左手材料微结构构型设计优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
社会的发展对新材料的设计提出了更高的要求。而某些属性要求超出了自然界所能提供的范围,研发具有新的特性的材料成为学术界和工程领域的非常重要的课题。作为一种新型材料,左手材料(LHM)以其独特的电磁性质引起了学术和工程领域的广泛关注。据此背景,本文主要研究左手材料的电磁传播特性及微结构构型优化设计问题,建立左手材料微结构构型设计的系统方法。研究了左手材料宏观等效电磁性能的预测方法,建立了准确表征材料宏观电磁性能与微结构之间关系的理论体系;研究了左手材料微结构构型设计的系统方法,以(拓扑)优化方法为手段,建立了特定性能要求的左手材料微结构设计优化模型及求解方法;基于设计技术和试验验证技术,发现并确认了几种左手材料微结构新构型。具体研究内容和结果包括:
     1.电磁波在周期性开口谐振环(SRRs)型材料中传播的色散性能和透射特性分析。SRRs型左手材料是目前研究的焦点。分析和了解其电磁波传播规律以及色散性能和透射特性,将更利于其多功能化设计。本文以SRRs构型的左手材料为研究对象,系统分析了影响SRRs、Wires以及LHMs微波透射行为的因素。各种参数的敏度分析结果表明:不同形状的SRRs对左手材料的左手特性激发机理相同,其磁谐振频率主要和SRRs的外环所包含的面积有关;LHMs的谐振响应主要由SRRs引起,其谐振频率随介质基板的介电常数增大而降低,但介质基板的厚度对左手材料的透射特性影响非常小;细金属线的宽度对LHMs的左手性质影响较小,且当细金属线位于单胞的中心时,谐振频率最低;在SRRs的各项尺寸中,外环的边长对SRRs的透射特性影响最大;与典型的SRRs相比,单个的SRR也可以产生负的磁导率,且与SRRs没有本质区别。在此基础上,进一步将频率扩展到THz波段,研究了THz频率下SRR的谐振特性,并讨论了THz下实现左手材料的可能性。建立了SRR构型左手材料的尺寸参数优化问题的提法和求解方法,并给出了3种具有不同所需目标的左手材料微结构构型。
     2.左手材料微结构新构型设计的系统理论和一般方法。左手材料的优异特性,激发了新型左手材料的设计需求。然而,目前的左手材料微结构构型的设计主要是基于SRRs-Wire这一基本构型,借助于简单的传输线模型的模拟分析,通过变形和尺寸调整方式获得新的微结构构型。这种设计方式主要是基于经验的积累和直觉灵感,缺乏一般性。研究建立左手材料微结构构型设计的系统方法意义重大。本文建立了基于拓扑优化技术的左手材料微结构构型描述及演化方法和具有所要求性能的左手材料微结构新构型设计的系统理论和一般方法。以最大带宽为目标,以金属材料的排布为设计变量进行拓扑优化设计,成功地设计了几种典型的左手材料微结构构型,并获得了金属丝和SRRs功能统一并集成的微结构构型。几种典型构型的左手材料性质的试验测试结果验证了所设计的左手材料微结构构型的正确性。
     3.铁氧体类薄膜型左手材料设计。利用铁氧体在微波阶段的磁响应,可以设计铁氧体类型的左手材料。针对金属--铁氧体型左手薄膜材料,基于传输矩阵的等效层理论,研究了周期性多层薄膜系统的波传播性质,建立了对称单胞的薄膜材料与其等效折射率、介电常数和磁导率的关系,建立了特定频率下的最小折射率、特定常数折射率材料以及考虑单胞长度条件下的左手性质设计的方法。研究证明,通过调整单胞内材料的分布可以实现左手薄膜材料的拓扑优化设计。数值算例的结果说明,改变单胞内微结构的拓扑可极大地改变其负折射性质。
     4.颗粒型左手材料的电磁性能分析。基于Wiener界限和Hashin-shtrikman界限,对包含具有负介电常数的相材料的情况进行讨论,拓展了Bruggeman理论的适用范围,建立了设计颗粒型左手材料的理论模型。研究发现,如果相材料分别具有单负(负介电常数或负磁导率)的性质,材料的整体性质可表现为两种:一种是负折射,但并不具备左手性,另一种则是典型的左手材料。颗粒材料均匀性好的优点,使得具有负折射性质的颗粒材料具有更广阔的应用前景。
     本论文工作得到国家自然科学基金(编号:90605002,90816025,10721062),国家重点基础研究(973)计划(编号:2006CB601205)和科技部国家重点实验室专项经费(编号:S08102)的资助,在此表示感谢。
The materials are often required to exhibit prescribed/specific and excellent properties in advanced engineering. In some cases, these requirements may not be fulfilled by existed materials found in nature and developed in engineering. As a new material, the Left-handed material (LHM) with its unique electromagnetic properties has aroused widespread attention in the academic and engineering fields.In this dissertation, the electromagnetic propagation characteristics of left-handed materials and the design optimization program of micro-structural configuration are investigated, and a systematic approach for designing micro-structural configuration of left-handed materials is established. Furthermore, the retrieval method for macro effective electromagnetic parameters of LHMs is studied, and a theoretical system of characterizing the relationship between effective electromagnetic parameter and micro-structure is presented. Based on the idea of topology optimization, the mathematical formulations and the corresponding solving methods for design optimization of the micro-structural configuration of LHMs with specific electromagnetic properties are established. Finally, several left-handed materials with new configuration have been discovered and identified based on the numerical simulation techniques and experimental test verification technologies. The main content and results are given in the following paragraphs:
     1. Analysis of the dispersion characteristics and transmission properties of meta-materials with split-ring resonators (SRRs). SRRs-type LHMs have been the focus of current research. It benefits the designs of multi-functional material to analyze the propagation, dispersion characteristics, and the transmission properties of electromagnetic wave in periodic SRRs structures.In this dissertation, we study the transmission properties of LHMs and SRRs, and analyze the dependence of the transmission on parameters of the system such as the size and shape of the SRRs, size of the wires, and the constants of the dielectric board. The results show that:there is no qualitative difference during the different shapes of the SRRs. The magnetic resonance frequency of the SRRs is mainly dependent on compassed area of the outer SRRs. The resonant response of the LHMs caused mainly by SRRs, and the increase of the dielectric constant of the background will bring about the decrease of the magnetic resonance frequencies. However, the dependence of the thickness of the background is quite small. The influence of the width of the metal wires relative to the LHMs is small, and the optimum position of the wires is that of median position, with a lowest magnetic resonance frequency. Of all the size of the SRRs, the outer ring radius has most effect on the transmission properties. Compared with the typical SRRs, a single SRR can also produce negative permeability, and there is no essential difference with the SRRs. Furthermore, the resonant characteristics of SRR in THz frequencies are studied, and the possibility of achieving terahertz LHMs is discussed. The formulation and the solving algorithm of size optimization for LHMs are achieved, and three micro-structural configurations with different objects are presented.
     2. Systematic approach and general method for designing new micro-structural configuration of LHMs. The novel property of the LHMs induces many design requirements for new LHMs. However, most of existing configurations of LHMs were obtained by the typical SRRs-Wire structure, i.e., changing the shape and (or) the size of the billet topology (configuration) proposed by Pendry. This design approach is mainly based on the accumulation of experience and intuition inspiration, with a great disadvantage. Thus, an effective and systematic method for designing the micro-structural configurations of LHMs is quite desirable. In the dissertation, systematic approach and conventional method for designing new micro-structural configuration of LHMs with required properties base on topology optimization technique are established. By choosing the arrangements of the metal film pieces as design variables and the maximum width of negative refraction as objective, several typical micro-structural configurations of LHMs are designed, which include integrative LHM with simultaneous negative permittivity and permeability. Experimental results show good agreement with the transmission properties of the designed configuration using numerical method.
     3. Design of multilayer Left-handed materials based on ferrite. Magnetic response of ferrite at GHz is useful to design ferrite-based LHMs. Based on the theory of equivalent layer, the propagation of electromagnetic wave in periodic multi-layer film system is analyzed. By using metal-ferrite film LHMs, the relationship between effective electromagnetic parameter and the symmetrical unit cell is presented, and the design method for several objectives, such as minimum refractive indices under specified frequency, material with prescribed negative refractive index, as well as the unit cell with a fixed length, is established. Our study have shown that the topology optimization design of one-dimensional film LHMs can be performed by controlling the layout and the ratio of the contrasting materials in the unit cell, and the nature of the negative refraction can be changed significantly.
     4. Analysis of electromagnetic properties of granular LHMs. Based on the Wiener bounds and the Hashin-shtrikman bounds, we theoretically investigate the possible existence of granular LHMs using Bruggeman formalism. While the two component mediums have negative permittivity (permeability), the application scope of the Bruggeman theory is extended, and the theoretical model of designing granular LHMs is established. The results show that if the component material is single-negative (negative permittivity or permeability) material, there can be two types of composites:one is double-negative medium (but not LHMs), the other is a typical LHMs. Due to the advantage of the homogenization effect, this granular LHMs can be a more broad application prospects.
     The work of this dissertation is supported by the National Natural Science Foundation of China through the Grant No.s (90605002,90816025,10721026), the National Key Basic Research Program of China (Grant No.2006CB601205), and the Special found for state key laboratory from ministry of science and technology of China (Grant No.S08102). The financial contributions are gratefully acknowledged.
引文
[1]KONG, J A. Electromagnetic Wave Theory.2000.
    [2]Veselago, V G. The electrodynamics of substances with simultaneously negative values of permittivity and permeability. Soviet Physics USPEKI,1968,10(4):509-514.
    [3]Lindell, I V, Tretyakov, S A,Nikoskinen, K I. BW media with negative parameters, capable of supporting backward waves. Microwave Opt. Technol. Lett.,2001,31:129-133.
    [4]Ziolkowski, R W,Heyman, E. Wave propagation in media having negative permittivity and permeability. Physical Review E,2001,64(5):056625.
    [5]Ziolkowski, R W. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Optics Express,2003,11(7):662-681.
    [6]Valanju, P M, Walser, R M,Valanju, A P. Wave refraction in negative-index media:Always positive and very inhomogeneous. Physical Review Letters,2002,88(18):187401.
    [7]Pacheco, J, Grzegorczyk, T M, Wu, B I, et al. Power propagation in homogeneous isotropic frequency-dispersive left-handed media. Physical Review Letters,2002,89(25):257401.
    [8]冉立新,陈红胜,皇甫江涛,等.异向介质研究进展.微波学报,2004,20(3):89-95.
    [9]Pendry, J B. Negative refraction makes a perfect lens. Physical Review Letters,2000,85(18): 3966-3969.
    [10]Fang, N,Zhang, X. Imaging properties of a metamaterial superlens. Applied Physics Letters,2003, 82(2):161-163.
    [11]Wiltshire, M C K, Pendry, J B, Young, I R, et al. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science,2001,291(5505):849-851.
    [12]Gomez-Santos, G. Universal features of the time evolution of evanescent modes in a left-handed perfect lens. Physical Review Letters,2003,90(7):077401.
    [13]Shen, J T,Platzman, P M. Near field imaging with negative dielectric constant lenses. Applied Physics Letters,2002,80(18):3286-3288.
    [14]Pendry, J B,Ramakrishna, S A. Near-field lenses in two dimensions. Journal of Physics-Condensed Matter,2002,14(36):8463-8479.
    [15]Wiltshire, M C K, Hajnal, J V, Pendry, J B, et al. Metamaterial endoscope for magnetic field transfer:near field imaging with magnetic wires. Optics Express,2003,11(7):709-715.
    [16]Feise, M W,Kivshar, Y S. Sub-wavelength imaging with a left-handed material flat lens. Physics Letters A,2005,334(4):326-330.
    [17]Chiu, K P,Tsai, D P. Influence of near-field electromagnetic interactions on optical properties of perfect lens consisting of left-handed material. Ieee Transactions on Magnetics,2005,41(2): 1016-1018.
    [18]Parazzoli, C G, Greegor, R B, Nielsen, J A, et al. Performance of a negative index of refraction lens. Applied Physics Letters,2004,84(17):3232-3234.
    [19]Lagarkov, A N,Kissel, V N. Near-perfect imaging in a focusing system based on a left-handed-material plate. Physical Review Letters,2004,92(7):077401.
    [20]Pendry, J B, Holden, A J, Stewart, W J, et al. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters,1996,76(25):4773-4776.
    [21]Pendry, J B, Holden, A J, Robbins, D J, et al. Low frequency plasmons in thin-wire structures. Journal of Physics-Condensed Matter,1998,10(22):4785-4809.
    [22]Pendry, J B, Holden, A J, Robbins, D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. Ieee Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.
    [23]Smith, D R, Padilla, W J, Vier, D C, et al. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters,2000,84(18):4184-4187.
    [24]Shelby, R A, Smith, D R, Nemat-Nasser, S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Applied Physics Letters,2001,78(4): 489-491.
    [25]Shelby, R A, Smith, D R,Schultz, S. Experimental verification of a negative index of refraction. Science,2001,292(5514):77-79.
    [26]Smith, D R, Pendry, J B,Wiltshire, M C K. Metamaterials and negative refractive index. Science, 2004,305(5685):788-792.
    [27]Ramakrishna, S A. Physics of negative refractive index materials. Reports on Progress in Physics, 2005,68(2):449-521.
    [28]Pendry, J B. Comment on "Left-handed materials do not make a perfect lens". Physical Review Letters,2003,91(9):099701.
    [29]Houck, A A, Brock, J B,Chuang, I L. Experimental observations of a left-handed material that obeys Snell's law. Physical Review Letters,2003,90(13):137401.
    [30]Parazzoli, C G, Greegor, R B, Li, K, et al. Experimental verification and simulation of negative index of refraction using Snell's law. Physical Review Letters,2003,90(10):107401.
    [31]Greegor, R B, Parazzoli, C G, Li, K, et al. Experimental determination and numerical simulation of the properties of negative index of refraction materials. Optics Express,2003,11(7):688-695.
    [32]Ran, L X, Huangfu, J, Chen, H S, et al. Beam shifting experiment for the characterization of left-handed properties. Journal of Applied Physics,2004,95(5):2238-2241.
    [33]Aydin, K, Guven, K, Kafesaki, M, et al. Experimental observation of true left-handed transmission peaks in metamaterials. Optics Letters,2004,29(22):2623-2625.
    [34]Cummer, S A,Popa, B I. Wave fields measured inside a negative refractive index metamaterial. Applied Physics Letters,2004,85(20):4564-4566.
    [35]Katsarakis, N, Koschny, T, Kafesaki, M, et al. Electric coupling to the magnetic resonance of split ring resonators. Applied Physics Letters,2004,84(15):2943-2945.
    [36]Zhang, F L, Zhao, Q, Liu, Y H, et al. Behaviour of hexagon split ring resonators and left-handed metamaterials. Chinese Physics Letters,2004,21(7):1330-1332.
    [37]Simovski, C R,He, S L. Frequency range and explicit expressions for negative permittivity and permeability for an isotropic medium formed by a lattice of perfectly conducting Omega particles. Physics Letters A,2003,311(2-3):254-263.
    [38]Simovski, C R,Sauviac, B. Toward creating isotropic microwave composites with negative refraction. Radio Science,2004,39(2):RS2014.
    [39]Huangfu, J T, Ran, L X, Chen, H S, et al. Experimental confirmation of negative refractive index of a metamaterial composed of Omega-like metallic patterns. Applied Physics Letters,2004,84(9): 1537-1539.
    [40]Chen, H S, Ran, L X, Huangfu, J T, et al. Left-handed materials composed of only S-shaped resonators. Physical Review E,2004,70(5):057605.
    [41]Chen, H S, Ran, L X, Huangfu, J T, et al. Negative refraction of a combined double S-shaped metamaterial. Applied Physics Letters,2005,86(15):151909.
    [42]Chen, H S, Ran, L X, Huangfu, J T, et al. Metamaterial exhibiting left-handed properties over multiple frequency bands. Journal of Applied Physics,2004,96(9):5338-5340.
    [43]Cai, X B,Hu, G K. Pat shape left-handed material and relative band-width of analogous Metamaterials. Proc. of the International symposium on biophotonics, Nanophotonic and metamatirials,2006:517-520.
    [44]胡更开,周萧明,蔡小兵.左手材料设计、制备及隐身机理研究.国防报告,2006.
    [45]Zhou, J F, Koschny, T, Zhang, L, et al. Experimental demonstration of negative index of refraction. Applied Physics Letters,2006,88(22):221103.
    [46]Zhou, J F, Zhang, L, Tuttle, G, et al. Negative index materials using simple short wire pairs. Physical Review B,2006,73(4):041101.
    [47]Kafesaki, M, Tsiapa, I, Katsarakis, N, et al. Left-handed metamaterials:The fishnet structure and its variations. Physical Review B,2007,75(23):235114.
    [48]Lam, V D, Kim, J B, Lee, S J, et al. Left-handed behavior of combined and fishnet structures. Journal of Applied Physics,2008,103(3):033107.
    [49]刘亚红,罗春荣,赵晓鹏.同时实现介电常数和磁导率为负的H型结构单元左手材料.物理学报,2007,56(10):5883-5889.
    [50]Gay-Balmaz, P,Martin, O J F. Efficient isotropic magnetic resonators. Applied Physics Letters, 2002,81(5):939-941.
    [51]Koschny, T, Zhang, L,Soukoulis, C M. Isotropic three-dimensional left-handed metamaterials. Physical Review B,2005,71(12):121103.
    [52]姚远,赵晓鹏,赵晶.非对称开口六边形谐振单环的微波透射特性.物理学报,2006,55(12):6435-6440.
    [53]Zhao, X P, Zhao, Q, Zhang, F L, et al. Stopband phenomena in the passband of left-handed metamaterials. Chinese Physics Letters,2006,23(1):99-102.
    [54]Pendry, J B. A chiral route to negative refraction. Science,2004,306(5700):1353-1355.
    [55]Baena, J D, Marques, R, Medina, F, et al. Artificial magnetic metamaterial design by using spiral resonators. Physical Review B,2004,69(1):014402.
    [56]Moser, H O, Casse, B D F, Wilhelmi, O, et al. Terahertz response of a microfabricated rod-split-ring-resonator electromagnetic metamaterial. Physical Review Letters,2005,94(6): 063901.
    [57]Yen, T J, Padilla, W J, Fang, N, et al. Terahertz magnetic response from artificial materials. Science, 2004,303(5663):1494-1496.
    [58]Linden, S, Enkrich, C, Wegener, M, et al. Magnetic response of metamaterials at 100 terahertz. Science,2004,306(5700):1351-1353.
    [59]Enkrich, C, Wegener, M, Linden, S, et al. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters,2005,95(20):203901.
    [60]Zhou, J, Koschny, T, Kafesaki, M, et al. Saturation of the magnetic response of split-ring resonators at optical frequencies. Physical Review Letters,2005,95(22):223902.
    [61]Voskoboynikov, O, Dyankov, G,Wijers, C M J. Left handed composite materials in the optical range. Microelectronics Journal,2005,36(3-6):564-566.
    [62]Caloz, C, Okabe, H,Iwai, T. Transmission line approach of left-handed (LH) materials. Proceedings of USNC/URSI National Radio Science Meeting,2002:39.
    [63]Caloz, C,Iwai, T. Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip "LH line". Ieee Antennas and Propagation Society International Symposium, Vols 2 2002, San Antonio,2002:412-415.
    [64]Lai, A, Caloz, C,Itoh, T. Composite right/left-handed transmission line metamaterials. Ieee Microwave Magazine,2004,5(3):34-50.
    [65]Grbic, A,Eleftheriades, G V. A backward-wave antenna based on negtive refractive index. Ieee Antennas and Propagation Society International Symposium, Vols 4 2002, San Antonio,2002: 340-343.
    [66]Grbic, A,Eleftheriades, G V. Experimental verification of backward-wave radiation from a negative refractive index metamaterial. Journal of Applied Physics,2002,92(10):5930-5935.
    [67]Iyer, A K,Eleftheriades, G V. Negative refractive index metamaterials supporting 2-D waves.2002 Ieee Mtt-S International Microwave Symposium Digest, Vols 1-3,2002:1067-1070.
    [68]Eleftheriades, G V, Siddiqui, O,Iyer, A K. Transmission line models for negative refractive index media and associated implementations without excess resonators. Ieee Microwave and Wireless Components Letters,2003,13(2):51-53.
    [69]Eleftheriades, G V,Siddiqui, O F. Negative refraction and focusing in hyperbolic transmission-line periodic grids. Ieee Transactions on Microwave Theory and Techniques,2005,53(1):396-403.
    [70]Balmain, K G, Luettgen, A A E,Kremer, P C. Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial. Ieee Antennas and Wireless Propagation Letters, 2002,1(1):146-149.
    [71]Iyer, A K, Grbic, A,Eleftheriades, G V. Invited-Sub-wavelength focusing in loaded transmission line negative refractive index metamaterials.2003 Ieee Mtt-S International Microwave Symposium Digest, Vols 1-3,2003:199-202.
    [72]Kokkinos, T, Sarris, C D,Eleftheriades, G V. Periodic finite-difference time-domain analysis of loaded transmission-line negative-refractive-index metamaterials. Ieee Transactions on Microwave Theory and Techniques,2005,53(4):1488-1495.
    [73]Caloz, C,Itoh, T. Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line. Ieee Transactions on Antennas and Propagation,2004,52(5):1159-1166.
    [74]Caloz, C,Itoh, T. Electromagnetic Metamaterials:Transmission Line Theory and Microwave Applications.2004.
    [75]Sanada, A, Caloz, C,Itoh, T. Planar distributed structures with negative refractive index. Ieee Transactions on Microwave Theory and Techniques,2004,52(4):1252-1263.
    [76]Slichter, C P. Principle of Magnetic Resonance.1978.
    [77]Dewar, G. Candidates for mu<0, epsilon<0 nanostructures. International Journal of Modern Physics B,2001,15(24-25):3258-3265.
    [78]Dewar, G. Negative phase velocity composites employing magnetic hosts. Complex Mediums Iv: Beyond Linear Isotropic Dielectrics,2003,5218:140-144.
    [79]Cai, X B, Zhou, X M,Hu, G K. Numerical study on left-handed materials made of ferrite and metallic wires. Chinese Physics Letters,2006,23(2):348-351.
    [80]Xu, F, Bai, Y, Qiao, L J, et al. Microwave left-handed composite material made of slim ferrite rods and metallic wires. Chinese Physics B,2009,18(4):1653-1657.
    [81]Chui, S T,Hu, L B. Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Physical Review B,2002,65(14):144407.
    [82]Wu, R X, Zhang, X K, Lin, Z F, et al. Possible existence of left-handed materials in metallic magnetic thin films. Journal of Magnetism and Magnetic Materials,2004,271(2-3):180-183.
    [83]Wu, R X. Effective negative refraction index in periodic metal-ferrite-metal film composite. Journal of Applied Physics,2005,97(7):076105.
    [84]Bohren, C F,Huffman, D R. Absorption and scattering of light small particles.1998,25:337.
    [85]Holloway, C L, Kuester, E F, Baker-Jarvis, J, et al. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix. Ieee Transactions on Antennas and Propagation,2003,51(10):2596-2603.
    [86]Wheeler, M S, Aitchison, J S,Mojahedi, M. Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies. Physical Review B,2005,72(19):193103.
    [87]Seo, B J, Ueda, T, Itoh, T, et al. Isotropic left handed material at optical frequency with dielectric spheres embedded in negative permittivity medium. Applied Physics Letters,2006,88(16):161122.
    [88]Jylha, L, Kolmakov, I, Maslovski, S, et al. Modeling of isotropic backward-wave materials composed of resonant spheres. Journal of Applied Physics,2006,99(4):043102.
    [89]Wheeler, M S, Aitchison, J S,Mojahedi, M. Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies. Physical Review B,2006,73(4):045105.
    [90]Yannopapas, V,Moroz, A. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges. Journal of Physics-Condensed Matter, 2005,17(25):3717-3734.
    [91]Bruggeman, D A G. Effective medium model for the optical properties of composite materials. Ann Phys Leipzig,1935,24:636-642.
    [92]Lakhtakia, A. Selected papers on linear optical composite materials.1996.
    [93]Mackay, T G,Lakhtakia, A. A limitation of the Bruggeman formalism for homogenization. Optics Communications,2004,234(1-6):35-42.
    [94]Lakhtakia, A,Mackay, T G. Size-dependent Bruggeman approach for dielectric-magnetic composite materials. Aeu-International Journal of Electronics and Communications,2005,59(6):348-351.
    [95]Aspnes, D E. Local-field effects and effective-medium theory A microscopic perspective. American Journal of Applied physics,1982,50:704-709.
    [96]Hashin, Z,Shtrikman, S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics,1962,33:3125.
    [97]Mackay, T G. Linear and nonlinear homogenized composite mediums as metamaterials. Electromagnetics,2005,25(5):461-481.
    [98]Mackay, T G,Lakhtakia, A. Negative phase velocity in isotropic dielectric-magnetic media via homogenization. Microwave and Optical Technology Letters,2005,47(4):313-315.
    [99]Lakhtakia, A,Mackay, T G. Negative phase velocity in isotropic dielectric-magnetic media via homogenization:Part Ⅱ. Microwave and Optical Technology Letters,2006,48(4):709-712.
    [100]胡珍叶.金属磁性纳米颗粒复合材料的左手特性.苏州大学学报,2007,23(2):60-64.
    [101]Yablonovitch, E. Inhibited spontaneous emission in solidstate physics and electronics. Physical Review Letters,1987,58(20):2059-2062.
    [102]John, S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters,1987,58(8):2486-2489.
    [103]Notomi, M. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B,2000,62(16):10696-10705.
    [104]Foteinopoulou, S,Soukoulis, C M. Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects. Physical Review B,2005,72(16):165112.
    [105]Foteinopoulou, S, Economou, E N,Soukoulis, C M. Refraction in media with a negative refractive index. Physical Review Letters,2003,90(10):107402.
    [106]Luo, C, Johnson, S G, Joannopoulos, J D, et al. All-angle negative refraction without negative effective index. Physical Review B,2002,65(20):201104.
    [107]Wheeler, M S, Aitchison, J S,Mojahedi, M. Negative refraction in a photonic crystal with a metallic cross lattice basis. Physical Review B,2005,71(15):155106.
    [108]Yang, S X, Xu, T, Ruda, H, et al. Numerical study of anomalous refraction in photonic crystals. Physical Review B,2005,72(7):075128.
    [109]Berrier, A, Mulot, M, Swillo, M, et al. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal. Physical Review Letters,2004,93(7):073902.
    [110]Cubukcu, E, Aydin, K, Ozbay, E, et al. Negative refraction by photonic crystals. Nature,2003, 423(6940):604-605.
    [111]Feng, Z F, Zhang, X D, Wang, Y Q, et al. Negative refraction and imaging using 12-fold-symmetry quasicrystals. Physical Review Letters,2005,94(24):247402.
    [112]Li, Z Y,Lin, L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Physical Review B,2003,68(24):245110.
    [113]Moussa, R, Foteinopoulou, S, Zhang, L, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal. Physical Review B,2005,71(8):085106.
    [114]Parimi, P V, Lu, W T, Vodo, P, et al. Negative refraction and left-handed electromagnetism in microwave photonic crystals. Physical Review Letters,2004,92(12):127401.
    [115]Notomi, M. Negative refraction in photonic crystals. Optical and Quantum Electronics,2002, 34(1-3):133-143.
    [116]Ramakrishna, S A, Pendry, J B, Wiltshire, M C K, et al. Imaging the near field. Journal of Modern Optics,2003,50(9):1419-1430.
    [117]Smith, D R, Schurig, D, Rosenbluth, M, et al. Limitations on subdiffraction imaging with a negative refractive index slab. Applied Physics Letters,2003,82(10):1506-1508.
    [118]Lagarkov, A N,Kisel', V N. Quality of focusing electromagnetic radiation by a plane-parallel slab with a negative index of refraction. Doklady Physics,2004,49(1):5-10.
    [119]Alitalo, P, Maslovski, S,Tretyakov, S. Three-dimensional isotropic perfect lens based on LC-loaded transmission lines. Journal of Applied Physics,2006,99(6):064912.
    [120]Alitalo, P, Maslovski, S,Tretyakov, S. Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens. Journal of Applied Physics,2006,99(12): 124910.
    [121]Fang, N, Lee, H, Sun, C, et al. Sub-diffraction-limited optical imaging with a silver superlens. Science,2005,308(5721):534-537.
    [122]Enoch, S, Tayeb, G, Sabouroux, P, et al. A metamaterial for directive emission. Physical Review Letters,2002,89(21):213902.
    [123]Ozbay, E, Bulu, I, Aydin, K, et al. Highly directive radiation and negative refraction using photonic crystals. Laser Physics,2005,15(2):217-224.
    [124]Zhou, L, Li, H Q, Qin, Y Q, et al. Directive emissions from subwavelength metamaterial-based cavities.2005 IEEE International Workshop on Antenna Technology:Small Antennas Novel MetaMaterials, Proceedings,2005:191-194.
    [125]Ourir, A, de Lustrac, A,Lourtioz, J M. All-metamaterial-based subwavelength cavities (lambda/60) for ultrathin directive antennas. Applied Physics Letters,2006,88(8):084103.
    [126]Hu, J, Yan, C S,Lin, Q C. A new patch antenna with metamaterial cover. Journal of Zhejiang University Science A,2006,7(1):89-94.
    [127]Zhang, Z M,Fu, C J. Unusual photon tunneling in the presence of a layer with a negative refractive index. Applied Physics Letters,2002,80(6):1097-1099.
    [128]Baena, J D, Jelinek, L, Marques, R, et al. Near-perfect tunneling and amplification of evanescent electromagnetic waves in a waveguide filled by a metamaterial:Theory and experiments. Physical Review B,2005,72(7):075116.
    [129]Zhou, X M,Hu, G K. Total transmission condition for photon tunnelling in a layered structure with metamaterials. Journal of Optics a-Pure and Applied Optics,2007,9(1):60-65.
    [130]Alu, A,Engheta, N. Achieving transparency with plasmonic and metamaterial coatings. Physical Review E,2005,72(1):016623.
    [131]Leonhardt, U. Optical conformal mapping. Science,2006,312(5781):1777-1780.
    [132]Pendry, J B, Schurig, D,Smith, D R. Controlling electromagnetic fields. Science,2006,312(5781): 1780-1782.
    [133]Schurig, D, Mock, J J, Justice, B J, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science,2006,314(5801):977-980.
    [134]Marques, R,Baena, J. Effect of losses and dispersion on the focusing properties of left-handed media. Microwave and Optical Technology Letters,2004,41(4):290-294.
    [135]Chen, L, He, S L,Shen, L F. Finite-size effects of a left-handed material slab on the image quality. Physical Review Letters,2004,92(10):107404.
    [136]Liu, C, Yan, C C, Chen, H, et al. Evanescent field on the surface of a negative-index planar lens. Applied Physics Letters,2006,88(23):231102.
    [137]Grbic, A,Eleftheriades, G V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Physical Review Letters,2004,92(11):117403.
    [138]Ziolkowski, R W. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Physical Review E,2004,70(4):046608.
    [139]Garcia, N, Ponizovskaya, E V,Xiao, J Q. Zero permittivity materials:Band gaps at the visible. Applied Physics Letters,2002,80(7):1120-1122.
    [140]吕英华.计算电磁学的数值方法.清华大学出版社,2006.
    [141]Oliner, A A. Historical Perspectives on Microwave Feild Theory. IEEE Trans. Microwave Theory and Techniques,1984, MTT-32:1022-1045.
    [142]Koschny, T, Kafesaki, M, Economou, E N, et al. Effective medium theory of left-handed materials. Physical Review Letters,2004,93(10):107402.
    [143]Katsarakis, N, Koschny, T, Kafesaki, M, et al. Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials. Physical Review B,2004,70(20): 201101.
    [144]Kafesaki, M, Koschny, T, Penciu, R S, et al. Left-handed metamaterials:detailed numerical studies of the transmission properties. Journal of Optics a-Pure and Applied Optics,2005,7(2):S12-S22.
    [145]Markos, P,Soukoulis, C M. Numerical studies of left-handed materials and arrays of split ring resonators. Physical Review E,2002,65(3):036622.
    [146]Smith, D R, Vier, D C, Koschny, T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E,2005,71(3):036617.
    [147]陈国良,王煦法,庄镇泉,等.遗传算法及其应用.人民邮电出版社,2001.
    [148]Haupt, R L. An Introduction to Genetic Algorithms for Electromagnetics. Ieee Antennas and Propagation Magazine,1995,37(2):7-15.
    [149]Martin, S, Rivory, J,Schoenauer, M. Simulated Darwinian Evolution of Homogeneous Multilayer Systems-a New Method for Optical Coatings Design. Optics Communications,1994,110(5-6): 503-506.
    [150]Aygun, K, Weile, D S,Michielssen, E. Design of multilayered periodic strip gratings by genetic algorithms. Microwave and Optical Technology Letters,1997,14(2):81-85.
    [151]Gao, Q, Yan, D B, Fu, Y Q, et al. A novel genetic-algorithm-based AMC structure. Microwave and Optical Technology Letters,2005,47(1):20-22.
    [152]Altshuler, E E,Linden, D S. Design of a loaded monopole having hemispherical coverage using a genetic algorithm. Ieee Transactions on Antennas and Propagation,1997,45(1):1-4.
    [153]Boag, A, Boag, A, Michielssen, E, et al. Design of electrically loaded wire antennas using genetic algorithms. Ieee Transactions on Antennas and Propagation,1996,44(5):687-695.
    [154]杨帆,张雪霞.遗传算法在微带天线优化中的应用.电子学报,2000,28(9):91-95.
    [155]周萧明,蔡小兵,胡更开.左手材料设计及透明现象研究进展.力学进展,2007,37(4):517-536.
    [156]Quan, B G, Li, C, Sui, Q, et al. Effects of substrates with different dielectric parameters on left-handed frequency of left-handed materials. Chinese Physics Letters,2005,22(5):1243-1245.
    [157]Eschenauer, H A,Olhoff, N. Topology optimization of continuum structures:A review. Appl. Mech. Rev.,2001,54(4):331-390.
    [158]Yoon, G H, Kim, Y Y, Bendsoe, M P, et al. Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Structural and Multidisciplinary Optimization, 2004,27(3):139-150.
    [159]刘书田,曹先凡.零膨胀材料设计与模拟验证.复合材料学报,2005,22(1):126-132.
    [160]Cao, X F,Liu, S T. Topology description function based method for material design. Acta Mechanica Solida Sinica,2006,19(2):95-102.
    [161]Li, Q, Steven, G P, Xie, Y M, et al. Evolutionary topology optimization for temperature reduction of heat conducting fields. International Journal of Heat and Mass Transfer,2004,47(23): 5071-5083.
    [162]Chakravarty, S, Mittra, R,Williams, N R. Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics. Ieee Transactions on Antennas and Propagation,2002,50(3):284-296.
    [163]Bergman, D J. The dielectric constant of a composite material—A problem in classical physics. Phys. Rep.,1978,43:377-407.
    [164]Shalaev, V M. Electromagnetic Properties of Small-Particle Composites. Phys. Rep.,1996,272: 61-137.
    [165]Bao, K D, McPhedran, R C, Nicorovici, N A, et al. The electromagnetic modes and homogenization for a cubic lattice of spheres. Physica B-Condensed Matter,2000,279(1-3):162-163.
    [166]Wellander, N. Homogenization of the Maxwell equations:Case Ⅰ. Linear theory. Applications of Mathematics,2001,46(1):29-51.
    [167]Wellander, N. Homogenization of the Maxwell Equations:Case Ⅱ. Nonlinear conductivity. Applications of Mathematics,2002,47(3):255-283.
    [168]Smith, D R, Schultz, S, Markos, P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Physical Review B,2002,65(19): 195104.
    [169]Kyriazidou, C A, Contopanagos, H F, Merrill, W M, et al. Artificial versus natural crystals: Effective wave impedance of printed photonic bandgap materials. Ieee Transactions on Antennas and Propagation,2000,48(1):95-106.
    [170]Jin, J M. The finite element method in electromagnetics,2nd edn. Wiley, New York,2002.
    [171]Chen, X D, Grzegorczyk, T M, Wu, B I, et al. Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E,2004,70(1):016608.
    [172]Hussein, M I, Hamza, K, Hulbert, G M, et al. Multiobjective evolutionary optimization of periodic layered materials for desired wave dispersion characteristics. Structural and Multidisciplinary Optimization,2006,31(1):60-75.
    [173]刘亚红,罗春荣,赵晓鹏.同时实现介电常数和磁导率为负的H型结构单元左手材料.物理学报,2007,56(10):5883-5889.
    [174]Zhang, L, Tuttle, G,Soukoulis, C M. GHz magnetic response of split ring resonators. Photonics and Nanostructures-Fundamentals and Applications,2004,2:155-159.
    [175]Markos, P,Soukoulis, C M. Transmission properties and effective electromagnetic parameters of double negative metamaterials. Optics Express,2003,11(7):649-661.
    [176]Koschny, T, Markos, P, Smith, D R, et al. Resonant and antiresonant frequency dependence of the effective parameters of metamaterials. Phys. Rev. E,2003,68:065602.
    [177]Gokkavas, M, Guven, K, Bulu, I, et al. Experimental demonstration of a left-handed metamaterial operating at 100 GHz. Physical Review B,2006,73(19):193103.
    [178]Quan, B G, Xu, X L, Yang, H F, et al. Time-resolved broadband analysis of split ring resonators in terahertz region. Applied Physics Letters,2006,89(4):041101.
    [179]Yuan, Y, Bingham, C, Tyler, T, et al. Dual-band planar electric metamaterial in the terahertz regime. Optics Express,2008,16(13):9746-9752.
    [180]Fredkin, D R,Ron, A. Effectively left-handed (negative index) composite material. Applied Physics Letters,2002,81(10):1753-1755.
    [181]Alu, A,Engheta, N. Pairing an epsilon-negative slab with a mu-negative slab:Resonance, tunneling and transparency. Ieee Transactions on Antennas and Propagation,2003,51(10):2558-2571.
    [182]Alu, A,Engheta, N. Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. Ieee Transactions on Microwave Theory and Techniques,2004,52(1):199-210.
    [183]Vier, D, Fredkin, D R, Simic, A, et al. Experimental confirmation of negative phase change in negative index material planar samples. Applied Physics Letters,2005,86(24):241908.
    [184]Wang, L G, Chen, H,Zhu, S Y. Wave propagation inside one-dimensional photonic crystals with single-negative materials. Physics Letters A,2006,350(5-6):410-415.
    [185]Guven, K, Cakmak, A O, Caliskan, M D, et al. Bilayer metamaterial:analysis of left-handed transmission and retrieval of effective medium parameters. Journal of Optics a-Pure and Applied Optics,2007,9(9):S361-S365.
    [186]唐晋发,顾培夫,刘旭,等.现代光学薄膜技术.浙江大学出版社,2006.
    [187]Pendry, J B,Mackinnon, A. Calculation of Photon Dispersion-Relations. Physical Review Letters, 1992,69(19):2772-2775.
    [188]Epstein, L I. The design of optical filters. Journal of the optical society of America,1952,42(11): 806-810.
    [189]Thelen, A. Eguivalent layers in multilayer filters. Journal of the optical society of America,1966, 56(11):1533-1538.
    [190]Mikhailov, V N. Optimized equivalent layers for a wide region of the spectrum. Journal of Applied Spectroscopy,1989,51(2):284-290.
    [191]Wang, D, Fan, Z X, Huang, J B, et al. Symmetrical periods used as matching layers in multilayer thin film design. chinese Optics Letters,2006,4(11):675-677.
    [192]GuoWang, Z, Lee, S H, Kim, C K, et al. Effective medium theory of the one-dimensional resonance phononic crystal. Journal of Physics-Condensed Matter,2008,20(5):055209.
    [193]廖绍彬.铁磁学.科学出版社,2000.
    [194]Milton, G W. Bounds on the complex permittivity of a two-component composite material. Journal of Applied Physics,1981,52(8):5286-5293.
    [195]Depine, R A,Lakhtakia, A. A new condition to identify isotropic dielectiric-magnetic materials displaying negative phase velocity. Microwave and Optical Technology Letters,2004,41(4): 315-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700