人工微结构材料的特性与应用的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长久以来,人们一直在寻找一种有效的方法来控制光的传输。在近二十年中,光子晶体和人工电磁媒质,这两种人造材料,由于其局域和控制光传输的能力以及它们所具有的超自然的奇异电磁特性,而逐渐成为了光学、电磁学、物理学等多个领域的研究热点。
     光子晶体是一种由介质(或者金属-介质)周期性排列而成的人工微结构材料,它的电磁特性主要由结构的周期性决定。由于光子晶体的禁带可以限制光的传输,人们已经将其用于实现高Q腔,小型波导,以及微激光器等。同时,利用其特殊的色散曲线可以实现对于光群速度的控制,光束整形,负折射现象和超棱镜效应等。
     人工电磁媒质往往是由亚波长的共振金属结构单元组成,它的电磁性质主要由单元结构的共振响应所决定。人工电磁媒质的本构参数是灵活可调的,通过合理的设计共振单元可以实现所需的等效介电常数和磁导率。由于这特性,人工电磁媒质已经被广泛的用于实现负折射率、电磁隐身、完美吸波、超透镜和极化控制等。
     在本论文中,我们将对于包括光子晶体和人工电磁媒质在内的人工微结构材料的特性和运用进行若干研究和探索。本论文中的主要工作如下:
     1.我们设计一个纯介质波导实现局域的“光轮”现象,并解释了其形成的物理机理,同时研究了禁带边缘由于反向耦合形成的非局域光轮模式。该模式的存在可以使得这个复合波导在很短的长度上获得较大的Q值。
     2.我们研究了一维EIT(电磁诱导透明)光子晶体的能带结构和等频率曲线随耦合光拉比频率的变化。对于某一特定频率的探针光,仅通过调节耦合光的拉比频率,实现了正折射和负折射两种情形。并研究通过EIT光子晶体的这种可调性来控制光的传输。
     3.我们设计了太赫兹波段的广角且极化不敏感的人工吸波材料,在1/25波长的厚度上实现了近完美的吸波。通过数值模拟分析了该人工结构的吸波是由于磁偶极子共振所产生。同时,研究了通过多层人工结构之间的共振耦合实现大带宽的吸波。同时我们在实验上验证了该人工结构的单层吸波特性。
     4.我们设计了双层结构的人工手征电磁媒质,实现了90°偏振旋转器。分析了该人工手征电磁媒质的巨旋光效应,并指出它是由于磁偶极共振的横向耦合产生。同时,我们研究了结构在传播方向上的手征性和交叉极化透射之间的关系。该人工手征电磁媒质所具有的2700°/λ的旋光强度是目前文献中所报道的最大旋光强度。
     5.我们研究了TE模式的狭缝透射增强。通过在一层表面镀有二维金属线阵列的覆盖层,我们实现了TE模式透射率的800倍的增强。通过数值模拟,分析了狭缝上方金属线的电偶极子共振对于狭缝透射的增强作用。
Scientists have long been seeking effective approaches to control and manipulate the light. In the past two decades, two kinds of man-made materials, namely, photonic crystals and metamaterials, have become hot research topics in multidisciplinary community of optics, electromagnetics, physics and material science, since they have remarkable capability of localizing and guiding radiation and provide unprecedented electromagnetic properties and functionalities unattainable from naturally occurring materials.
     Photonic crystals are composed of periodic dielectric or metallo-dielectric nanostructures that are designed to affect the propagation of electromagnetic waves. The electromagnetic properties of photonic crystals, e.g. phtonic band gap, result from the periodicity of the whole structure. Due to their great ability of controlling the flow of light, photonic crystals have already been used for e.g. high-Q nanocavities, narrow waveguides and microlasers. The dispersive properties of photonic crystals can also be exploited for manipulating the group velocity of light, shaping and compressing optical pulses, and realizing negative refraction and superprism effects.
     In contrast, metamaterials are usually composed of metallic elements whose size is much smaller than the resonant wavelength. Therefore, the electromagnetic properties of metamaterials depend on the response of each subwavelength element. By properly designing the resonant elements, metamaterial can be an effective medium with desired permittivity and permeability, which has been used to achieve some interesting phenomena, such as negative reflective index, invisibility cloaking, perfect absorption, super lenses and polarization conversion.
     In this thesis, we study some properties and applications of photonic crystals and metamaterials. Our original works are listed as follow:
     1. We design a composite dielectric waveguide for the realization of a localized "light wheel", which is numerically demonstrated and explained physically in detail. A delocalized "light wheel" is found at the band gap edge caused by contra-directional coupling between the two waveguides. The delocalized "light wheel" can be used to trap light as a cavity.
     2. We study on the band structures and equifrequency contours of one-dimensional photonic crystals (PCs), which consist of an electromagnetically induced transparency (EIT) medium and a common dilectric medium,when the coupling Rabi frequency (CRF) of the EIT medium is tuned. It is found that for a probe light at a fixed frequency, either positive or negative refraction in the EIT PC can be realized with a proper CRF. This tunable optical response enables manipulating light flow.
     3. We design a nearly omni-directional THz absorber for both TE and TM polarizations. The perfect absorption in a thin thickness about 25 times smaller than the resonance wavelength is numerically demonstrated to be caused by the excitation of magnetic polariton. More importantly, by simply stacking the proposed layer structure, the bandwidth of the absorption can be effectively increased due to the hybridization of magnetic polaritons in different layers, which pave a way for broad bandwidth absorber in THz frequency.
     4.We design a bilayered chiral metamaterial to realize a 90°polarization rotator, whose giant optical activity is due to the transverse magnetic dipole coupling among the metallic wire pairs of enantiomeric patterns. It is demonstrated that it is the chirality in the propagation direction that makes this efficient cross-polarization conversion possible. The optical activity of the present structure is about 2700°/λ, which is the largest optical activity that can be found in literature.
     5. We report the enhanced transmission of TE waves through an array of subwavelength slits in a thin metallic film at microwave frequencies. By adding a dielectric layer with a metallization of cut wire array, we obtain an 800 fold enhanced transmission through the slits. We numerically demonstrate that the resonant transmission is to due to the excitation of the electric dipole-like resonances of cut wires in close proximity to the apertures of the slits. which effectively coupled the incident wave into the subwavelength slits.
引文
[1]S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett.,1987,58(23):2486-2489.
    [2]E. Yablonovitch. Inhibited spontaneous emission in solid state physics and electronics, Phys. Rev. Lett.,1987,58 (20):2059-2062.
    [3]J. D. Joannopoulos, R. D. Mead, and J. N. Winn. Photnic crystals:Molding the flow of light. Princeton University Press, Princeton, NJ,1995.
    [4]T. A. Birks, J. C. Knight, and P. S. J. Russell. Endlessly single-mode photonic crystal fiber. Optics letters,1997,22(13):961-963.
    [5]J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell. Photonic Band Gap Guidance in Optical Fiber, Science,1998,282(5393):1476-1478.
    [6]J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding, Optics Letters,1996,21(19):1547-1549.
    [7]S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos. Linear waveguides in photonic-crystal slabs, Phys. Rev. B,2000,62(12):8212-8222.
    [8]M. Notomi, A. Shinya, K. Yamada, J. I. Takahashi, C. Takahashi, and I. Yokohama. Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs, IEEE Journal of Quantum Electronics,2002,38(7):736-742.
    [9]Y. Akahane, T. Asano, B. S. Song, and S. Noda. High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature,2003,425(30):944-947.
    [10]B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity, Nat. Mater.,2005,4(3):207-210.
    [11]V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdre, M. V. Kotlyar, L. O. Faolain, and T. F. Krauss. Self-collimating photonic crystal polarization beam splitter, Optics Letters.2007. 32(5):530-532.
    [12]D. R. Solli and J. M. Hickmann. Photonic crystal based polarization control devices, J. Phys. D:Appl. Phys,2004,37:R263-R268.
    [13]X. Ao and S. He. Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction. Optics Letter,2005,30(16):2152-2154.
    [14]J. D. Jackson. Classical Electrodynamics, New York, John Wiley and Sons,1998.
    [15]K. Sakoda. Optical Properties of Photonic Crystals, New York, Springer,2001.
    [16]S. G. Johnson and J. D. Joannopoulos. Introduction to Photonic Crystals:Bloch's Theorem, Band Diagrams, and Gaps (But No Defects), MIT 3rd February 2003.
    [17]E. Yablonovitch, T. J. Gmitter, and K. M. Leung. Photonic band structure:The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett.,1991,67(17): 2295-2298.
    [18]E. Ozbay, E. Michel, G. Tuttle, R. Biswas, K. M. Ho, J. Bostak, and D. M. Bloom. Terahertz spectroscopy of three-dimensional photonic band-gap crystals. Optics Letters,1994, 19(15):1155-1157.
    [19]B. T. Holland, C. E. Blanford, and A.Stein.Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids. Science,1998,281: 538-540.
    [20]J. Shakya, K. H. Kim, J. Y. Lin, H. X. Jiang. Enhanced light extraction in Ⅲ-nitride ultraviolet photonic crystal lgith-emitting diodes, Appl. Phys. Lett.,2004,85:142.
    [21]O. Painter, R. K. Lee, A. Schere, A. Yariv, J. D. O'Brien, P. D. Dapkus, I. Kim. Two-Dimensional Phtonic Band-Gap Defect Mode Laser, Science,1999,284:1819.
    [22]J. P. Dowling, C. M. Bowden. Anomalous index of refraction in photonic bandgap material, J. Mod. Opt.,1994,41(2):345-351.
    [23]M. Notomi. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B,2000.62(16): 10696-10705.
    [24]C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. All-angle negative refraction without negative effective index, Phys. Rev. B,2002,65(20):201104(R).
    [25]A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal, Phys. Rev. Lett.. 2004,93(7):073902.
    [26]E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis. Negative refraction by photonic crystals, Nature,2003,423:604-605.
    [27]H. Shin and S. Fan. All-angle negative refraction and evanescent wave amplification using one-dimensional metallophotonic crystals, Appl. Phys. Lett.,2006,89(15):151102.
    [28]M. Scalora, G. D'Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G.. Cappeddu, M. Fowler, and J. W. Haus. Negative refraction and sub-wavelength focusing in the visible range using transparent metal-dielectric stacks, Opt. Express,2007,15(2):508-523.
    [29]M. Scalora, R. J. Flynn, S. B. Reinhardt, R. L. Fork, M. J. Bloemer, M. D. Tocci, C. M. Bowden, H. S. Ledbetter, J. M. Bendickson, J. P. Dowling, and R. P. Leavitt. Ultrashort pulse propagation at the photonic band edge:Large tunable group delay with minimal distortion and loss, Phys. Rev. E,1996,54(2):R1078-R1081.
    [30]M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama. Extremely large group-velocity dispersion of line defect waveguides in photonic crystal slabs, Phys. Rev. Lett.,2001,87(25):253902.
    [31]L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel. Photonic crystal waveguides with semi-slow light and tailored dispersion properties, Opt. Express,2006. 14(20):9444-9450.
    [32]J. Li, T. P. White, L. O'Faolain, A. Gomez-Iglesias, and T. F. Krauss. Systematic design of flat band slow light in photonic crystal waveguides, Opt. Express,2008,16(9): 6227-6232.
    [33]D. Mori and T. Baba. Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide, Opt. Express,2005,13(23):9398-9408.
    [34]S. Lin, V. M. Hietala, L. Wang, and E. D. Jones. Highly dispersive photonic band-gap prism, Optics Letter,1996,21(21):1771-1773.
    [35]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami. Superprism phenomena in photonic crystals, Phys. Rev. B,1998,58(16):R10096-R10099.
    [36]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami. Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering, Appl. Phys. Lett.,1999,74(10):1370-1372.
    [37]T. Baba and T. Matsumoto. Resolution of photonic crystal superprism, Appl. Phys. Lett. 2002,81(13):2325-2327.
    [38]B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi. Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms, Opt. Express,2006,14(6):2413-2422.
    [39]H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami. Self-collimating phenomena in photonic crystals, Appl. Phys. Lett.,1999,74(9):1212-1214.
    [40]L. Shen, T. Yang, Y. Chau.50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion, Appl. Phys. Lett.,2007,90(25):251909.
    [41]M. Bayindir B. Temelkuran, and E. Ozbay. Photonic-crystal-based beam splitters, Appl. Phys. Lett.,2002,77(24):3902-3904.
    [42]Y. A. Vlasov, M. O'Boyle, H. F. Hamann and S. J. McNab. Active control of slow light on a chip with photonic crystal waveguides, Nature,2005,438(7064):65-69.
    [43]M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu. Low-threshold photonic crystal laser, Appl. Phys. Lett.,2002,81(15):2680-2682.
    [44]X. Wu, A. Yamilov, X. Liu, S. Li, V. P. Dravid, R. P. H. Chang, and H. Cao. Ultraviolet photonic crystal laser,2004,85(17):3657-3659.
    [45]P. A. Belov, C. R. Simovski and P. Ikonen. Canalization of subwavelength images by electromagnetic crystals, Phys. Rev. B,2005,71(19):193105.
    [46]P. A. Belov and Y. Hao. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime, Phys. Rev. B,2006,73(11):113110.
    [47]E. Cubukcu, K. Aydin, and E. Ozbay. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens, Phys. Rev. Lett.,2003,91(20):207401.
    [48]V. M. Shalaev. Optical negative-index metamaterials, Nature Photonics,2007,1:41-48.
    [49]S. Anantha. Ramakrishna. Physics of negative refractive index materials, Rep. Prog. Phys., 2005,68:449-521.
    [50]S. A. Maier. Plasmonics:Fundamentals and Applications, New York, Springer,2007.
    [51]V. G. Veselago. Sov. Phys. Usp.,1968,10:509.
    [52]G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden. Simultaneous negative phase and group velocity of light in a metamaterial, Science,2006,312:892-894.
    [53]D. R. Smith and D. C. Vier and T. Koschny and C. M. Soukoulis. Electromagnetic parameter retrieval from inhomogeneous metamaterials, Physical Review E,2005.71: 0366174.
    [54]J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett.,1996,76:4773-4776.
    [55]Ricardo Marques, Ferran Martin, and Mario Sorolla, Metamaterials with Negative Parameters, Wiley Press, New Jersey,2007.
    [56]C. Caloz and T. Itoh. Electromagnetic metamaterials:transmission line theory and
    microwave application, New York, Wiley,2005.
    [57]R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials, IEEE Trans Antennas Propagat,2003,51:1516-1529.
    [58]D. Schurig, J.J. Mock, and D.R. Smith. Electric-field-coupled resonators for negative permittivity metamaterials, Appl. Phys. Lett.,2006,88(4):041109.
    [59]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. on Microwave Theory and Tech.,1999, 47(11):2075-2084.
    [60]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 2000,84:4184-4187.
    [61]R. A. Shelby, D. R. Smith, and S. Schultz. Experimental verifi cation of a negative index of refraction, Science,2001,292:77-79.
    [62]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang. Terahertz magnetic response from artificial materials, Science,2004,303: 1494-1496.
    [63]S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis. Magnetic response of metamaterials at 100 terahertz, Science,2004,306:1351-1353.
    [64]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. Zhou. T. Koschny, and C.M. Soukoulis. Magnetic metamaterials at telecommunication and visible frequencies, Phys. Rev. Lett.,2005,95:203901.
    [65]A. V. Kildishev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev. Negative refractive index in optics of metal-dielectric composites, J. Opt. Soc. Am. B,2006,23:423-433.
    [66]G. Shvets, Y. A. Urzhumov. Negative index meta-materials based on two-dimensional metallic structures, J. Opt. A-Pure Appl. Op.,2006,8:S122-S130.
    [67]D. R. Smith, W. J, Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz. Composite medium with simultaneously negative permeability and permittivity, Phys Rev Lett.2000. 84:4184-4187.
    [68]R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction, Science,2001,292:77-79.
    [69]R. W. Ziolkowski. Design, fabrication, and testing of double negative metamaterials. IEEE
    Trans Antennas Propagat,2003,51:1516-1529.
    [70]Liu, R., A. Degiron, J. J. Mock, and D. R. Smith. Negative index material composed of electric and magnetic resonators, App. Phys. Lett.,2007,90(26):263504.
    [71]Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong. Left-handed material composed of only S-shaped resonators, Phys. Rev. E,2004,70(5): 057605.
    [72]V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev. Negative index of refraction in optical metamaterials, Opt. Lett.,2005, 30(24):3356-3358.
    [73]S. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood. Near-infrared double negative metamaterials, Opt. Express,2005,13(13):4922-4930.
    [74]S. Zhang, W. Fan, A. Frauenglass, B. Minhas, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood. Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies, J. Opt. Soc. Am. B,2006,23(3):434-438.
    [75]G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden. Low-loss negative-index metamaterial at telecommunication wavelengths, Opt. Lett.,2006.31(12): 1800-1802.
    [76]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden. Negative-index metamaterial at 780 nm wavelength, Opt. Lett.,2007,32(1):53-55.
    [77]J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang. Three-dimensional optical metamaterial with a negative refractive index, Nature.2008. 455(7221):376-380.
    [78]J. B. Pendry, D. Schurig, and D. R. Smith. Controlling Electromagnetic Fields, Science 2006,312:1780-1782.
    [79]D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith. Metamaterial Electromagnetic Cloak at Microwave Frequencies, Science,2006,314: 977-980.
    [80]T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith. Tuned permeability in terahertz split-ring resonators for devices and sensors, Appl. Pbys. Lett.,2007,91(6):062511.
    [81]I. A.I. Al-Naib, C. Jansen, and M. Koch. Thin-film sensing with planar asymmetric metamaterial resonators, Appl. Phys. Lett.,2008,93(8):083507.
    [82]V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev. Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry, Phys. Rev. Lett.,2007,99(14):147401.
    [83]N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. So"nnichsen, and H. Giessen. Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing, Nano lett.,2010.(to be published)
    [84]H.-T. Chen, W. J. Padilla, J. M.O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt. Active terahertz metamaterial devices, Nature,2006,444(30):597-600.
    [85]N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov. Lasing spaser, Nature Photonics,2008,2:351-354.
    [86]M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov. S. Stout, E. Herz, T. Suteewong, and U. Wiesner. Demonstration of a spaser-based nanolaser. Nature,2009,460:1110-1112.
    [87]N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla. A perfect metamaterial absorber, Phys. Rev. Lett.,2008,100(20):207402.
    [88]K. Aydin, A. O. Cakmak, L. Sahin, Z. Li, F. Bilotti, L. Vegni, and E. Ozbay. Split-Ring-Resonator-Coupled Enhanced Transmission through a Single Subwavelength Aperture, Phys. Rev. Lett.,2009,102(1):013904.
    [89]J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan,, and L. Zhou. Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials, Phys. Rev. Lett..2007. 99:063908.
    [90]P. H. Tichit, A. Moreau, and G. Granet. Localization of light in a lamellar structure with left-handed medium:the Light Wheel, Opt. Express,2007 15:14961.
    [91]W. Yan and L. F. Shen. Open waveguide cavity using a negative index medium, Opt. Lett. 2008,33:2806.
    [92]K. S. Yee. Numerical solution of initial boundary problems involving Maxwell's equation in isotropic meda. IEEE Trans. Antennas Propagat.,1966,14(3):302-307.
    [93]B. Lombardet, L. A. Dunbar, R. Ferrini, and R. Houdre. Fourier analysis of Bloch wave propagation in photonic crystals, J. Opt. Soc. Am. B,2005,22:1179.
    [94]W. T. Lu, Y. J. Huang, P. Vodo, R. K. Banyal, C. H. Perry, and S. Sridhar. A new mechanism for negative refraction and focusing using selective diffraction from surface corrugation. Opt. Express,2007 15:9166.
    [95]Z. Xu, J. Wang, Q. He, L. Cao, P. Su, and G. Jin. Optical filter based on contra-directional waveguide coupling in a 2D photonic crystal with square lattice of dielectric rods, Opt. Express,2005 13:5608.
    [96]D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, NY,1991.
    [97]K. Bush and S. John. Liquid crystal photonic-band-gap materials:the tunable electromagnetic vacuum, Phys. Rev. Lett.,1999,83:967-970.
    [98]S. E. Harris. Electromagnetically Induced Transparency, Physics Today,1997,50 (7): 36-42.
    [99]J. P. Marangos. Topical review of electromagnetically induced transparency, J. Mod. Opt., 1998,45:471.
    [100]V. G. Arkhipkin, S. A. Myslivets, and I. V. Timofeev. Effect of electromagnetically induced transparency on spectrum of defect modes of photonic crystal, Proc. SPIE 6729 67292H,2007.
    [101]M. Artoni and G. C. La Rocca. Optically tunable photonic stop bands in homogeneous absorbing media, Phys. Rev. Lett.,2006,96:073905.
    [102]J. Q. Shen, Z. C. Ruan and S. He. Influence of the signal light on the transient optical properties of a four-level EIT medium, Physics Letters A,2004,330:487-495.
    [103]M. O. scully and M. S. Zubairy. Quantum Optics, Cambridge Univ. Press, Cambridge. 1997.
    [104]D. M. Cook. The theory of the Electromagnetic Field, New Jersey, Prentice-hall,1975.
    [105]J. B. Pendry. Photonic band structures, J. Mod. Opt.,1994,41:209.
    [106]P. M. Bell, J. B. Pendry, L. Martin Moreno, and A. J. Ward. A program for calculating photonic band structures and transmission coefficients of complex structures, Phys. Commun.,1995,85:306.
    [107]Z. Y. Li and L. L. Lin. Photonic band structures solved by a plane-wave-based transfer-matrix method, Phys. Rev. E,2003,67:046607.
    [108]Z. Y. Li and K. M. Ho. Light propagation in semi-infinite photonic crystals and related waveguide structures, Phys. Rev. B,2003,68:155101.
    [109]D. M. Whittaker and I. S. Culshaw. Scattering-matrix treatment of patterned multilayer photonic structures, Phys. Rev. B,1999,60:2610.
    [110]M. C. Hutley, and D. Maystre, The total absorption of light by a diffraction grating. Opt. Commun.,1976,19:431-436.
    [111]S. Collin, F. Pardo, R. Teissier, and J. L. Pelouard, Efficient light absorption in metal-semiconductormetal nanostructures. Appl. Phys. Lett.,2004,85:194-196.
    [112]W. C. Tan, J. R. Sambles, and T. W. Preist, Double-period zero-order metal gratings as effective selective absorbers. Phys. Rev. B,2000,61:13177-13182.
    [113]E. Popov, L. Tsonev, and D. Maystre, Lamellarmetallic grating anomalies. Appl. Opt., 1994,33:5214-5219.
    [114]Y. P. Bliokh, J. Felsteiner, and Y. Z. Slutsker, Total absorption of an electromagnetic wave by an overdense plasma. Phys. Rev. Lett.,2005,95:165003.
    [115]J. Reinert, J. Psilopoulos, J. Grubert, and A. F. Jacob. On the potential of graded-chiral Dallenbach absorbers, Microwave and Optical Technology Letters,2001,30(4):254-257,.
    [116]E. F. Knott, J. F. Schaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Norwood, MA,1993.
    [117]Salisbury, U.S. Patent No.2,599,944,1952.
    [118]N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla. A Perfect Metamaterial Absorber, Phys. Rev. Lett.,2008,100:207402.
    [119]H. Tao, N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla. A metamaterial absorber for the terahertz regime:Design, fabrication and characterization, Opt. Express,2008,16:7181.
    [120]H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt. Highly flexible wide angle of incidence terahertz metamaterial absorber:Design, fabrication, and characterization, Phys. Rev. B. 2008,78:241103.
    [121]N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Paddila. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging, Phys. Rev. B,2009,79:125104.
    [122]N. liu, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen. Plasmonic building blocks for magnetic molecules in threedimensional optical metamaterials, Adv. Mater.,2008.20: 3859-3865.
    [123]T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang. Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission, Opt. Express,2006,14:11155-11163.
    [124]T. V. Teperik, F. J. Garcia De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett. Y.
    Sugawara, and J. J. Baumberg. Omnidirectional absorption in nanostructured metal surfaces, Nat. Photonics,2008,2:299-301.
    [125]J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan and L. Zhou. Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials, Phys. Rev. Lett.,2007, 99:063908.
    [126]J. Y. Chin, M. Lu, and T. J. Cui. Metamaterial polarizers by electric-field-coupled resonators, Appl. Phys. Lett.,2001,93:251903.
    [127]A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev. Giant gyrotropy due to electromagnetic-field coupling in a bilayered Chiral Structure, Phys. Rev. Lett.,2006,97:177401.
    [128]T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu and X. Zhang. Magnetic resonance hybridization and optical activity of microwaves chiral metamaterial, Appl. Phys. Lett.,2008,92:13111.
    [129]I. V. Lindell, A. H. Sihvola, and J. Kurkijarvi, "Karl F. Lindman:The last Hertzian, and a harbinger of electromagnetic chirality," IEEE Antennas Propag. Mag.,1992,34:24.
    [130]J. B. Pendry. A Chiral Route to Negative Refraction, Science,2004 306:1353.
    [131]Yi Jin and Sailing He. Focusing by a slab of chiral medium, Optics Express,2005.13: 4974-4979.
    [132]E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev. Metamaterial with negative index due to chirality, Phys. Rev. B,2009,79: 035407.
    [133]H. A. Bethe. Theory of Diffraction by Small Holes, Phys. Rev.,1944,66:163-182.
    [134]T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff. Extraordinary optical transmission through sub-wavelength hole arrays, Nature,1998,391:67-669.
    [135]L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry. and T.W. Ebbesen. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays, Phys. Rev. Lett,2001,86(6):1114-1117
    [136]Q. Cao and P. Lalanne. Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits, Phys. Rev. Lett,2002,88(5):057403.
    [137]Z. Ruan and Min Qiu. Enhanced Transmission through Periodic Arrays of Subwavelength Holes:The Role of Localized Waveguide Resonances, Phys. Rev. Lett. 2006,96:233901.
    [138]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke,L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen. Beaming Light from a Subwavelength Aperture, Science,2002,297: 820-822.
    [139]N. Yu, J. Fan, Q. Wang, C. Pflgl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso. Small-divergence semiconductor lasers by plasmonic collimation, Nat Photon. 2008,2:564-570.
    [140]Y. Lu, M. H. Cho, Y. Lee, and J. Y. Rhee. Polarization-independent extraordinary optical transmission in one-dimensional metallic gratings with broad slits, Appl. Phys. Lett., 2008,93:061102.
    [141]D. Crouse, and P. Keshavareddy. Polarization independent enhanced optical transmission in one-dimensional gratings and device applications, Opt. Express,2006 15: 1415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700