二维光子晶体传输特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,人们期冀能像控制电流在导线中的传播一样自由的控制光的传播,这种想法随着一种新材料——光子晶体(Photonic Crystal, PhC)的出现而慢慢接近现实。上个世纪八十年代后期,Eli Yablonovitch和Sajeev John在他们发表的两篇里程碑似的论文中首次提出了"photonic crystal"这个概念,从此揭开了人类历史上控制光传播的崭新一页。
     光子晶体由周期性分布的电介质或金属-电介质结构组成。在半导体晶体的能带结构中可以存在带隙,即具有某种大小能量的电子在某些特定方向上不允许传播。类似的,光子晶体通过不同介电常数的物质的周期排列得到周期变化的折射率,影响光波在它内部的传播。通过调节光子晶体结构相关的各种参数(晶格常数、填充比、增加缺陷等),可以产生禁带效应。人们利用光子晶体特殊的传播特性,实现了光子晶体光纤、光子晶体波导、光子晶体激光器、微谐振腔等。同时,光子晶体还可以当做超材料(Metamaterial),使电磁波在其中的传播产生负折射现象,从而实现超棱镜,完美透镜等。最近,光子晶体还作为解决方案之一,应用于发光二极管(Light Emitting Diode, LED)中,以提高光提取率。光子晶体的传播特性及其应用是本论文所要讨论的范围。
     本论文的主要内容:
     1、从光子晶体的结构特点出发,利用麦克斯韦方程组推导出符合光子晶体的电磁场表达式,进而得到光子晶体带隙的计算方法;简单介绍时域有限差分法,讨论数值稳定性和边界条件。
     2、分析二维全息光子晶体的传输特性;讨论光子晶体填充比、晶格常数、晶格原胞形状,晶格原胞组成方式等各种参数对光子带隙及传输特性的影响。
     3、分析二维全息光子晶体的负折射特性。
     4、研究利用二维光子晶体提高LED的光提取效率。
     通过研究,论文得到下列三个有意义的成果:
     1、由扫描光子晶体晶格常数、填充比、介电常数等相关参数,得到大量仿真计算的数据,经过分析,得出一种光子晶体波导的设计优化方法。其特点之一是:通过调整光强阈值就可以快速的对光子晶体带隙进行调控。
     2、由多参数分析全息光子晶体EFS图,得到负折射发生条件及频段特征,用FDTD法仿真,并证明在较宽频率区间(8.5%)和较大入射角范围(10°-80°)内,有明显的负折射现象。为左手材料的设计提供一思路。
     3、针对LED器件由于界面反射而光提取效率较低的问题,提出了一种光子晶体辅助的LED模型结构,初步仿真计算表明:有望使其光提取效率提高数倍(与模型结构的具体物理参数密切相关)。
     综上所述,本文分析了影响光子晶体传输特性的各种参数,提出了一种光子晶体波导的设计优化方法。运用平面波展开法计算了由全息法制备的空气介质柱二维光子晶体能带结构和等频面图,分析了在光子晶体中发生负折射现象的条件和频率区间,并利用时域有限差分法进行了验证。结果表明,在较宽的频率区间和较大的入射角度范围内,全息光子晶体可以发生明显的负折射现象。全息光子晶体负折射现象的研究为左手材料的设计和制备提供了一种新的思路。同时在提高LED的光提取效率方面做了大量的研究,结果可以为设计和制作高能源使用效率的LED提供参考。
People has expected to control the propagation of light freely as they do in controling current flowing in the wire. This idea has becoming reality with the emergence of photonic crystal(PhC)——a new material. In the late 80s of last century, Eli Yablonovitch and Sajeev John first brought up the concept of photonic crystal. From then on, a new era of light propagation controling began.
     Photonic crystal is a periodic arrangement of media with differing dielectric constants. There may be gaps in the energy band structure of the semiconductor crystal, meaning that electrons are forbidden to propagate with certain energies in certain directions. Similarly, photonic crystal influence the light propagation in its internal by periodic varying index. In particular, we can design and construct photonic crystals with photonic band gaps, preventing light from propagation in certain directions with specified frequencies. With the special transmission characteristic of PhCs, people fabricate PhC fiber, PhC waveguide, PhC laser, micro resonator, and etc. PhC can also be metamaterial to produce electromagnetic wave negative phenomenon, and that brings up superlens and perfect lens. Recently, PhCs have been applied to compose light-emitting diodes(LEDs) to improve the light extraction efficiency. We will discuss the application and the transmission characteristic of PhCs in this thesis.
     THE MAIN CONTENTS:
     1. Using Maxwell equations to produce electromagnetic field expressions which consistence with the characteristic of PhCs and the calculation method of getting photonic band gaps. Making a brief introduction of Finite-Difference Time-Domain(FDTD) method. Discussing the numeric stability and boundary condition of FDTD method.
     2. Analyzing the trasmission characteristic of two-dimension(2D) holographical PhCs. Discussing how parameters, filling ratio of PhCs, lattice constant, cell shape, lattice and etc., influence the photonic band gap and transmission characteristic.
     3. Analyzing the negative refraction characteristic of the holographical PhCs.
     4. Research how to improve LED light extraction efficiency by using 2D PhCs.
     THE INNOVATIONS:
     1. Theoretically research the band gap and transmission characteristic of holographical PhCs, simulating by using FDTD method. Get large amount of data by scanning the parameters of PhC (lattice constant, filling ratio, dielectric constant, and etc.). And achieve a new way to design and optimize PhC waveguide.
     2. Finding the condition and frequency range in which negarive refraction phenomenons occur by analyzing the EFS plots of holographical PhCs from lots of parameters. Simulating by using FDTD method, observed a clear negative refraction phenomenon.
     3. Proposing a LED model with PhCs to improve the light extraction efficiency, Veryfing the result by numerical simulation.
     In summary, this thesis analyzes the parameters that influence the transmission characteristic of PhCs, and then proposes a new way to design and optimize the PhC waveguide. The band structure and equi-frequency contours for the holographical photonic crystals (PhCs) are calculated by using plane wave extension method, and the conditions for negative refraction in PhCs are analyzed as well as the frequency band. The finite-difference time-domain method is used to verify the conclusion, and it is shown that negative refraction can be clearly observed in the holographical PhCs within a wide frequency band and a large incident angle scope. The research on the negative refraction in holographical PhCs will provide a new idea for the design and fabrication of the left-handed negative-index materials. At the same time, the thesis makes a great deal of study in improve the LED light extraction efficiency and the result can be a reference for designing and fabricating high energy efficiency LED.
引文
1. E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters,1987.58(20):2059.
    2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters,1987.58(23):2486.
    3. E. Yablonovitch, Photonic band-gap structures. J. Opt. Soc. Am. B,1993.10: 283.
    4. E. Yablonovitch, T. J. Gmitter, K. M. Leung, Photonic band structure:The face-centered-cubic case employing nonspherical atoms. Physical Review Letters,1991.67:2295.
    5. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, et al., High-impedance electromagnetic surfaces with a forbidden frequencyband. IEEE Transactions on Microwave Theory and Techniques,1999.47:2059.
    6. J. D. Joannopoulos, S. G. Johnson, Photonic crystals:Modeling the flow of light. Princeton:Princeton University Press,2008.
    7. K. M. Ho, C. T. Chan, C. M. Soukoulis, Existence of a photonic gap in periodic dielectric structures. Physical Review Letters,1990.65(25):3152.
    8. E. Yablonovitch, T. J. Gmitter, K. M. Leung, Photonic band structure:The face-centered-cubic case employing nonspherical atoms. Physical Review Letters,1991.67(17):2295.
    9. S. John, Localization of light. Physics Today,1991.44:32.
    10. J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett,1996.21:1547.
    11. T. A. Birks, J. C. Knight, P. S. J. Russell, Endlessly single-mode photonic crystal fiber. Optics Letters,1997.22:961.
    12. P. S. J. Russell, Photonic-Crystal Fibers Journal of Lightwave Technology, 2006.24:4729.
    13. P. Russell, Photonic Crystal Fibers. Science,2003.299:358.
    14. A. Mekis, et al, High Transmission through Sharp Bends in Photonic Crystal Waveguides. Physical Review Letters,1996.77(18):3787.
    15. A. Mekis, S. Fan, J. D. Joannopoulos, Bound states in photonic crystal waveguides and waveguide bends. Physical Review B,1998.58(8):4809.
    16. S.Y. Lin, Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal. Science,1998.282(5387):274.
    17. S. Y. Lin, Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1.5-μm wavelength. Optics Letters,2000.25(17):1297.
    18. Y. Desieres, et al., Propagation losses of the fundamental mode in a single line-defect photonic crystal waveguide on an InP membrane. Journal of Applied Physics,2002.92:2227.
    19. M. Kafesaki, M. Agio, C. M. Soukoulis, Waveguides in finite-height two-dimensional photonic crystals. Journal of the Optical Society of America B,2002.19(9):2232.
    20. H. Benisty, Models and Measurements for the Transmission of Submicron-Width Waveguide Bends Defined in Two-Dimensional Photonic Crystals. IEEE Journal of Quantum Electronics,2002.38(7).
    21. Z.Y.Li, K.M. Ho, Waveguides in three-dimensional layer-by-layer photonic crystals. Journal of the Optical Society of America B,2003.20(5):801.
    22. A. Talneau, Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55 μm. Applied Physics Letters,2002.80:547.
    23. M. Loncar, Waveguiding in planar photonic crystals. Applied Physics Letters, 2000.77(13):1937.
    24. J. Moosburger, Enhanced transmission through photonic-crystal-based bent waveguides by bend engineering. Applied Physics Letters,2001.79:3579.
    25. M. Tokushima, Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide. Applied Physics Letters,2000. 76:952.
    26. E Cubukcu, K Aydin, E Ozbay, Subwavelength Resolution in a Two-Dimensional Photonic-Crystal-Based Superlens. Phys. Rev. Lett,2003. 91(20):207401.
    27. H Kosaka, T Kawashima, Superprism phenomena in photonic crystals. Phys. Rev. B,1998.58(16):10096~10099.
    28. C. Luo, S G Johnson, J D Joannopoulos, All-angel negative refraction without negative effective index. Phys. Rev. B,2002.65:201104.
    29. W J Padilla, D N Basov, D R Smith, Negative refractive index metamaterials. Materials Today,2006.9:28~35.
    30. Ulf Leonhardt, Notes on Waves With Negative Phase Velocity. IEEE Journal of Selected Topics in Quantum Electronics,2003.9(1):102~105.
    31. S O Brien, J B Pendry, Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys.:Condens. Matter,2002.14:4035~4044.
    32. S O Brien, J B Pendry, Magnetic activity at infrared frequencies in structured metallic photonic crystals. J. Phys.:Condens. Matter,2002.14:6383~6394.
    33. S Foteinopoulou, E N Economou, C M soukoulis, Refraction in Media with a Negative Refractive Index. Phys. Rev. Lett,2003.90(10):107402.
    34. Z L Lu, S Y Shi, Experimental demonstration of negative refraction imageing in both amplitude and phase. Opt. Expr.,2005.13(6):2007~2008.
    35. L V Panina, A N Grigorenko, D P Makhnovskiy, Optomagnetic composite medium with conducting nanoelements. Phys. Rev. B,2002.66:155411.
    36. S. A. Ramakrishna, Physics of negative refractive index materials. Rep. Prog. Phys.,2005.68:449~521.
    37. M. Notomi, Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap. PHYSICAL REVIEW B,2000.62(16):10696.
    38. Rados Gajic, Ronald Meisels, Friedemar Kuchar, Kurt Hingerl, All-angle left-handed negative refraction in Kagome and honeycomb lattice photonic crystals. PHYSICAL REVIEW B,2006.73:165310.
    39. Jonathan J. Wierer, Aurelien David, Mischa M. Megens, Ⅲ-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nature Photonics,2009.3:163.
    40. Elison Matioli, Elizabeth Rangel, Micheal Iza, Blaise Fleury, et al., High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals. APPLIED PHYSICS LETTERS,2010.96:031108.
    41. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett.,1997.78:3294-3297.
    42. M. Fujta, S. Takahashi, Y. Tanaka, T. Asano, et al., Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science, 2005.308:1296.
    43. Y. S. Choi, GaN blue photonic crystal membrane nanocavities. Appl. Phys. Lett.,2005.87:243101.
    44. T. N. Oder, K. H. Kim, J. Y. Lin, H. X. Jiang, Ⅲ-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett.,2003.83: 1231-1233.
    45. J. Wierer, InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett.,2004.84:3885.
    46. K. Orita, S. Tamura, T. Takizawa, T. Ueda, et al., High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal. Jpn J. Appl. Phys.,2004.43(8):5809.
    47. A. David, Photonic crystal laser lift-off GaN light-emitting diodes. Appl. Phys. Lett.,2006.88:133514.
    48. A. David, H. Benisty, C. Weisbuch, Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs. J. Display Tech.,2007. 3:133.
    49. A. David, Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Appl. Phys. Lett.,2004.87:101107.
    50. A. David, Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution. Appl. Phys. Lett.,2006.88:061124.
    51. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, et al., Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals. J. Lightwave Technol,1999.17:2096.
    52. A.L.Fehrembach, S. Enoch, A.Sentenac, Highly directive light sources using two-dimensional photonic crystal slabs. Appl. Phys. Lett.,2001.79:4280.
    53. J. Shakya, K.H. Kim, J. Y. Lin, H..X. Jiang, Enhanced light extraction in Ⅲ-nitride ultraviolet photonic crystal light-emitting diodes. Appl. Phys. Lett., 2004.85:142.
    54. A. David, B. Moran, K. McGroddy, E. Matioli, et al., GaN/InGaN light-emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth. Appl. Phys. Lett.,2008.92:113514.
    55. Ch. Wiesmann, K. Bergenek, N. Linder, U. T. Schwarz, Analysis of the emission characteristics of photonic crystal LEDs. Proc. SPIE,2008.6989: 69890L.
    56. M.-K. Kwon, J.-Y. Kim, I.-K. Park, K. S. Kim, et al., Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diodes with an embedded photonic crystal. Appl. Phys. Lett.,2008.92:251110.
    57. Christopher Wiesmann, Krister Bergenek, Norbert Linder, Ulrich T. Schwarz, Photonic crystal LEDs-designing light extraction. Laser & Photonics Reviews,2009.3(3):262.
    58. C.-F. Lai, J.-Y. Chi, H.-H. Yen, H.C. Kuo, et al., Polarized light emission from photonic crystal light-emitting diodes. Appl. Phys. Lett.,2008.92:243118.
    59. K. Bergenek, Ch. Wiesmann, R. Wirth, L. O'Faolain, et al., Enhanced light extraction efficiency from AlGaInP thin-film light-emitting diodes with photonic crystals. Appl. Phys. Lett.,2008.93:041105.
    60. CST Studio Suite, CST Computer Simulation Technology AG, http://www.cst.com.
    61. Photonics Component Design Suite, RSoft Design Group, http://www.rsoftdesign.com.
    62. XFDTD, RemCom Inc., http://www.remcom.com.
    63. MPB, MIT Joannopoulos Ab Initio Physics Group, http://ab-initio.mit.edu/wiki/index.php/MIT Photonic Bands.
    64. MEEP, MIT Joannopoulos Ab Initio Physics Group, http://ab-initio.mit.edu/meep.
    65. O.C.Zienkiewicz, R.L. Taylor, The finite element method.. Vol.1 the basis: Butterworth-Heinemann,2000.
    66. O.C. Zienkiewicz, R.L. Taylor, The beam propagation method:an analysis of its applicability. Optical and Quantum Electronics,1983.15(5):433.
    67. J.V. Roey, J. van der Donk, P.E. Lagasse, Beam propagation:analysis and assessment. J. Opt. Soc. Am.,1983.71:803.
    68. K. Yee, Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media. Antennas and Propagation. IEEE Transactions on [legacy, pre-1988],1966.14(3):302.
    69. A. Yariv, Introduction to Optical Electronics. New York:Holt, Rinehart and Winston,1976.
    70. Y. Chung, N. Dagli, An assessment of finite difference beam propagation method. IEEE Journal of Quantum Electronics,1990.26(8):1335.
    71. N. N. Feng, W. P. Huang, A simple noniterative solution scheme for facet reflectivity of optical waveguides. Journal of Lightwave Technology,2004. 22(2):664.
    72. K. Busch, S. John, Photonic band gap formation in certain self-organizing systems. Phys. Rev. E,1998.58(3):3896.
    73. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, et al., Guided modes in photonic crystal slabs. Phys. Rev. B,1999.60(8):5751-5758.
    74. S. L. McCall, P. M. Platzman, Microwave propagation in two dimensional dielectric lattices. Phys. Rev. Lett.,1991.67:2017.
    75. G. Mur, Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations. IEEE Transactions on Electromagnetic Compatibility,1981.377.
    76. J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys.,1994.114(2):185.
    77. S. G. Johnson, J. D. Joannopoulos, Introduction to Photonic Crystals:Bloch's Theorem, Band Diagrams and Gaps:MIT,2003.
    78.基泰尔,固体物理导论.北京:化学工业出版社,2005.
    79.葛德彪,闫玉波,电磁波时域有限差分方法.西安:西安电子科技大学出版社,2005.
    80. A. Taflove, S.C. Hagness, Computational electrodynamics:the finite-difference time-domain method. Norwood:Artech House,2000.
    81.王长清,祝西里,电磁场计算中的时域有限差分法.北京:北京大学出版社,1994.
    82. J. B. Pendry, A. MacKinnon, Calculation of photon dispersion relations. Phys. Rev. Lett.,1992.69(9):2772.
    83. Z. Y. Li, L.L. Lin, Photonic band structures solved by a plane-wave-based transfer-matrix method. Physical Review E,2003.67(4):46607.
    84. J. B. Pendry, Calculating photonic band structure. Journal of Physics Condensed Matter,1996.8:1085.
    85. Junquan Wang, Fanmin Kong, Kang Li, Yong Fu, et al., Photonic band gap and transmission properties research in 2D holographic photonic crystals using FDTD. Proc. of SPIE,2006.6352:6352K.
    86. Junquan Wang, Fanmin Kong, Kang Li, Yong Fu, et al., Transmission Properties and Negative Refraction in Holographic Photonic Crystals. International.Symposium.on.Ultrafast-.and.Nano-.Optics,2007.
    87.王俊泉,李康,孔凡敏,梅良模,全息光子晶体负折射特性的研究.系统仿真学报,2009.2(18):5645.
    88.温熙森等,光子/声子晶体理论与技术.北京:科学出版社,2006.
    89. M. Campbell, Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature,2000.404(6773):53.
    90. L. Z. Cai, X. L. Yang, Y.R. Wang, Formation of a microfiber bundle by interference of three noncoplanar beams. Optics Letters,2001.26(23):1858.
    91. L. Z. Cai, X. L. Yang, Y.R. Wang, All fourteen Bravais lattices can be formed by interference of four noncoplanar beams. Optics Letters,2002.27(11):900.
    92. x. Wang, Three-dimensional photonic crystals fabricated by visible light holographic lithography. Applied Physics Letters,2003.82:2212.
    93. L. Z. Cai, C. S. Feng, M. Z. He, X. L. Yang, et al., Holographic design of a two-dimensional photonic crystal of square lattice with pincushion columns and large complete band gaps. Optics Express,2005.13(11):4325.
    94. V. G. Veselago, Electrodynamics of substances with smultaneously negative electrical and magnetic permeabilities. Soy. Phys. Usp,1968.10:509.
    95. Y. Zhen, Optical transmission and reflection of perfect lenses by left handed materials. Phys. Rev. B,2003.67:193106.
    96. J. B. Pendry, A. J. Holden, D. J. Robbins, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech,1999. 47(11):2075~2084.
    97. J. B. Pendry, A. J. Holden, W. J. Stewart, Extremely low frequency plasmons in metallic meso structure. Phys. Rev. Lett.,1996.76(25):4773~4776.
    98. D. R. Smith, W. J. Padilla, D. C. Vier, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett.,2000. 84(18):4184~4187.
    99. H. Chen, L. Ran, T-junction wave guide experiment to characterize left-handed properties of metamaterials. Journal of Applied Physics,2003. 94(6):3712~3716.
    100. D. R. Smith, Electromagnetic wave propagation in media with in definite permittivity and permeability tensors. Phys. Rev. Lett.,2003.90(7):077405~ 077408.
    101. R. W. Ziolkowski, Design,fabrication,and testing of double negative metamaterials. IEEE Trans AP,2003.51(7):1516~1529.
    102. J. B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett.,2000. 85:3966~3969.
    103. A. Grbic, G. V. Eleftheriades, Experimental verification of backward-wave radiation from a negative refractive index metamaterial. J. Appl. Phys.,2002. 92(10):5930~5935.
    104. J. T. Shen, P. M. Platzman, Near field imaging with negative dielectric constant lenses. Appl. Phys. Lett.,2002.80(18):3286-3288.
    105. K. J. Webb, M. Yang, D. W. Ward, K. A. Nelson, Metrics for negative-refractive-index materials. Phys. Rev. E,2004.70:035602.
    106. V. A. Podolskiy, E. E. Narimanov, Near-sighted superlens. Opt. Lett.,2005. 30(1):75~77.
    107. Daniel Maystre, Stefan Enoch, Perfect lenses made with left-handed materials Alice's mirror. J. Opt. Soc. Am. A,2001.21(1):122~131.
    108. D. R. Smith, D. Schurig, Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett.,2003.82(10):1506~1508.
    109. S. A. Cummer, B. I. Popa, Wave fields measured inside a negative refractive index metamaterial. Appl. Phys. Lett.,2004.85(20):4564~4566.
    110. J. B. Pendry, D. R. Smith, Reversing Light:Negative Refraction. Physics Today,2003.1-8.
    111. L. Chen, S. He, L. Shen, Finite-Size Effects of a Left-Handed Material Slab on the Image Quality. Phys. Rev. Lett.,2004.92(10):107404.
    112. M. W. Feise, P. J. Bevelacqua, J. B. Schneider, Effects of sureface wave on the behavior of perfect lense. Phys. Rev. B,2002.66:035113.
    113. R. Moussa, S. Foteinopoulou, Lei Zhang, G. Tuttle, et al., Negative refraction and superlens behavior in a two-dimensional photonic crystal. Phys. Rev. B, 2005.71:085106.
    114. C. Luo, S. G. Johnson, J. D. Joannopoulos, J. B. Pendry, Negative refraction without negative index in metallic photonic crystals. Optics Express,2003. 11(7):746~754.
    115. B. Q. Huang, Numerical Study about the Abnormal Refraction in One-dimensional Photonic Crystals. Acta Photonica Sinica,2004.33(10): 1222.
    116. A. Martinez, J. Marti, Analysis of wave focusing inside a negative-index photonic-crystal slab. Optics Express,2005.13(8):2858.
    117. S. Foteinopoulou, C. M. Soukoulis, Electromagnetic wave propagation in two-dimensional photonic crystals:A study of anomalous refractive effects. Phys. Rev. B,2005.72:165112.
    118. E. Cubukcu, K. Aydin, E. Ozbay, Negative refraction by photonic crystals. Nature,2003.423(6940):604.
    119. E. Fred Schubert, Light-emitting diodes. New York:Cambridge University Press,2006.
    120. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, E. F. Schubert, Photonic crystal light-emitting diodes. Proc. SPIE,1997.3002:67.
    121. C. F. Lai, H. C. Kuo, Anisotropy of light extraction from two-dimensional photonic crystal light-emitting diodes. Appl. Phys. Lett.,2007.91:123117.
    122. L. Chen, A. V. Nurmikko, Fabrication and performance of efficient blue light emitting Ⅲ-nitride ultraviolet photonic crystals. Appl. Phys. Lett.,2004. 85(17):3663.
    123. H. Y. Ryu, J. K. Hwang, Y. J. Lee, Y. H. Lee, Enhancement of light extraction from two-dimensional photoniccrystal slab structures. IEEE journal of selected topics in quantum electronics,2002.8(2):231.
    124. C. H. Lin, H. H. Yen, C. F. Lai, H. W. Huang, et al., Enhanced Vertical Extraction Efficiency From a Thin-Film InGaN-GaN Light-Emitting Diode Using a 2-D Photonic Crystal and an Omnidirectional Reflector. IEEE PHOTONICS TECHNOLOGY LETTERS,2008.20(10):836.
    125. Z. Xu, L. Cao, Q. Tan, Q. He, et al., Enhancement of the light output of light-emitting diode with double photonic crystals. Optics Communications, 2007.278(1):211.
    126. A. David, Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction. Appl. Phys. Lett.,2005.87:101107.
    127. E. Matioli, M. Iza, Y. S. Choi, F. Wu, et al., GaN-based embedded 2D photonic crystal LEDs:Numerical optimization and device characterization. Phys. Status Solidi C,2009.6:S675.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700