 3D datasets, to achieve the segmentation result of the 3D dataset. By the means of the non-rigid registration and shape statistical models, the whole MSCT 4D data set segmentation results are obtained.
     5. On the basis of the above work, a preliminary function analysis for cardiac static and dynamic parameters was carried out for the further research.
     Finally, special thanks to the State of the National Natural Science Foundation of China (60771007) and Anhui Natural Science Foundation of China (2006KJ097A) for funding this work.
引文
陈步星,胡大一,洪楠. 2007.多层螺旋CT心脏成像与冠状动脉造影[M].北京:北京大学医学出版社.
    崔炜,T.Kondo, H.Anno,等. 2005.多层螺旋CT计算心室容积的准确性及最佳层厚选择[J].中华放射学杂志,39: 1265-1268.
    邓梁. 2009.基于ASM与AAM的人脸特征定位与匹配算法研究[D]:[硕士].长沙:中南大学. 高上凯. 2000.医学成像系统[M].北京:清华大学出版社,2000
    
    管秋,陈胜勇,等. 2010.基于医学图像的心脏建模与分析[M].北京:科学出版社,2010.
    姜三平. 2009.基于小波变换的图像降噪[M].北京:国防工业出版社.
    赖凯. 2010.基于CT体数据的人体肺气道树数学模型建立[D]:[博士].合肥:中国科学技术大学.
    李彬,陈武凡. 2007.基于模糊连接度的多发性硬化症MR图像自动分割算法[J].中国生物医学工程学报, 26(5): 664-668.
    李朝锋,曾生根,许磊. 2007.遥感图像智能处理[M].北京:电子工业出版社,2007.
    李传富. 2005.颅脑CT病变的计算机自动化检出[D]:[博士].合肥:中国科学技术大学.
    李俊,杨新,施鹏飞. 2002.基于Mumford-Shah模型的快速水平集图像分割方法[J].计算机学报, 25:1176-1183.
    李雪丽,周果宏,罗述谦. 2003.用于血管图像分割的简化模糊连接算法[J].计算机辅助设计与图形学学报, 15(10): 1224-1229.
    林瑶,田捷. 2001.基于模糊连接度的FCM分割方法在医学图像分析中的应用[J].中国体视学与图像分析. 6(2): 103-108.
    刘军伟,李传富,吴欢,冯焕清. 2009.改进的熵最小方法用于MRI偏差场的校正[J].中国生物医学工程学报, 27(6): 867-871.
    刘军伟.2009.基于水平集的图像分割方法研究及其在医学图像中的应用:[博士].合肥:中国科学技术大学.
    罗述谦,周果宏. 2003.医学图像处理与分析[M].北京:科学出版社.
    毛希安. 1996.核磁共振基础简论[M].北京:科学出版社.
    潘建江,杨勋年,汪国昭. 2005.基于模糊连接度的图像分割及算法[J].软件学报, 16(1): 67-76.
    彭虎. 2008.超声成像算法导论[M].合肥:中国科学技术大学出版社.
    宋余庆,陈健美,朱峰,董建成. 2008.数字医学图像[M],清华大学出版社.
    田捷,赵明昌,何晖光.2004.集成化医学影像算法平台理论与实践[M].北京:清华大学出版社.
    王大凯,侯榆青,彭进业.图像处理的偏微分方法[M].科学出版社.
    王革. 2008 X线CT研究与发展之展望[J].中国医疗器械杂志. 32(3): 157-169.
    徐峰. 2010.基于配准的颅脑CT图像分割的研究[D]:[硕士].合肥:中国科学技术大学.
    徐挺. 2009.基于Demons算法的医学图像非刚性配准研究[D]:[硕士].合肥:中国科学技术大学.
    许艺强. 2008.基于图像的心脏运动参数估算及统计分析[D]:[硕士].杭州:浙江工业大学.
    依玉峰,高立群,崔兆华,史圣伦. 2011.基于PSO的Live Wire交互式图像分割算法[J].东北大学学报(自然科学版). 32(2):193-196.
    张立东. 2006.基于多层螺旋CT成像的冠状动脉三维重建[D]:[博士].杭州:浙江大学.
    张璐. 2010.医学图像去噪方法分析与比较[D]:[硕士].上海:上海交通大学.
    张宁. 2006.心脏磁共振图像左心室分割算法研究[D]:[博士].广州:南方医科大学.
    章毓晋. 2005.图像工程(中册):图像分析[M].北京:清华大学出版社.
    郑驰超. 2010.超声测量骨密度及超声成像的若干方法的研究[D]:[博士].合肥:中国科学技术大学.
    赵喜平.2004.磁共振成像[M].北京:北京科学出版社.
    中国卫生部. 2009. 2009年中国卫生统计年鉴[M]. 215-316.
    周颖玥,冯焕清,李传富,等. 2008.一种从胸HRCT图像序列分割肺的自动化方法[J].北京生物医学工程. 27(1):6-10.
    周永新,白净. 2006.用于MRI脑组织分割的自动模糊连接方法[J].中国生物医学工程学报, 25(4): 411-416.
    Adalsteinsson D, Sethian JA. 1995. A fast level set method for propagating interface[J]. Journal of Computational Physics. 118: 269-277.
    American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Image. 2002. Standardized myocardial segmentation and nomenclature fortomographic imaging of the heart [J]. Circulation. 105:539-542.
    American Stroke Association, American Heart Association. 2003. Heart Disease and Stroke Statistics [M]. 5-6.
    Andreopoulos A, Tsotsos JK. 2008. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI [J]. Medical Image Analysis.12:335-357.
    Ayed BI, Li S, Ross I. 2009. Embedding overlap priors in variationalleft ventricle tracking[J]. IEEE Trans. Medical. Imaging. 28 (12):1902–1913.
    Azhari H. 1990. Three-dimensional mapping of acute ischemic regions using MRI: Wall thickening versus motion analysis [J]. Amer. J. Physiol.1990. 59(5):1492-1503.
    Baggio DL. 2007. GPGPU Based Image Segmentation Livewire Algorithm Implementation[D]: [M.S]. Technological Institute of Aeronautics. Sao Jose dos Campos.
    Battani R, Corsi C, Sarti A, Lamberti C, Piva T, Fattori R. 2003. Computers in Cardiology: Estimation of right ventricular volume without geometrical assumptions utilizing cardiac magnetic resonance data [M]. 81-84.
    Boudraa AEO. 1997. Automated detection of the left ventricular region in magnetic resonance images by fuzzy C-means model [J].Card Imaging. 13(4): 347–355.
    Butt P. 1984. The pyramid as a structure for efficient computation.In Multi-Resolution Image Processing and Analysis[M]. ed Rosenfeld A. 6~37.Berlin : Springer-Verlag.
    Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric method for active contours[J]. Numeriche Meathematik. 66:1-31.
    Caselles V, Kimmel R, Sapiro C, Sbert C. 2005. Minimal surfaces based object segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 19(4):394-398.
    Caselles V, Kimmel R, Sapiro G.. 1995. Geodesic active contours [C]. In: Proceedings 5th International Conference on Computer Vision. Boston, MA, USA. 694-699.
    Caselles V, Kimmel R., Sapiro G. 1997. Geodesic active contours [J]. International Journal of Computer Vision. 22(1): 61-79.
    Caselles VF, Catte TC, Dibos F. 1993. A geometric model for active contours in image processing [J]. Numer. Math. 66: 1-31.
    Chakraborty A, Staib L, Duncan J. 1996. Deformable boundary finding in medical images by integrating gradient and region information [J]. IEEE Trans. Med. Imag. 15:859–870.
    Chan TF, Vese L. 2001. Active contours without edges [J]. IEEE Transactions on ImageProcessing. 10(2): 266-277.
    Chodorowski A, Mattsson U, Langille M, Hamarneh G. 2005. Color lesion boundary detection using live wire[C]. Medical Imaging 2005: Image processing. 5747:1589-1596.
    Chop D. Computing minimal surfaces via level set curvature flow [J]. Journal of Computational Physics, 1993, 106: 77-91.
    Cohen LD. 1991. On active contour models and balloons [J]. CVGIP: Image Understanding, 53(2): 211-218.
    Collins, D, Holmes C, Peters T, Evans C, 1995. Automatic 3-D model based neuroanatomical segmentation[J]. Human brain mapping. 3 (3):190–208.
    Cootes T, Cooper D, Taylor C, Graham J. 1995. Active shape models their training and application[J]. Computer Vision and Image Understanding .61(1):38–59.
    Cootes T, Edwards G, Taylor C. 1998. Interpreting face images using active appearance models[C]. In: In Proc. European Conf. on Computer Vision.2. pp. 484–498.
    Cootes TF, Taylor CA.2001. Statistical models of appearance for medical image analysis and computer vision[J].SPIE Medical Imaging.
    Cootes TF,Taylor CJ.1997. A mixture model for representing shape variation[C].In 8th British Machine Vision Conference.
    Cousty J, Najman L, Couprie M, et al. 2010. Segmentation of 4D cardiac MRI: automated method based on spatio-temporal watershed cuts[J]. Image and Vision Computing. 28:1229–1243.
    Dawant B, Zijdenbos A. 2000. Image segmentation, In Handbook of Medical Imaging[M].ed: Sonka M, Fitzpatrick J. Bellingham, WA: SPIE Press. 2:71–127.
    Dempster, A., Laird, N., Rubin, D., 1977. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society. 39(1):1–38.
    Dijkstra EW. 1959. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1:269–270.
    Donald G. Mitchell. 2004. MRI原理.成都:四川科学技术出版社.
    Edwards GJ,Taylor CJ, Cootes TE.1997. Learning to identify and track faces in image sequences[C].Colchester. In 8th British Machine Vision Conference. 1:30~139.
    Eilenberger E, Borsdorf A, Wimmer A, Hornegger J. 2008 Edge-preserving denoising for segmentation in CT-Images[J]. Bildverar-beitung für die Medizin. Informatik aktuell, BerlinHeidelberg : Springer, 257-261.
    El-Berbari R, Bloch I, Redheuil A, Angelini E, et al. 2007. An automated myocardial segmentation in cardiac MRI[C]. In: Conf Proc IEEE Eng Med Biol Soc. 4508–4511.
    Fischer B, Modersitzki J.2004.A unified approach to fast image registration and a new curvature based registration technique [J]. Linear Algebra and its Applications, 23(7): 107-124.
    Fu, J., Chai, J., Wong, S., 2000. Wavelet-based enhancement and detection of left ventricular endocardial and epicardial boundaries in magnetic resonance images[J]. Magn. Reson. Imaging. 18:1135–1141.
    Fung YC. 1990. Biomechanics: Motion, Flow, Stress and Growth [M]. New York: Springer Verlag, 1990.
    Geiger D, Gupta A, Costa L, Vlontzos J. 1995. Dynamic programming for detecting, tracking and matching deformable contours[J]. IEEE Trans.Pattern Anal. Machine Intell. 19(6):294–302.
    Gering, D. 2003. Automatic segmentation of cardiac MRI[C]. In: Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI). 1:524–532.
    Ginneken AFB, Frangi JJ, Staal BMHR, Viergever MA. 2002. Active Shape Model Segmentation with Optimal Features[J]. IEEE Transactions on Medical Imaging.
    Gomes J, Faugeras OD. 2000. Level sets and distance functions [C]. Proc 6th European Conference Computer Vision. Berlin: Springer-Verlag. LNCS1842: 588-602.
    Goodall C. 1991. Procmstcs methods in the statistical analysis ofshape[J].Journal of the Royal Statistical Society B. 53(2):285-339.
    Goshtasby A, Turner D.1995. Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers[J]. IEEE Trans. Med. Imag. 14(1):56–64.
    Gotardo P, Boyer K, Saltz J, Raman S. 2006. A new deformable model for boundary tracking in cardiac MRI and its application to the detection of intra-ventricular dyssynchrony[C]. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’06). 1:736–743.
    Gupta A, von Kurowski L, Singh A, et al. 1993. Cardiac MR image segmentation using deformable models. In: Computers in Cardiology[M]. London,UK. 747–750.
    Haacke M, Brown RW, Thompson MR, Venkatesan R. 1991. Magnetic Resonance Imaging: Physical Principles and Sequence Design[M]. John Wiley & Sons Publication,
    Heiberg E, Wigstrom L, Carlsson M, et al. 2005.Time resolved three-dimensional segmentation of the left ventricle[C]. In: Proceedings of IEEE Computers In Cardiology. Lyon, France, 32:599–602.
    Hellier P, Barillot C, Corouge I, et al. 2003. Retrospective evaluation of intersubject brain registration [J]. IEEE Transactions on Medical Imaging. 22(9): 1120 - 1130.
    Holden M. 2008. A review of geometric transformations for nonrigid body registration [J]. IEEE Transactions on Medical Imaging, 27(1):111-128.
    Jolly MP. 2006. Automatic segmentation of the left ventricle in cardiac MR and CT images [J]. International Journal of Computer Vision. 70 (2):151–163.
    Kapur T. 1999. Model based three dimensional Medical Image Segmentation[D]:[Ph.D]. Artificial Intelligence Laboratory, Massachusetts Institute of Technology.
    Kass M, Witkin A, Terzopoulos D. 1988. Snakes: Active contour models [J]. International Journal of Computer Vision. 1(4): 321-331.
    Kass M, Witkin A, Terzopoulos D. 1988. Snakes: Active contour models[J]. International Journal of Computer Vision. 1:321–332.
    Katouzian A, Konofagou E, Prakash A. 2006. A new automated technique for left-and right-ventricular segmentation in magnetic resonance imaging[C]. In: Conf Proc IEEE Eng Med Biol Soc. 1: 3074–3077.
    Kedenburg G., Cocosco C, Kothe U, et al. 2006. Automatic cardiac MRI myocardium segmentation using graphcut[C]. In: Proceedings of SPIE. No. 6144 in Medical Imaging.
    Kurkure U, Pednekar A, Muthupilai R, Flamm SD, et al. 2009. Localization and Segmentation of left bentricle in cardiac cine-MR images[J]. IEEE Transactions on biomedical engineerting, 56(5): 1360-1370.
    Lalande A, Legrand L, Walker P, et al. 1999. Automatic detection of left ventricular contours from cardiac cine magnetic resonance imaging using fuzzy logic[J]. Investigative Radiology. 34(3), 211–217.
    Li CM, Kao CK, John C, Ding ZH. 2007. Implicit active contours driven by local binary fitting energy[J]. IEEE Transactions on Computer Vision and Pattern Recognition. 2007,1-7.
    Li CM,Xu CY, Gui C,Fox MD, 2005. Level set evolution without re-initialization: A new variational formulation [J]. IEEE Conference on Computer Vision and Pattern Recognition. 1: 430-436.
    Liu JW,Feng HQ, et al. 2009. A novel automatic extraction method of lung texture tree from HRCT images[J]. Acta Automatica Sinica. 35(4): 345-349.
    Liu N, Strugnell W, Slaughter R, et al. 2005. Right ventricle extraction by low level and model-based algorithm[C]. In: Proceedings of the IEEE Engineering in Medicine and Biology society (EMBS). 1607–1610.
    Lorenz H, Walker ES, Morgan VL. 1999. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic imaging [J]. Cardiovasc. Magn. Reson. 1(1):1-6.
    Lorenzo-Valdes M, Sanchez-Ortiz G, Elkington A., et al. 2004. Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm[J]. Medical Image Analysis. 8(3): 255–265.
    Lorenzo-Valdes M, Sanchez-Ortiz G, Mohiaddin R, Rueckert D. 2002. Atlas-based segmentation and tracking of 3D cardiac MR images using non-rigid registration. In: Proc. of Medical Image Computing and Computer-Assisted Intervention (MICCAI). Tokyo, Japan. 642–650.
    Lotonen J, Kivisto S., Koikkalainen J, et al. 2004. Statistical shape model of atria, ventricles and epicardium from short- and long-axis MR images[J]. Medical Image Analysis. 8(3):371–386.
    Lynch M, Ghita O, Whelan P. 2006a. Automatic segmentation of the left ventricle cavity and myocardium in MRI data[J]. Comput Biol Med. 36(4): 389–407.
    Lynch M, Ghita O, Whelan P. 2006b. Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge[J]. Computerized Medical Imaging and Graphics. 30(4):255–262.
    Malladi R, Sethian JA, and Vemuri BC. 2001. Shape modeling with front propagation: A level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2): 158-175.
    Malladi R, Sethian JA, Vemuri BC. 1995. hape modeling with front propagation: a level set approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 17(2): 158-175.
    Masood S, Yang CZ, Pennell DJ, Firmin DN. 2000. Investigating Intrinsic Myocardial Mechanics:The Role of MR Tagging, Velocity Phase Mapping and Diffusion Imaging[J]. Magn Reson Imaging. 12: 873-883.
    McInerney T. Terzopoulos D. 1996 Deformable models in medical image analysis: a survey[J].Medical Image Analysis, 1(2): 91-108。
    Mitchell S, Bosch J, Lelieveldt B, et al. 2002. 3-D active appearance models: segmentation of cardiac MR and ultrasound images[J]. IEEE Trans. Med. Imag. 21(9): 1167–1178.
    Mitchell S, Lelieveldt B, van der Geest R, et al. 2000. Segmentation of cardiac MR images: An active appearance model approach[C]. In: Proceedings of SPIE. No. 3979 in Medical Imaging. 224–234.
    Mitchell S, Lelieveldt B, van der Geest R, et al. 2001. Multistage hybrid active appearance model matching: segmentation of left and right ventricles in cardiac MR images[J]. IEEE Trans. Med.Imag. 20(5): 415–423.
    Modersitzki J. 2004. Numerical Methods for Image Registration[M]. New York: Oxford University Press.
    Montagnat J, Delingette H. 2005. 4D deformable models with temporalconstraints: application to 4D cardiac image segmentation[J]. Medical Image Analysis. 9 (1): 87–100.
    Mortensen EN,Barrett WA.1995. Intelligent Scissors for Image Composition[C].In Proceedings of ACM SIGGRAPH’95,USA:Los Angeles, 191—198.
    Mortensen EN , Barrett WA . 1998. Interactive Segmentation with Intelligent Scissores[J].Graphic Models and Imaging Processing. 60(5): 349—384.
    Mumford D, Shah J. 1985. Boundary detection by minimizing functions[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA. 22-26.
    Nachtomy E, Cooperstein R, Vaturi M, et al. 1998. Automatic assessment of cardiac function from short-axis MRI: procedure and clinical evaluation[J]. Magn. Reson. Imaging 16: 365–376.
    Nielsen AA.1994. Analysis of Regularly and Irregularly Sampled Spmial,Multivariate,and Multi-temporal Data[D]: [Ph.D]. Lyngby: Institute of Mathematical Modelling,Technical University of Denmark.
    Osher S, Sethian JA. 1988. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton– Jacobi formulation [J]. Journal of Computational Physics. 79(1): 12-49.
    Paragios N. 2002. A variational approach for the segmentation of the left ventricle in cardiac image analysis[J]. International Journal of Computer Vision. 50(3):345–362.
    Paris S, Durand F. 2006. A fast approximation of the bilateral filter using a signal processingapproach[C]. European conference on Computer Vision.81(1):24-52.
    Patrick CC, Lynch J, Jaffe CC. 2006. http://www.yale.edu/imaging/ . Yale University.
    Pednekar A, Kurkure U, Muthupillai R, Flamm S. 2006. Automated left ventricular segmentation in cardiac MRI[J]. IEEE Trans Biomed Eng. 53 (7):1425–1428.
    Pentland A, Horowitz B.1999. Recovery of nonrigid motion and structure[J]. IEEE Trans Pattern Anal Machine Intell. 13(1):73-742.
    Perona P, Malik J. 1990. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans.Pattern Analysis and Machine Intelligence. 12(7): 629-639.
    Petitjean C, Dacher JN. 2011. A review of segmentation methods in short axis cardiac MR images[J]. Medical Image Analysis.
    Pham Q, Vincent F, Clarysse P, Croisille P, Magnin I. A FEM based deformable model for the 3D segmentation and tracking of the heart in cardiac MRI[C]. In: Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis (ISPA). Pula, Croatia, 250–254.
    Pluempitiwiriyawej C, Moura J, Wu Y, Ho C. 2005. STACS: New active contour scheme for cardiac MR image segmentation[J]. IEEE Trans. Med.Imag. 24(5):593–603.
    Ranganath S. 1995. Contour extraction from cardiac MRI studies using snakes[J]. IEEE Trans. Med. Imag, 14 (2):328–338.
    Rogelj P, Kovacic S. 2006. Symmetric image registration [J]. Medical Image Analysis, 10(3): 484-493.
    Rohling T, Brandt R, Menzel R., et al. 2005. Atlas-based segmentation. In: The Handbook of Medical Image Analysis: Segmentation and Registration Models. Kluwer.
    Rudin L, sher S, Fatemi E. 1992. Nonlinear total variation based noise removal algorithms[J]. Physica D, 60(1-4): 259-268.
    Saha PK, JUdupa JK, Odhner D. 2000. Scale-Based fuzzy connected image segmentation: Theory, algorithms, and validation [J]. Computer Vision and Image Understanding, 77(9): 145-174.
    Samson C, Blanc-Feraud L, Aubert G, Zerubia J. 2000. A Level Set Model for image Classification[J]. International Journal of Computer Vision, 40(3): 187-197.
    Santarelli M, Positano V, Michelassi C, et al. 2003. Automated cardiac MR image segmentation: theory and measurement evaluation[J]. Medical Engineering and Physics. 25 (2):149–159.
    Senegas J, Cocosco C, Netsch T. 2004. Model-based segmentation of cardiac MRI cine sequences: a bayesian formulation[C]. In Proceedings of SPIE. No. 5370 in Medical Imaging. 432–443.
    Sethian JA. 1996. A fast marching level set method for monotonically advancing fronts. In Proc. Nat. Ac. Science, 93: 1591-1694.
    Sheehan FH, Bolson EL, Dodge HT, et al. 1986. Advantages and applications of thecenter line method for characterizing regional ventricular function [J]. Circulation, 174(2): 293-305.
    Shi P, Robinson G, Constabley RT, et al. 2005. A Model-Based Integrated Approach to Track Myocardial Deformation Using Displacement and Velocity Constraints[C]. Proceedings IEEE ICCV, 687-692.
    Solloway S, Hutchinson C, Waterton J, et a1.1996. Quantification of articular cartilage from MR images using active shape models[C].in 4th European Conference on Computer Vision.
    Song B, Chan T. 2002.A fast algorithm for level set representations [C]. ECCV CAM Report, 02-68.
    Stalidis G., Maglaveras N, Efstratiadis S, et al. 2002. Model-based processing scheme for quantitative 4-D cardiac MRIanalysis[J]. IEEE Trans Inf Technol Biomed. 6 (1):59–72.
    Stegmann M, Nilsson J, Gronning B. 2001. Automated segmentation of cardiac magnetic resonance images[C]. In: Proc. Intl. Soc. Mag. Reson. 9:827.
    Studholme C, Hill D, Hawkes D. 1999. An overlap invariant entropy measure of 3D medical image alignment[J]. Pattern Recognition, 32 (1):71–86.
    Thirion JP. 1998. Image matching as a diffusion process: An analogy with Maxwell’s demons [J]. Medical Image Analysis, 2(3): 243-260.
    Thodberg HH.Hands-on experience with active appearance models.In SPIE Medical Imaging,2002
    Ting TJ. 2008. 3-D Representation and Volumetric Measurement of Human Heart from a Cylindrical B-Spline Surface Model[J]. BioMedical Engineering and Informatics, 1:765-769.
    Tomasi C, Manduchi R. 1998. Bilateral filtering for gray and color images[C]. IEEE International Conference on Computer Vision. 839-846.
    Udupa JK, Saha PK, Lotufo RA. 2002, Relative fuzzy connectedness and object definition: Theory, algorithm and applications in image segmentation [J]. IEEE Trans. On Pattern Analysis and Machine Intelligence, 24(11): 1485-1500.
    Udupa JK. Samarasekera S. 1995. Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Application in Image Segmentation [J]. Graphical Model and Image Processing, 58(3): 246-261.
    Urschler M, Mayer H, Bolter R, Leberl F. 2002. the livewire approach for the segmentation of left ventricle electron-beam CT image. 26th Workshop of the Austrian Association for Pattern Recognition.
    Uzumcu M, van der Geest R, Swingen C, et al. 2006. Time continuous tracking and segmentation of cardiovascular magnetic resonance images using multidimensional dynamic programming[J]. Investigative Radiology, 41(1):52–62.
    Vese LA, Chan TF. 2002. A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model [J]. International Journal of Computer Vision, 50(3): 271-293.
    Vese LA. 2003. Multiphase Object Detection and Image Segmentation in Geometric Level Set Methods in Imaging[J]. Vision, and Graphics. Springer. 175-194.
    Walker et.al. 2008. Magnetic Resonance Imaging-based Finite Element Stress Analysis after Linear Repair of Left Ventricular Aneurysm [J].2008:1094-1102.
    Wang H, Dong L, O’Daniel J, et al. 2005. Validation of an accelerated‘demons’algorithm for deformable image registration in radiation therapy [J]. Phy. in Med. and Bio.,50(12): 2887-2905.
    Wang Y, Jia Y. 2006. Segmentation of the left ventricle from cardiac MR images based on degenerated minimal surface diffusion and shape priors[C]. In: Proc. of the 18th International Conference on Pattern Recognition (ICPR). 4:671–674.
    Weng J, Singh A, Chiu M. 1997. Learning-based ventricle detection from cardiac MR and CT images[J]. IEEE Trans. Med. Imag. 16 (4):378–391.
    Wnsche B. 2003. The Visualization and Measurement of Left Ventricular Deformation [J]. Australian computer society, 1(1):16-19.
    WHO. 2011. Fact sheet N°317. http://www.who.int/mediacentre/factsheets/fs317/ en/index.html.
    Wu MT., Tseng WYL, Su MYM, Liu CP. 2006. Diffusion Tensor Magnetic Resonance Imaging Mapping the Fiber Architecture Remodeling in Human Myocardium after Infarction: Correlation with Viability and Wall Motion[J]. Circulation, 1036-1045.
    Xu C, Pham DL, Prince JL. 2000. Medical image segmentation using deformable models. In: Handbook of Medical Imaging[M]. 2:129–174.
    Xu C, Prince J. 1998. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on Image Processing, 7(3):359– 369.
    Xu C. Yezzi A, Prince JL. 2000. On the Relationship between Parametric and Geometric Active Contours [C], Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 1: 483-489.
    Yeh J, Fua J, Wua C, Lina H., Chaib, J. 2005. Myocardial border detection by branch-and-bound dynamic programming in magnetic resonance images[J]. Computer Methods and Programs in Biomedicine, 79 (1), 19–29.
    Yezzi A, Kichenassamy S, Kumar A, et al. 1997. A geometric snake model for segmentation of medical imagery [J]. IEEE Trans.Med. Imag. 16 (2):199–209.
    Yuille AL,Hallinan PW,Cohen DS.1992. Feature extraction from faces using deformable templates[J].International Journal of Computer Vision.
    Zambal S, Hladuvka J, Buhler K. 2006. Improving segmentation of the left ventricle using a two-component statistical model[C]. In: Proc. of Medical Image Computing and Computer- Assisted Intervention (MICCAI). 151–158.
    Zhang H, Morrow P, McClean S, et al. 2007. Incorporating feature based priors into the geodesic active contour model and its application in biomedical imagery [C]. International Machine Vision and Image Processing Conference, 2007, 67-74.
    Zhang H, Wahle A, Johnson R, et al. 2010. 4-D cardiac MR image analysis: Left and right ventricular morphology and function[J].IEEE Trans. Med. Imag. 29(2): 350-364.
    Zhuang X, Hawkes D, Crum W, et al. 2008. Robust registration between cardiac MRI images and atlas for segmentation propagation[C]. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference.
    Zhukov L, Bao J, Guskov I, Wood J, Breen D. 2002. Dynamic deformable models for 3D MRI heart segmentation[C]. In: Proceedings of SPIE.Medical Imaging,1398–1405.
    Zucker SW. 1977. Algorithms for image segmentation.In Digital image processing and analysis[M]. 169-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700