花生品种对黄曲霉菌的抗性鉴定和抗侵染机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
花生是我国重要的高蛋白油料作物,同时也是我国为数不多的具有明显国际竞争力的出口创汇作物。其含油量高达50%,蛋白质含量可高达30%左右,含有人体所必需的8种氨基酸,营养价值可与动物性食品鸡蛋、牛奶、瘦肉等媲美,且易于被人体吸收利用。然而,花生极易受到强致癌物黄曲霉毒素的污染。黄曲霉毒素污染已经成为花生质量和食用安全中的重大问题之一,严重威胁人类健康,在世界范围内引起广泛关注。培育抗黄曲霉品种是解决花生黄曲霉毒素污染最有效、最经济和最安全的方法,而明确抗性品种的抗性机制是培育抗黄曲霉品种所必需的前提条件之一。本文研究花生品种对黄曲霉菌的抗性和抗侵染机制。
     主要研究结论如下:
     (1)从土壤中和发霉的花生上分离菌株,根据菌株的形态特征、颜色及分生孢子的形态结构,鉴定出产毒黄曲霉菌株。
     (2)经人工接种对20个花生品种的黄曲霉侵染抗性进行鉴定,试验结果表明,具有抗性的花生品种为中花6号和抗黄一号,占供试品种的10%;表现为中抗的花生品种有开农37、开农41、豫花4号、白粒花生以及开农3号,占供试花生品种的25%;易感品种有6份,分别为:豫花7号、周花2号、新花1号、濮花17、白沙4号、红花350,占供试品种的30%;高感花生品种有七份(W9813、W9742、W9846、豫花6号、Gz414、Gz392、Gz427),占供试品种的35%。花生对黄曲霉表现感病的品种占65%,其中对黄曲霉菌株表现抗性的花生籽仁与其花生荚果表现抗性的结果无显著相关。利用AFLP分子标记技术鉴别花生品种的实验结果表明,不同抗性的花生品种间有差异,但不能准确鉴定抗、中抗、中感和高感品种。
     (3)受黄曲霉菌株侵染后,抗性、敏感品种的花生种子内过氧化物酶、过氧化氢酶、多酚氧化酶、苯丙氨酸解氨酶的活性发生显著的变化。根据活性变化的趋势、活性达到峰值的时间及其与抗性的关系,可以明显地鉴定出抗感品种。
     本文鉴定出的抗黄曲霉花生品种为花生抗黄曲霉育种提供亲本,揭示出的花生种子酶活性的变化与抗黄曲霉的关系为花生抗黄曲霉育种和抗病基因工程提供理论依据。
Peanut, as an important oil and economic crop, is also one of the few internationally competitiveexport crops. Its seeds contain50%oil,30%protein and eight essential amino acids necessary for ourbody and so on, whose nutritional value is comparable to that in animal foods such as eggs,dairy and meat..However, it is vulnerable to aflatoxin, a strong carcinogen. Aflatoxin contamination, as one of the majorissues of the quality of peanuts and food safety, has severely threatened the health of human beings anddrawn widespread attention in the world. Breeding anti-aflatoxin varieties is the most effective, economicand safest solution to solving the Aflatoxin contamination,while determining the resistance mechanism ofAspergillus flavus-resistant varieties is the premise of breeding Aspergillus flavus-resistant varieties. Inthis study, the resistance identification and mechanism of peanut varieties(arachis hypogaea linn.)toaspergillus flavus were studied.
     The main findings are as follows:
     1. Aspergillus flavus strains were separated from soil and moldy peanuts and identified according tothe morphological features and colony color of its strains and the morphological features of Conidia.
     2.The resistance of20peanut varieties to A. flavus infection was determined by A. flavus artificialinoculation.The results showed that the varieties resistant to A. flavus are Zhonghua No.6and anti-aflatoxinNo.1, accounting for10%of tested varieties; moderate resistance varieties are Kainong No.37, KainongNo.41, Yuhua No.4, White Peanut and Kainong No.3,25of the tested vultivars; varieties vulnerable toaflatoxin are Yuhua No.7, Zhouhua No.2, Xinhua No.1, Puhua No.17, Baisha No.4and Honghua350,30%of the tested cultivars; high susceptible varieties are W9813,W9742,W9846,Yuhua No.6,Gz414,Gz392and Gz427,35%of the tested cultivars. Varieties susceptible to Aspergillus flavus account for65%. Thereis no significant correlation between the resistance of peanut seed kernels and that of peanut pods toAspergillus flavus. Peanut AFLP analysis indicated that there are some differences in the resistance toAspergillus flavus among different peanut varieties, but resistance, moderate resistance, moderate infectionand high infection peanut varieties can not be accurately identified.
     3. There are significant changes in the activities of peroxidase, catalase, polyphenol oxidase andPhenylalanine ammonia-lyase in peanut seeds of Aspergilus flavus-resistant and sensitive varieties infectedby Aspergilus flavus strains. According to the change trends of enzyme activity, the time when the activity reached the peak, and their relations with the resistance to Aspergilus flavus, resistant and sensitivevarieties can be clearly identified.
     Aspergillus flavus-resistant peanut varieties identified above will provide parental samples for peanutAspergillus flavus resistance breeding.The relationship between enzyme activities and Aspergillusflavus-resistance revealed by the study will provide the theoretical basis for peanut Aspergillusflavus-resistance breeding and Anti-disease gene engineering breeding.
引文
[1] Pettit R E. Yellow Mold and Aflatoxin [A]. In: porter D. M, et al. Compendium of peanut diseases [C].USA: American Phytopathological Society,1984,35-36.
    [2] Moyne A L, Shelby R, Cleveland T E, et a1. Bacillomycin D: an iturin with antifungal activity againstAspergillus flavus[J]. J Appl Microbiol,2000,90(4):622-629.
    [3]赵志强.花生中黄曲霉毒素的预防与去除[J].花生科技,1995,15(2):30-32.
    [4]史军,王金水,刘进玺,等.花生毒素种类及脱毒方法研究进展[J].粮食与油脂,2006,34(2):48-50.
    [5]梁炫强,潘瑞炽,宾金华.花生收获前黄曲霉侵染因素研究[J].中国油料作物学报,2000,22(4):67-74.
    [6]钟耀广.真菌毒素-食品安全学[M].北京:化学工业出版社,2005.
    [7]李槿年.食品中黄曲霉毒素污染及其检测[J].肉品卫生,1997,42(4):24-27.
    [8]潘中华,徐燕芳,成恒嵩.黄曲霉毒素分析方法进展[J].农业环境与发展,1995,12(2):30-34.
    [9]徐进,罗雪云.黄曲霉毒素生物合成的分子生物学[J].卫生研究,2003,32(6):628-631..
    [10]卿中全,于炎湖.黄曲霉毒素对家禽生产性能和健康的影[J].中国饲料,2000,22(3):35-36.
    [11]俞顺章,梁任祥,韦忠亮,等.广西扶绥县原发性肝癌病例对照研究[J].中华预防医学杂志,1998,32(1):56-57.
    [12]肖良,邢卫锋.黄曲霉毒素的危害与控制[J].世界农业,2003,28(7):40-42.
    [13]张吉民,苗华荣,李正超,等.花生加工利用、贸易现状与展望[J].武汉工业学院学报,2002,25(2):104-106.
    [14]张吉民.世界手拣花生仁的贸易与展望(中国油料作物科研进展)[M].北京:中国农业科技出版社,1996.
    [15]康绍忠.新农业科技革命与2l世纪我国节水农业的发展[J].干旱地区农业研究,1998,16(1):11-17.
    [16]姚云游,乔玉兰.花生功能成分及营养价值的研究进展[J].中国油脂,2005,30(9):31-33.
    [17]孙彦浩.国内外花生发展趋势及我国花生发展建议[J].花生科技,1998,12(3):1-3.
    [18]康绍忠.董文召,汤丰收.高油花生育种的前景与发展[J].中国种业,2005,37(7):20-21.
    [19]罗葆兴.花生根瘤与固氮[J].花生科技,1990,10(1):6-9.
    [20]郑亚萍,田云云,李雪英,等.国内外花生科研进展及生产发展动态[J].花生学报,2003,3(增刊):92-95.
    [21]周桂园等.花生种子抗黄曲霉侵染性状遗传控制的研究[J].花生学报,1999,30(3):13-16.
    [22]姜慧芳,王圣玉,任小平.花生种质资源对黄曲霉菌侵染的反应[J].中国油料作物学报,,2003,24(1):23-25.
    [23]梁炫强,潘瑞炽.花生种子胰蛋白酶抑制剂与抗黄曲霉侵染的关系[J].作物学报,2003,29(2):295-299.
    [24]易干军,霍合强.荔枝AFLP分析体系的建立[J].2002,19(6):361-364.
    [25]王圣玉,雷永,李栋,肖达仁,廖伯寿.花生不同贮藏时间对黄曲霉侵染和产毒的影响[J].花生学报,2008,32(11):390-393.
    [26]姜慧芳,王圣玉,任小平.花生种质资源对黄曲霉侵染的反应[J].中国油料作物学报,2002,24(1):23-25.
    [27]孙立君.黄曲霉毒素的危害及防治[J].辽宁畜牧兽医,2004,33(9):17-18.
    [28]张俊勇,徐素荣.黄曲霉毒索毒性及去毒措施[J].中国食物与营养,2001,26(5):46-47.
    [29]吴兰荣.花生黄曲霉毒索污染途径与防除[J].花生科技,2000,23(1):37-39.
    [30]高桥治男.花生曲霉毒素污染途径与防除[J].花生科技,2000,24(1):31-33.
    [31]罗建伟,李荣涛等.臭氧去除粮食中黄曲霉毒素B1的方法研究[J].2003,31(4):23-28.
    [32]李建辉,魏益民,郭波莉等.二氧化氯对花生B族黄曲霉毒素脱毒效果的研究[J].食品科技2009,34(6):237-240.
    [33]何健,曾凡坤.受黄曲霉毒素(AF)污染饲料的利用方法[J].饲料工业,1996,17(10):48-51.
    [34]朱新贵,林捷.几种食品微生物降解黄曲霉毒素作用的研究[J].食品科学,2001,22(10):65-68.
    [35] Liao Boshou, Lei Yong, etal. Aflatoxin Resistance in Bactrial Wilt Resistanct Groundnut Germplasm.International Arachis Newsletter.2003,75:23-27.
    [36] Rao, K. S. and Tulpule, P, G. Varietal differences of groundnut in the production of aflatoxin.Nature(London),1967,214:738-739.
    [37] Doupnik, B. Jr. Aflatoxins produced on peanut varieties previously reported to inhibit production.Phytopathotogy,1969,59:15-54.
    [38] Bhat, R. V. et a1. Aflatoxin production in agricultural commodities: Varieties due to fungal isolates andcrop genotypes and their scope in prevention of aflatoxin contamination. in Proceedings of theSymposium on Biological Approach to Problems inMedicine, Industry and Agriculture, BhabhaAtomic Research Center, Bombay12-14March1974, Bombay, India.
    [39] Aujia, S. S, et a1. The Screening o fpeanut Varieties for the accumulation of aflatoxin and their relativereacrionto the toxigenic isolate of Aspergillus flavus Link, ex fries. Punjab Agricultural UniversityJournal of Reaearch.1978,15:400-403.
    [40] Mehan, V. K, et a1. Varietal resistance in peanut to aflatoxin production. Peanut Science,1987,13:7-l0.
    [41] Wilson, D. M, et a1. Screening peanut genotypes for resistance to aflatoxin accumulation. Proceedingof the American Peanut Reaearch and education Sociely,1990,22:12-16.
    [42]肖达人,王圣玉.花生抗黄曲霉毒素污染研究进展[J].花生科技,1999,(增刊):124-129.
    [43] Mixon, A. C, et a1. Peanut accessions resistance to seed infection by Aspergillus flavus. AgronomyJournal,1973,65:560-562.
    [44] Tsai, A. H and Yeh, C. C. Studies oil aflatoxin contamination and screening for discaseresistance ingroundnuts. Journal of Agricultural Research of China,1987,31(1):79-86.
    [45] Pua, A. R, Medalla, E. C.Screening for resistance to Aspergillus flavus invasion in Deanut. In SeventhAnniversary and Annual Convention of the Pest Control Council of lhePhilippines,8-10May1985.
    [46] Mixon, A. C. Reducing Aspergillus species infection if peanut seed using resistant genotypes. JournalofEnvironmental Quality,1986,(2):101-103.
    [47] Mehan, V. K. Mcdonald, D. Reareach of peanut genotype to seed infection by Aspergillus in field trialsin India. Peanut Science l4(2):17-21.
    [48] Waliyar, F. Aspergillus flavus and A. niger contamination of groundnut in Niger. Proceedings oftheAmerican Peanut Research and Eduction Society,1990,22:28-32.
    [49]周桂元,粱炫强,李一聪,等.抗黄曲霉侵染花生品种的引进鉴定和利用[J].花生学报,2002,3l(2):14-17.
    [50]庄伟建,方树民,李毓,等.花生品种(系)抗黄曲酶筛选鉴定[J].福建农业学报,2007,22(3):261-265.
    [51]周桂元,粱炫强,李一聪,等.抗感黄曲莓侵染花生主要农艺性状的遗传分析[J].花生科技,1999,9(增刊):140-143..
    [52]周桂元,粱炫强.花生种子抗黄曲霉侵染性状遗传控制的研究[J].花生学报,200l,30(3):13-16.
    [53]周桂元,粱炫强,淳一聪,等.抗黄曲霉花生种皮纹理超微结构的研究[J].中国油料作物学报,1999,2l(1):17-19.
    [54]李海英.过氧化物酶同工酶及其活性与大豆灰斑病抗性的关系[J].中国油料作物学报,1998,20(1):83-85.
    [55]徐晓梅,杨署光.苯丙氨酸解氨酶研究进展[J].安徽农业科学,2009,37(31):15-19.
    [56] Vos P, Hongers R, Bleeker M, et a1. AFLP: a new technique for DNA fingerprinting [J]. Nucleic AcidsResearch,1995,23(21):4407-4414.
    [57]王青山,李葱葱.AFLP分子标记技术及应用研究进展吉林[J].农业科学,2005,30(6):29-33.
    [58]杨兆森,李有志.陕西关中花生叶部病害的种类与防治[J].中国油料,1997,19(2):48-50.
    [59]吴献忠,张卫,李荣花等.花生网斑病研究进展[J].莱阳农学院学报,2000,17(4):294-297.
    [60]雷永,廖伯寿,王圣玉等.花生黄曲霉侵染抗性的AFLP标记[J].作物学报,2005,31(10):1349-1353.
    [61]姜慧芳,廖伯寿.抗青枯病花生种质的遗传多样性[J].作物学报,2006,32(8):1156-1165.
    [62]侯慧敏,廖伯寿,雷永等.花生锈病抗性的AFLP标记[J].中国油料作物学报,2007,29(2):195-198.
    [63]肖理慧.芦笋和葎草性别连锁的AFLP分子标记[D].新乡,河南师范大学.2008..
    [64]李书粉.基于ISSR和ITS的木犀属植物亲缘关系及系统分类研究[D].新乡,河南师范大学.2007.
    [65]王玉.棕色蘑菇液体菌种培养基和培养条件的优化[J].中华酿造,2011,(9):138-139.
    [66]黄斌.富集铬的李氏禾对铬的耐性及环境修复[D].广西,桂林理工大学.2011.
    [67]陆宝石.AtGPX3和AtCHX23玉米转基因植株的获得[D].开封,河南大学.2011.
    [68]宋晓越.抗蚜虫PPA基因的小麦转化[D].河北,河北科技大学.2011.
    [69]邵帅.5-磷酸二酯酶产生菌的筛选[D].山东,山东轻工业学院.2011.
    [70]孔祥伟.实验室制作葡萄酒的几点改进[J].生物学教学,2011,33(5):41-43.
    [71]邢素芝.麦田土壤解无机磷细菌的分离、筛选及其解磷效果[J].生物学杂志,2010,29(5):19-21.
    [72]庄伟建等.花生品种(系)抗黄曲霉筛选鉴定[J].福建农业学报,2007,22(3):261-265.
    [73]陈高.黄曲霉侵染前后花生过氧化物酶与过氧化氢酶活性变化的研究[J].山东农业科学,2009,(3):12-14.
    [74]陈迎春.赤霞珠葡萄黄化突变体生理特征及相关基因分析[D].山东,山东农业大学.2011.
    [75]刘勇.不同磁场对过氧化氢酶活性及酶促反应的影响[J].天津大学学报,2009,38(10):898-900..
    [76]原红娟.景天植物叶绿素与过氧化氢酶活性的分析[J].农业与科学,2008,50(6):145-147.
    [77]张福平.影响山竹果皮过氧化氢酶活性因素的研究[J].广东农业科学,2011,38(7):43-47..
    [78]谢奎忠.微型薯氧化物的特性研究[J].长江蔬菜,2009,39(1):33-35.
    [79]梁水美.小麦胚乳特异性多费氧化酶基因RNA干扰载体的构建及遗传转化[D].山东,山东农业大学.2011.
    [80]杨云龙.铜锌对华北落叶松多酚氧化酶活性的影响[J].林业科学,2006,42(2):21-26..
    [81]魏彦飞.几种植物抗黄曲霉基因的克隆及鉴定[D].福建,福建农林大学.2005.
    [82]尹亚兵.增强花生果、种皮黄曲霉抗性基因表达载体的构建及转化[D].福建,福建农林大学.2008.
    [83]肖理慧.芦笋和葎草性别连锁的AFLP分子标记[D].新乡,河南师范大学.2008.
    [84]陈恩成..多重实时定量PCR检测马铃薯主要的真细菌病原菌[D].内蒙古,内蒙古大学.2011.
    [85]丁文勇.红树植物技术研究及遗传多样分析[D].浙江,温州医学院.2011.
    [86]张凯.中国海南、云南两省凋落枯枝暗色丝孢真菌分类研究[D].山东,山东农业大学.2009.
    [87]叶静.三尖杉内生真菌的遗传多样性研究[J].山地农业生物学报,2009,46(2):130-135.
    [88]桑红.枝孢样枝孢霉的研究概况[J].中国真菌学杂志,2010,35(1):57-60.
    [89]江萍,王雪莲,孙向宁等.高温胁迫对文冠果主要抗氧化酶活性的影响[J].江西农业大学学报,2008,30(2):220-225.
    [90]张达,王豫颖,苍晶等.矮化大豆突变体叶片解剖结构及过氧化物酶活性研究[J].东北农业大学学报,2008,39(6):67-72.
    [91]许东河,李东艳,陈于和.盐胁迫对大豆膜透性、丙二醛含量及过氧化物酶活性的影响[J].华北农学报,1993,8(增刊):78-82.
    [92]左瑞雨.乳酸菌和棵草芽孢杆菌对黄曲霉毒素产生菌生长的抑制作用研究[J].河南农业科学,2011,40(3):36-40.
    [93]梁炫强,周桂元,潘瑞炽等.花生种子受黄曲霉侵染后若干生化成分的变化及其与抗性的关系[J].中国油料作物学报,2001,23(2):26-29.
    [94]皇甫加清.镉对南方鲇抗氧化酶系统和脂质过氧化作用的影响[D].重庆,西南大学.2011.
    [95]李瑞平等.硒对汞胁迫小麦幼苗生理特性的影响[J].生态环境学报,2011,20(5):975-979.
    [96]王辉.青枯菌接种后花生抗感2个品种中几种防御性酶活性的变化[D].武汉,中南民族大学.2011.
    [97]吴龙火.5种山羊草对禾谷缢管蚜的抗性鉴定技术及诱导抗性机制研究[D].四川,四川农业大学.2007.
    [98]张必弦等.野生大豆泵丙氨酸解氨酶(PAL)在不同诱导条件下变化规律[J].大豆科学,2011,30(4):43-46.
    [99]孙晓丹.膜夹黄芪苯丙氨酸解氨酶特性的初步研究[J].辽宁林业科学,2010,21(5):20-23.
    [100]梁炫强,潘瑞炽.活性氧及膜质过氧化与花生抗黄曲霉侵染的关系[J].中国油料作物学报,2002,24(4):19-23.
    [101]鞠秀芝,杜胜利,宗兆锋等.AFLP技术及其常见问题与解决方案[J].天津农业科学,2004,10(4):6-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700