基于心脏核磁共振图像的左心室分割及动力学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,心脏核磁共振影像技术已经成为心脏疾病临床诊断的重要辅助手段。心脏核磁共振影像分析是无创性评价心脏功能的重要方法,运用心脏核磁共振图像不仅能观察到心脏的形态结构,还可以估测心室的整体功能及局部心肌功能,使医师能对心脏的病理和生理状况做出正确的判断。
     在临床心脏疾病诊断中,由于左心室是全身血液循环的泵体,在心脏功能中起着重要的作用,因此是目前研究的重点。从心脏核磁共振图像序列提取左心室在收缩期的心肌运动场、位移场、应变应力,进而评定左心室整体和局部心肌功能,在临床具有重要的应用价值。本文着重对基于心脏核磁共振图像的左心室分割及心肌运动进行深入研究与探讨。从左心室的二维分割、三维表面恢复、三维运动重建和应力应变分析等方面着手,提出了相应的二维分割及三维运动分析模型,构建了运用心脏核磁共振图像序列进行左心室三维心肌功能评定的一般框架。本文的工作主要包括以下内容:
     (1)提出了基于模拟退火算法的简化Snake图像分割模型。该模型对传统Snake模型进行了改进,运用简化Snake的思想,使运算简单,并增加系数可变的面积项,使演化曲线不再受初始位置的限制。在求解模型时,引入了模拟退火优化算法,该算法与改进的Snake模型相结合,发挥了模拟退火算法的长处,也降低了运用Snake计算的复杂度。本文算法不仅能较好地处理弱边缘和不规则边缘区域,而且能较好地处理凹陷和拐角区域。
     (2)针对标记线对心脏核磁共振图像进行分割时所产生的干扰,本文提出了一种基于细节信号能量的纹理分析算法,该算法利用标记线本身的信息特征,去除了标记线对分割的影响。由于心脏核磁共振图像边缘较弱,噪声相对较强,本文应用测地线活动轮廓模型定义演化曲线,并用水平集方法求解,能够很好地提取左心室的心内膜。在提取左心室心外膜时,为处理边界断裂、缺省的现象,添加了距离约束能量项,解决了依靠梯度和纹理信息无法准确分割的问题。
     (3)本文利用带标记线的心脏核磁共振的时序图像,针对左心室建立了具有系数函数的物理可形变模型,对左心室在心脏收缩期的形状和三维运动进行了重建和分析。在对初始时刻左心室表面恢复的过程中,本文提出了反演系数函数成形法;在运动跟踪阶段,本文提出了一种有效的模型节点标记力计算方法,并利用薄板样条对其进行了优化。本文模型不仅能跟踪左心室质点级的运动轨迹,并能最终将左心室在心脏收缩期的运动和形变映射为系数函数的变化曲线,直观易懂,有助于临床应用。
     (4)为直观地分析左心室在心脏收缩期的应力分布及形变情况,本文提出了一种左心室力学形态分析方法。首先,利用带标记线的心脏核磁共振图像数据,针对左心室建立系数可变的物理可形变模型;在所建模型的基础上,利用心脏收缩期各个时刻的左心室轮廓点数据进行三维重建。其次,利用心脏收缩期各相邻时刻的标记点数据计算左心室模型标记力。最后,将模型标记力转换为收缩应力分量、切向应力分量和拉伸应力分量,并将各个应力分量用彩色云图显示。本文提出的左心室力学形态分析方法,能直观有效地反映左心室内外表面在整个心脏收缩期的应力分布及形变趋势。
     (5)利用时间序列的带标记线心脏核磁共振图像,提出了一种基于有限元方法的左心室运动分析模型,重建了左心室在心脏收缩期的三维位移场及应变分布。本文首先提出了一种基于Delaunay三角网的三维表面恢复算法,该算法能对表达形式多变、空间分布不一致的稀疏点进行表面恢复。然后建立左心室有限元模型,重建三维运动,获取左心室形变信息。本文提出的左心室表面恢复算法及基于有限元方法的左心室模型,能有效地获取左心室的形状信息和运动信息,并为临床诊断提供有用的参考数据。
     (6)提出了基于有限元方法的左心室生物力学模型。心肌是生物物质高度优化的复合材料,心肌纤维的方向是连续变化的,本文在基于有限元方法的左心室模型的基础上,进一步考虑到心肌纤维方向,将心肌的物质材料属性添加到模型中,建立了左心室生物力学模型。在该模型基础上,本文分析了左心室在局部纤维坐标系下的应力应变分量,给出了各个分量的彩色云图,这对临床应用具有重要的意义。
Currently, the technique of the cardiac Magnetic Resonance (MR) imaging has becomean important assistant measure in the clinical diagnosis of heart diseases. The analysis ofthe cardiac MR imaging is an important approach to measure the heart functionnon-invasively. Through the cardiac MR images, the physicians not only can observe thestructure of the heart, but also can estimate the global function and local myocardiumfunction of the ventricles. So the physicians can make the right estimation of the pathologyand physiology of the heart.
     In the clinical diagnosis of heart diseases, as the Left Ventricle (LV) is the pump of theblood circulation of the whole body, it leads an important role in the heart function. So theLV is the focus in the current research. From the sequence of the cardiac MR images, themotion, displacements and strain-stress of the myocardium of the LV during systole will beextracted. Then the global function and local myocardium function of the LV can bemeasured, which is significant in the clinical diagnosis. This thesis based on the cardiacMR images, will focus on the segmentation of the LV and the myocardium motion analysis.From the aspects of the 2D segmentation of the LV, 3D surface restoration, 3D motionreconstruction and strain-stress analysis, we have proposed the corresponding 2Dsegmentation models and 3D motion analysis models, building a general framework ofevaluating the 3D myocardium function of the LV from the cardiac MR images. Our workmainly includes the following parts:
     (1) A simulated annealing (SA) algorithm based simplified Snake model for imagesegmentation is proposed. This proposed model improves the traditional Snake model,introducing the idea of simplified Snake to make the computation easy. Also an area energyterm with variable coefficients is added to make the evolving curve not influenced by theinitial position. The SA optimization algorithm is used to solve the improved Snake model.This idea exerts the characteristics of the SA algorithm, also keeps the low computationcomplexity by applying Snake. Our model not only can deal with the weak edges andirregular edges, but also can deal with concave region and corner region.
     (2) Aiming to the disturbance from the tagged lines when segmenting the tagged cardiacMR images, a texture analysis method is proposed based on the detail signal energy whichapplies the signal feature provided by the tagged lines themselves. Therefore it caneffectively remove the influence from the tagged lines. In the cardiac MR images, theedges are weak and noises are a little stronger. So the geodesic active contour model isapplied to define the evolving curve, and it is solved by the level set method, thereby theinner edges of the LV are well extracted. When extracting the outer edges of the LV, adistance constraint energy term is added in order to solve the problem of the edges' breakor default. Depending on this energy term, the feature edges which cannot be directlyextracted by gradient or texture information can be well extracted.
     (3) By applying the tagged cardiac MR images, we build a physics-based deformablemodel with parameter functions to reconstruct the shape and 3D motion of the LV duringsystole. In the process of the surface restoration of the LV of the initial frame, we propose aretro-deducting parameter functions method to restore the mathematical surface model of the LV. And during the process of the motion tracking, we propose an effective method tocalculate the tagged forces of the model. Meanwhile these forces are optimized usingThin-Plate splines. The proposed model not only can track any material point of the LV,and also almost all the motions and deformations of the LV during systole can be reflectedon the changing curves of parameter functions. These curves are very intuitive and easy tobe understood, which will be very helpful for clinical applications.
     (4) In order to intuitively analyze the deformations of the LV during systole, amechanical modality analysis method of the LV is proposed. First, applying the taggedcardiac MR images data, we build a physics-based deformable model with parameterfunctions of the LV, and then based on the model built we apply the boundary data sets ofeach frame during systole to reconstruct the 3D shape of the LV. Second, we compute thetagged forces of the LV model during systole by using the tagged data sets of the adjacenttwo frames. Lastly, the tagged forces of the model will be transformed to the contractivestress component, the tangent stress component and the vertical stress component.Moreover, these three stress components will be described in color cloud pictures. So, themechanical modality analysis method of the LV proposed in this thesis will intuitively andeffectively reflect the stress distribution and deformation trends of the inner and outersurfaces of the LV during systole.
     (5) Based on the sequence of the tagged cardiac MR images, a Finite Element Method(FEM) based motion analysis model of the LV is proposed, reconstructing the 3Ddisplacements and strain distribution of the LV during systole. First, we proposed a kind of3D surface restoration algorithm based on Delaunay triangulation. This algorithm canrestore the surface from the sparse data points of un-uniform spatial distribution ordifferent formats. Then the FEM-based LV model is constructed, reconstructing the 3Dmotion and capturing the deformation information of the LV. The proposed surfacerestoration algorithm and the FEM-based LV model can effectively capture the shape andmotion information of the LV, which provide the useful reference data in the clinicaldiagnosis.
     (6) A FEM-based biomechanical model of the LV is proposed. The myocardium is thehighly optimized composite material in the biologic material. The myocardium fiberorientations of the LV vary in a continuous manner. Based on the FEM-based model of theLV, the myocardium fiber orientation is further considered, namely the material property ofthe myocardium is added to the model. Thus the biomechanical model of the LV is built.Based on this model, we analyze the strain-stress of the LV under local fiber coordinates.Also each component is shown in the color cloud picture, which is meaningful for theclinical diagnosis.
引文
[1] A.F. Frangi, W.J. Niessen, M.A. Viergever. Three-dimensional modeling for functional analysis of cardiac images: a review. IEEE Transactions on Medical Imaging, 2001, 20(1): 2-25.
    [2] American Heart Association. Heart disease and stroke statistics-2007 update. Website: www. americanheart.org.
    [3] G.A. Wright. Magnetic resonance imaging. IEEE Signal Processing Magazine. 1997, 14(1): 56-66.
    [4] 俎栋林.核磁共振成像学.北京:高等教育出版社.2004.
    [5] 赵喜平.磁共振成像.北京:科学出版社.2004.
    [6] L. Axel, et al. MR imaging of motion with spatial modulation of magnetization. Radiology. 1989(171): 841-845.
    [7] L. Axel and L. Dougherty. Heart wall motion: improved method of spatial modulation of magnetization for MR imaging. Radiology. 1989(172): 349-360.
    [8] J.S. Suri. Computer vision, pattern recognition and image processing in the left ventricle segmentation: the last 50 years. Pattern Analysis and Application, 2000, 3(3): 209-242.
    [9] 林瑶,田捷.医学图象分割方法综述.模式识别与人工智能,2002,15(2):192-203.
    [10] M. Kass, A. Witldn, D. Terzopoulos. Snake: active contour models. International Journal of Computer Vision, 1988, 1 (4): 321-331.
    [11] V. Caselles, R. Kimmel, G. Sapiro. Geodesic active contours. International Journal of Computer Vision, 1997, 22(1): 61-79.
    [12] T. Chan and L. Vese. Active contours without edges. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
    [13] S. German, D. German. Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, No.6: 721-741.
    [14] Y. Zhang, M. Brady and S. Smith. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 2001, 20(1): 45-57.
    [15] J.S. Suri. Leaking prevention in fast level sets using fuzzy models: an application in MR brain. In: Proceedings of International Conference on Information Technology in Biomedicine, Nov. 2000: 220-226.
    [16] S.H. Leung, S.L. Wang, W.H. Lau. Lip image segmentation using fuzzy clustering incorporating an elliptic shape function. IEEE Transactions on Image Processing, 2004, 13(1): 51-62.
    [17]T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham. Active shape models - their training and application. Computer Vision and Image Understanding, 1995,61(1): 38-59.
    [18]T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham. Training models of shape from sets of examples. In: Proceedings of British Machine Vision Conference. Springer-Verlag, 1992:9-18.
    [19]G.J. Edwards, C.J. Taylor, and T.F. Cootes. Interpreting face images using active appearance models. In: Proceedings of 3rd International Conference on Automatic Face and Gesture Recognition, 1998, Nara, Japan, 300-305.
    
    [20]E.R. Dougherty. An introduction to mathematical morphology processing. SPIE Press, Bellingham, WA, 1992.
    [21]Luo Hui, Lu Qiang, R.S. Acharya, R. Gaborski. Robust snake model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, South Carolina, 2000,1: 452-457.
    [22] L.D. Cohen, I. Cohen. Finite element methods for active contour models and balloons for 2D and 3D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993,15(11): 1131-1147.
    [23]L.D. Cohen. On active contour models and balloons. CVGIP (Computer Vision, Graphics, and Image Processing): Image Understanding, 1991, 53 (2): 211-218.
    [24] C. Xu, J.L. Prince. Gradient Vector Flow: A new external force for snakes. In: IEEE Proceedings Conference on Computer Vision and Pattern Recognition (CVPR'97), Puerto Rico, June 1997: 66-71.
    [25] C. Xu, J.L. Prince. Snakes, shapes and gradient vector flow. IEEE Transactions on Imaging Processing. 1998, 7(3): 359-369.
    [26]Petia Radeva, Juan Serrat. Rubber Snake: implementation on signed distance potential. In: Vision Conference SWISS'93, Zurich (Switzerland), Sep. 1993: 187-194.
    [27]Hsien-Hsun Wu, Jyh-Cham Liu, Charles Chui. A wavelet-frame based image force model for active contouring algorithms. IEEE Transactions on Image Processing, 2000, 9(11): 1983-1987.
    
    [28] Walter Rudin.泛函分析(英文版第2版).北京:机械工业出版社.2003.
    [29] S. Osher, J.A. Sethian. Fronts propagating with curvature dependent speed: algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 1988, 79(1): 12-49.
    [30] N. Paragios. A variational approach for the segmentation of the left ventricle in MR cardiac image analysis. International Journal of Computer Vision, 2002, 50(3): 345-362.
    [31] N. Paragios, R. Deriche. Geodesic active regions for supervised texture segmentation. In: Proceedings of 7th IEEE International Conference in Computer Vision, Greece, 1999: 926-932.
    [32] M.E. Leventon, W.E.L. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, June 2000, 1: 316-323.
    [33] D. Mumford, J. Shah. Optimal approximation by piecewise smooth functions and associated variational problems. Communication on Pure and Applied Mathematics, 1989, 42: 557-685.
    [34] T. Chan, B. Sandberg, and L. Vese. Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation, 2000, 11(2): 130-141.
    [35] D.K. Panjwani, G. Healey. Markov random field models for unsupervised segmentation of textured color images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(10): 939-954.
    [36] 刘伟强,陈鸿,夏德深,基于马尔可夫随机场的快速图象分割.中国图象图形学报,2001,6(3):228-233.
    [37] L. Yan and T.S. Denney. Joint reconstruction of 2-D left ventricular displacement and contours from tagged magnetic resonance images using Markov random field edge prior. Available: http://citeseer.ist.psu.edu/224456.html.
    [38] D. Terzopoulos, et al. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence. 1988, 36(1): 91-123.
    [39] T. McInerney, D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical Image Analysis. 1996, 1(2): 91-108.
    [40] J. Montagnat, et al. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing, 2001, 19(14): 1023-1040.
    [41] D. Metaxas, D. Terzopoulos. Shape and nonrigid motion estimation through physics-based synthesis. IEEE Transactions on Pattern and Machine Intelligence, 1993, 15(6): 580-591.
    [42] J. Park, D. Metaxas, L. Axel. Analysis of left ventricular wall motion based on volumetric deformable models and MRI-SPAMM. Medical Image Analysis, 1(1): 53-71,1996.
    [43] J. Park, D. Metaxas, A.A. Young, L. Axel. Deformable models with parameter functions for cardiac motion analysis from tagged MRI data. IEEE Transactions on Medical Imaging, 1996, 15(3): 278-289.
    [44] J. Park, S. Park. Strain analysis and visualization: left ventricle of a heart. Computers and Graphics, 2000,24(5): 701-714.
    [45] A.A. Young, D.L. Kraitchman, L. Dougherty, L. Axel. Tracking and finite element analysis of stripe deformation in magnetic resonance tagging. IEEE Transactions on Medical Imaging, 1995, 14(3): 413-421.
    [46] A.A. Young. Model tags: direct three-dimensional tracking of heart wall motion from tagged magnetic resonance images. Medical Image Analysis, 1999,3(4): 361-372.
    [47] I. Haber, D. Metaxas, L. Axel. Three-dimensional motion reconstruction and analysis of the right ventricle using tagged MRI. Medical Image Analysis, 2000,4(4): 335-355.
    [48] P. Shi. Volumetric deformation analysis using mechanics-based data fusion: application in cardiac motion recovery. International Journal of Computer Vision, 1999, 35(1): 87-107.
    [49]P. Shi, A.J. Sinusas, et al. Point-tracked quantitative analysis of left ventricular surface motion from 3D image sequences: algorithms and validation. IEEE Transactions on Medical Imaging, 2000,19(1): 36-50.
    [50]Z. Hu, D. Metaxas, L. Axel. In vivo strain and stress estimation of the heart left and right ventricle from MRI images. Medical Image Analysis, 2003, 7(4): 435-444.
    [51]X. Deng, T. S. Denney. Three-dimensional myocardial strain reconstruction from tagged MRI using a cylindrical B-spline model. IEEE Transactions on Medical Imaging. 2004,23(7): 861-867.
    [52] G Luo, Pheng Ann Heng. LV shape and motion: B-spline-based deformable model and sequential motion decomposition. IEEE Transactions on Information Technology in Biomedicine. 2005,9(3): 430-445.
    [53] J. Huang and A.A. Amini. Four-dimensional LV tissue tracking from tagged MRI with 4D B-spline model. In: Proceedings of the 16th International Conference on Information Processing in Medical Imaging, Visegrad, Hungary, June 1999, 346-351.
    [54] J. Huang, D. Abendschein, A.A. Amini. Spatio-temporal tracking of myocardial deformations with 4D B-spline model from tagged MRI. IEEE Transactions Medical Imaging, 1999, 18(10): 957-972.
    [55] N.J. Tustison, V.G. Davila-Roman, A.A. Amini. Myocardial kinematics from tagged MRI based on 4-D B-spline model. IEEE Transactions on Biomedical Engineering, 2003, 50(8): 1038-1040.
    [56] C. Ozturk, E.R. McVeigh. Four-dimensional B-spline based motion analysis of tagged cardiac MR images: introduction and in vivo validation. Physics in Medicine and Biology, 2000, 45(6): 1683-1702.
    [57] W.S. Kerwin, N.F. Osman, J.L. Prince. Image processing and analysis in tagged cardiac MRI. Handbook of Medical Imaging, Academic Press, Orlando, USA, 2000, pp.375-391.
    [58] F. Lavagetto. Infrared image segmentation through iterative thresholding. In: Proceedings of SPIE, Real-Time Image Processing Ⅱ, September 1990, vol. 1295: 29-38.
    [59] Y.L. Chang and X. Li. Fast image region growing. Image and Vision Computing, 1995, 13(7): 559-571.
    [60] M. Levy. New theoretical approach to relaxation, application to edge detection. In: Proceedings of 9th International Conference on Pattern Recognition, Rome, Italy, 1988, pp.208-212.
    [61] C. Sagiv, N.A. Sochen, Y.Y. Zeevi. Integrated active contours for texture segmentation. IEEE Transactions on Image Processing, 2004, 1(1): 1-19.
    [62] B. Sandberg, T. Chan, and L. Vese. A level-set and Gabor-based active contour algorithm for segmenting textured images. Technical report 39, Department of Mathematics, UCLA, Los Angeles, USA, July 2002.
    [63] M. Rousson, T. Brox, R. Deriche. Active unsupervised texture segmentation on a diffusion based feature space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, 2003, vol 2: 699-704.
    [64] M.A. Guttman, J.L. Prince, and E.R. McVeigh. Tag and contour detection in tagged MR images of the left ventricle. IEEE Transactions on Medial imaging, 1994, 13(1): 74-88.
    [65] A.A. Amini, R.W. Curwen, R.T. Constable, and J.C. Gore. MR physics-based snake tracking and dense deformations from tagged cardiac images. In: AAAI (American Association for Artificial Intelligence) Spring Symposium Series on Applications of Computer Vision in Medical Image Processing, 1994:126-129.
    [66] T.S. Denny. Estimation and detection of myocardial tags in MR image without User-Defined myocardial contours. IEEE Transactions on Medical Imaging. 1999, 18(4): 330-344.
    [67] A.A. Amini, Y. Chen and R.W. Curwen, et al. Coupled B-Snake grids and constrained thin-plate splines for analysis of 2-D tissue deformations from tagged MRI. IEEE Transactions on Medical Imaging, 1998, 17(3): 344-356.
    [68] Y. Chen and A.A. Amini. A MAP framework for tag line detection in SPAMM data using Markov fields on the B-Spline solid. IEEE Transactions on Medial imaging, 2002, 21(9): 1110-1122.
    [69] 孙家广.计算机图像学.北京:清华大学出版社.1998.
    [70] D.J. Williams, M. Shah. A fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding, 1992, 55(1): 14-26.
    [71] T. McInemey, D. Terzopoulos. T-snakes: topology adaptive snakes. Medical Image Analysis, 2000, 4: 73-91.
    [72] Lilian Ji, Hong Yan. Robust topology-adaptive snakes for image segmentation. Image and Vision Computing, 2002, 20: 147-164.
    [73] V. Chalana, D.T. Linker, D.R. Haynor, Y. Kim. A multiple active contour model for cardiac boundary detection in echocardiographic sequences. IEEE Transactions on Medical Imaging, 1996, 15(3): 290-298.
    [74] 李培华,张田文.一种新的B样条主动轮廓线模型.计算机学报.2002,25(12):1348-1354.
    [75] F. Leymarie and M.D. Levine. Tracking deformable object in the plane using active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(6): 617-634.
    [76] N. PeterFreund. Robust tracking with spatio velocity snakes: Kalman filtering approach. In: Proceedings of the 6th International Conference on Computer Vision. Bombay, India: IEEE Computer Society Press, 1998, 512-519.
    [77] J.O. Laehaud, A. Montanvert. Deformable meshes with automated topology changes for coarse-fine three-dimensional surface extraction. Medical Imaging Analysis, 1999, 3(2): 187-207.
    [78] P. Clarysse, F. Poupon, et al. 3D boundary extraction of the left ventricular by a deformable model with a priori information. In: Proceedings of the IEEE International Conference on Image Processing, 1995, 2: 492-495.
    [79] J.V. Miller, D.E. Breen, et al. Geometrically deformable models: a method for extracting closed geometric models from volume data. In: Proceedings of SIGGRAPH, 1991, pp.217-226.
    [80] A.A. Amini, T.E. Weymouth, T.C. Jain. Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12 (9): 855-867.
    [81] 卢险峰.最优化方法应用基础.上海:同济大学出版社.2003.
    [82] 邢文训,谢金星.现代优化计算方法.北京:清华大学出版社.1999.
    [83] 张引,潘云鹤.基于模拟退火的最大似然聚类图像分割算法.软件学报,2001,12(2):212-218.
    [84] Surendra Ranganath. Contour extraction from cardiac MRI studies using Snakes. IEEE transactions on medical imaging, 1995, 14(2): 328-338.
    [85] A. Histace, C. Menard, B. Vigouroux. Tagged cardiac MRI: detection of myocardial boundaries by texture analysis. In: Proceedings of 2003 International Conference on Image Processing, Barcelona, September, 2003, Ⅱ: 1061-1064.
    [86] D. Metaxas, T. Chen, X. Huang, L. Axel. Cardiac segmentation from MRI-tagged and CT images. In: Proceedings of 8th WSEAS International Conference on Computers, special session on Imaging and Image Processing of Dynamic Processes in biology and medicine & WSEAS Transactions, Athens, Greece, July, 2004, pp. 587-592.
    [87] 王鸿南,钟文,汪静,夏德深.图像清晰度评价方法研究.中国图象图形学报,9(7):828-831,2004.
    [88] Glenn D. Boreman. Modulation transfer function in optical and electro-optical systems. SPIE PRESS, 2001.
    [89] 汪静,胡晔,尤建洁,夏德深.实验室条件下IRMSS遥感器MTF与遥感图像参数的相关分析设计与性能评估.航天返回与遥感,25(4):35-45,2004.
    [90] 张宜华主编.精通SPSS.北京:清华大学出版社.2001.
    [91] Milan Sonka, VaclavHlavac,Roger Boyle著,艾海舟,武勃等译.图像处理、分析与机器视觉(第二版).北京:人民邮电出版社.2003.
    [92] T.P. Weldon, W.E. Higgins. An algorithm for designing multiple Gabor filters for segmenting multi-textured images. In: Proceedings of IEEE International Conference on Image Processing, Vol: 3, pp. 333-337, 1998.
    [93] Hsi-Chia Hsin. Texture segmentation using modulated wavelet transform. IEEE Transactions on Image Processing, 9(7): 1299-1302, 2000.
    [94] D.A. Clausi, B. Yue. Texture segmentation comparison using grey level co-occurrence probabilities and Markov random fields. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004, Vol. 1, pp. 584-587.
    [95] 蔡国雷,杨鸿波,邹谋炎.利用总变分最小化方法的无监督纹理图像分割.中国图象图形学报,10(4):489-493,2005.
    [96] J. Park. Model-based shape and motion analysis: left ventricle of a heart. Ph. D Dissertation. University of Pennsylvania. Philadelphia. USA. 1996.
    [97] F.L. Bookstein. Principal warps: thin-plate spline and the decomposition of deformation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567-585, 1989.
    [98] E. Waks, J.L. Prince, A.S. Douglas. Cardiac motion simulator for tagged MRI. In: Proceedings of the IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, San Francisco, 1996, pp. 182-191.
    [99] 朱近,夏德深,王平安,朱子全.用于运动重建的左心室数字模拟器的结构及实现.系统仿真学报,2006,18(6):1501-1505.
    [100] Ted Belytschko, Wing Kam Liu, Brian Moran. Nonlinear finite elements for continua and structures. John Wiley & Sons. 2000.
    [101] 王勖成.有限单元法.北京:清华大学出版社.2003。
    [102] Saeed Moaveni著,欧阳宇等译.有限元分析:ANSYS理论与应用.北京:电子工业出版社.2003.
    [103] 李志林,朱庆.数字高程模型.武汉:武汉大学出版社.2003.
    [104] 谢传峰主编.动力学.北京:高等教育出版社.2004.
    [105] 朱仕明.动力学.武汉:华中理工大学出版社.2000.
    [106] C. Reginald Jegathese, Goo Lay Guan, L. Antony Rajiv, Eddie Y. K. Ng, Dhanjoo Ghista and Edmond C. Prakash. Cyber heart: the employment of an iterative design process to develop a left ventricular heart graphical display. In: Proceedings of the 2003 International Conference on Cyberworlds, Singapore, 2003, 237-244.
    [107] 孙静平,James D.Thomas主编.组织多普勒超声心动图.北京:人民卫生出版社.2005.
    [108] 刘锋,吴国华,吕维雪.等参变换在人体左心室三维有限元机械模型中的应用.生物物理学报,2000,16(1):96-104.
    [109] P.M.E Nielsen, I.J. LeGrice, B.H. Smaill, P.J. Hunter. Mathematical model of geometry and fibrous structure of the heart. American Journal of Physiology, 1991, 260: H1365-1378.
    [110] J.M. Guccione, K.D. Costa, A.D. McCulloch. Finite element stress analysis of left ventricular mechanics in the beating dog heart. Journal of Biomechanics, 1995, 28(10): 1167-77.
    [111] J.M. Guccione, A.D. McCulloch, L.K. Waldman. Passive material properties of intact ventricular myocardium determined from a cylindrical model. Journal of Biomechanical Engineering, 1991, 113(1): 42-55.
    [112] Bryan Harris著.陈祥宝等译.工程复合材料.北京:化学工业出版社.2004.
    [113] M.W. Hyer. Stress analysis of fiber-reinforced composite materials. McGraw-Hill, New York. 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700