植酸酶基因在乳酪杆菌中的高效表达及生化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过电击转化将来自无花果曲霉的植酸酶基因与原核表达载体pIAβ8构建的重组载体pIAβ8-phyA转入乳酪杆菌中,并对转基因乳酪杆菌的培养特性以及分泌的植酸酶进行酶学特性分析。选用不同包埋材料对转基因乳酪杆菌进行包埋,并运用不同的方法进行干燥处理。最后,通过测定乳酸菌对不同抗生素的耐受性及其抑菌作用,为转基因乳酪杆菌在生产中的应用提供依据。
     利用MRS培养基培养乳酪杆菌并制成感受态细胞,之后通过电击转化将含有植酸酶基因的重组表达载体pIAβ8-phyA转入乳酪杆菌中。通过抗生素筛选、植酸酶活力测定以及SDS-PAGE蛋白电泳检测,证明植酸酶基因已成功地在乳酪杆菌中得到表达。转基因乳酪杆菌分泌到细胞内外的植酸酶活力分别达到4.57和21.31 U/ml(P<0.05)。SDS-PAGE蛋白电泳检测,转植酸酶基因乳酪杆菌可表达植酸酶蛋白,其分子量为39.2 kDa。
     对转基因乳酪杆菌分泌植酸酶进行不同温度和pH处理并测定酶活力变化可知,所分泌的植酸酶最适pH为5.0(P<0.05),最适温度为70℃(P<0.05)。通过对转基因乳酪杆菌培养液的pH、干细胞重、光密度值以及活菌数的测定,可知培养基的pH在乳酪杆菌静止培养72 h后达到最低(3.35,P<0.05),干细胞重在培养96 h后达到最高(3.9 mg/ml,P<0.05),光密度值在培养144 h后达到最高(5.89,P<0.05),活菌数在培养48 h后达到最大(1.1×109 CFU/ml,P<0.05)。综合以上指标以及酶活力随时间的变化规律,可以确定转基因乳酪杆菌的最佳收获时间为厌氧培养96 h。
     试验选用海藻酸钠、琼脂、聚乙烯醇和明胶对转基因乳酪杆菌进行包埋,之后运用不同的烘干方法进行干燥处理。结果表明,海藻酸钠在添加量为3%条件下包埋和冻干效果最好,活菌数可达7.55×105 CFU/g。采用琼脂包埋后则具有较好的耐热性,85℃烘干后活菌数保持在1.68×107 CFU/g。
     最后,就乳酸菌对抗生素的耐受性及其抑菌作用进行测定。结果表明,当金霉素和硫酸粘杆菌素的添加量分别为大于0.10%和0.05%时,对乳酸菌生长有显著抑制作用(P<0.05)。另外,研究还证实,乳酸菌及其培养液都对致病性大肠杆菌的生长有显著抑制作用(P<0.05)。
In this experiment,recombinant expression vector pIAβ8-phyA which contains phytase gene from Aspergillus ficuum was transformed into Lactobacillus casei (L. casei) by electroporation , and then the expressed phytase characteristics and incubation condition were analysized.The transgenic L. casei was encapsulated by the different embedding materials to increase its availability and living ability.The ability of the transgenic L. casei to resist the antibiotics was also studied for its application in animal husbandry.
     The competent cells of L. casei were prepared with MRS incubation medium,and then the recombinant expression vector pIAβ8-phyA was transformed into the competent L. casei by electroporation.Through the screening by antibiotics,the positive colonies with phytase activity were selected and incubated.The maximal phytase activities in the supernatant and cells were 21.31 and 4.57 U/ml(P<0.05),respectively.The phytase proteins from the supernatant and cells of the transgenic L. casei were subjected to polyacrylamide gel electrophoresis (SDS-PAGE) for protein analyses,which indicated that the molecular weight of the expressed phytase protein was 39.2 kDa.
     The phytase was used for thermostability and pH determination,the result demonstrated that the optimum pH and temperature of phytase were 5.0 and 70℃(P<0.05),respectively.The analysis of liquid fermentation showed that the pH value of the media got to the lowest value of 3.35 after 72 h incubation,cell dry weight reached the peak of 3.9 mg/ml after 96 h incubation,and cell optical density reached the peak of 5.89 after 144 h incubation,and the living cells reached the peak of 1.1×109 CFU/ml after 48 h incubation,respectively (P<0.05).Through the above analysis,the optimum harvest time was at the 4 th day of anaerobic incubation for the transgenic L. casei.
     The transgenic L. casei was encapsulated by the different embedding materials,such as agar,sodium alginate,polyvinyl alcohol and gelatin,and then the thermostability and availability of the embedded transgenic L. casei were determined.The results indicated that the best embedding conditions were 3% sodium alginate and frozen drying,and the living cells were kept at 7.55×105 CFU/ml.After embedding with the agar,the embedded L.casei had good thermostability at 85℃,and the living cells got to 1.68×107 CFU/ml.
     In order to know the relationship between probiotics and antibiotics ,chlortetracycline and colistin sulfate were used to determine their effects on L. casei growth. The results indicated that the 0.1% chlortetracycline and 0.05% colistin sulfate had significant resistant effect on L . casei growth,respectively(P<0.05).This study also showed that the L. casei and its supernatant had the effect to inhibit proliferation of the pathogenic Escherichia coli.
引文
[1]于炎湖.植酸的抗营养作用及植酸酶在饲料中的应用[J].粮食与饲料工业,1999,2:25~27.
    [2]郭松林,席峰.植酸酶营养学研究进展[J ].国外畜牧学-猪与禽,2000,(1):24~27.
    [3] Sandberg A S,Andersson.Extrusion cooking of a highfiber cereal product.Effects on digestibility and absorption of protein,fat,starch,dietary fiber and phytate in the small intestine[J ].Brit.J.Nutr,1986,55 (2):245~254.
    [4]杜永才,周庆安,何瑞国.植酸的抗营养作用及钝化途径[J].安徽技术师范学院学报,2003,17(3):213~216.
    [5] Simons P C M.Improvement of phosphorusavail ability by micro bialp hytaseinbroilers and pigs[J].Bri t.J.Nutr,1990,64:525.
    [6]楼洪兴,吴建良等.植酸酶提高肉仔鸡生产性能和磷利用率研究[J].饲料工业,1997,8:6~8.
    [7] John G.Phytase effects on mineral utilization in weaning pigs explored[J]. Feedstuffs,Jan, 1996,22 :15.
    [8] Jongbloed A W,Kemme P A.Effect of pelleting mixed feedson phytase activity and the apparent absorb ability of phosp horusandcalcium in pigs[J].Anim.Feed Sci.Technol,1990,28:233~242.
    [9] Schoner E T,Hoppe P P,Schwarz G,Wiesche H.Comparison of microbial phytase and in organic phosphatein male chickens:influence on performance,mineral retention,and diet arycalcium[J].A nim.Physiol. A nim.Nutr,1993,69:235~244.
    [10] Schoner E T,Hoppe P P,Schwarz G,Wiesche H.Comparison of microbial phytase and inorganic phosphatein male chickens:influence on performance,mineral retention,and dietary calcium[J].Anim.Physiol.Anim.N utr,1993, 69:235~244.
    [11] Qian H,Kornegay E T,Denbow D M.Phosp horus equivalence of microbial phytase in turkey diets as influenced by calcium to phosphorus ratios and phosphorus levels[J].Poultry Sci. 1996,75:69~81.
    [12] Yi Z,Kornegay E T,Ravindran V,Denbow D M.Improving phytate phosphorus avail ability in orn and soybean meal for broiler susing micobial phytase and calculation ofphosporus equivalency values for phytase[J]. Poultry Sci,1996,75:240~249.
    [13]张兴会.植酸酶在家禽饲料中的应用[J].中国饲料,1999,(20):20~22.
    [14]刘梅,王林云,史挺等.植酸酶的研究进展[J].辽宁畜牧兽医,2003,2:35~37.
    [15] Simons P C,Versteegh H A J.Improvement of phosphorus availability by microbial phytase in broilers and pigs[J].Brit J Nutri,1990,64:525~540.
    [16] Eeckhout W,Paepe M.Total phosphorus,phytate-phosphorus and phytase activity in plant feedstuffs[J].Animal Feed Sci.Technol,1994,(47):19~29.
    [17] Ravindran V,Bryden W L,Kornegay E T. Phytates:Occurrer bioavailability and implications in poultry nutrition[J].Poultry Avian Biol Rev,1995,(6):125~143.
    [18]蒋守群,吴天星.植酸酶的研究进展.动物营养学报,1999,11(3):1~11.
    [19]江均平.热稳定性的曲霉植酸酶.微生物学报,1996,36(6):476~478.
    [20] Luis P.Gene cloning purification and characterizationof a heat-stable phytase from the fungus aspergillus fumigatus. Applied and Environment Microbiology.1997,(5):1696~1700.
    [21] Piddington C S,Houston C S,Paloheimo M.The cloning and sequence of the genes encoding phytase(phyA)from Aspergillus niger var.awamori[J].Gene,1993,(133):55~62.
    [22] Ullah A H J,Sethumadhavan K,Edward J,et al. Fungal phyA gene expressed in potato leaves produces active and stable phytase[J].Biochemical and Biophysical Research Communications.2003,(306):603~609.
    [23] Ullah A H J,Sethumadhavan K,Edward J,et al. Cloned and Expressed Fungal phyA Gene in AlfalfaProduces a Stable Phytase[J].Biochemical and Biophysical Research Communications,2002,(290):1343~1348.
    [24]姚斌,张春义,范云六等.产植酸酶的黑曲霉菌株筛选机及其植酸酶及其植酸酶基因克隆[J].农业生物技术学报,1998,6(1):1~6.
    [25]倪宏波,曲进,石星明等.植酸酶的分子生物学特性及应用前景研究进展[J].黑龙江八一农垦大学学报,2005,17(3):62~65.
    [26]郭兴华等.益生乳酸菌-分子生物学及生物技术[M].科学出版社,北京:2008,3~52.
    [27] Klaenhammer T,Altermann E,Arigoni F,et al.Discovering lactic acid bacteria by genomica[J].Antonie Van Leeuwenhoek,2002,82(1~4):29~58.
    [28] Lin C F,Chung T C.Cloning of erythromycin-resistance determinants and replication origins from indigenous plasmids of Lactobacillus reuteri for potential use in construction of cloning vectors[J].Plasmid,1999,42(1):31~41.
    [29] Yammamoto N,Takano T.Islation and characterization of a plasmid from lactobacillus helveticus CP53[J]. Biosci Biotechnol Biochem,1996,60(12):2069~2070.
    [30] Klein J R,Ulrch C,Plappr R.Characterization and sequence analysis of a small cryptic Lactobacillus curvarus LTH683 and its use for construction of new lactobacillus cloning vectors[J].Plasmid,1993,30(1):14~29.
    [31] Park W J,Lee K H,Lee G M,et al.Characterization of pC7 from Lactobacillus paraplantarum C7 derived from Kimchi and development of lactid acid bacteria-Escheria coli shuttle vector[J].Plasmid,2004,52(2):84~88.
    [32] Le L Y,Nouaile S,Commissaire J,et al.Signal peptide and propeptide optimization for heterologous protein secretion in Lactobacillus lactis[J].Appl Environ Microbiol,2001,67(9):4119~4127.
    [33] Savijoki K,Kalala M,Palva A.High leval beterologous protein production in Lactobacillus using a new secretion based on the Lactobacillus brevis S-layer signals[J].Gene,1997,186(2):255~262.
    [34] Simon D,Rouault A.Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis[J]. Biochimie,1988,70(4):559~566.
    [35] Sanders M E,Nicholson M A.A method for genetic transformation of nonprotoplasted Streptococcus lactis[J].Appl Environ Microbiol,1987,53(8):1730~1736.
    [36]王建华,李桂杰.安全饲料添加剂—动物微生态制剂研发现状与展望[C].中国首届农业生物技术发展论坛文集.北京:中国农业出版社,2003,188~195.
    [37] Tanaka H,Masalose M,Velky I A.Diffusion characteristics of subtances in Ca-alginate beads[J].Biotechnology and bioengineering.1984,26(1):53~58.
    [38]刘瑛华,赵进宝,吕秀芳.微胶囊包埋技术在益生菌制品中的应用[J].食品与机械,2004,20(2):58~60.
    [39]杨梅,陈霞,孙志宏.乳酸菌的抗生素抗性[J/OL].2008-06-06 , http ://www.bio149.cn/html/Contend/03114562009.html.
    [40] Dower W J F,Ragsdale C W.High efficiency transformnation of E.coli by high voltage 64electroporation[J]. Nucleic Acids Res,1988,16:6127~6145.
    [41] Holo H,Nes I F. High-Frequency Transformation,by Elcetroporation of Lactobacillus lactis subsp cremoris Grown with Glycine in Osmotically Stabilized Media[J].Appli Environ Microbiol,1989,55(12):3119~3123.
    [42] Miller J F,Dower W J,Tompkins.Proc Natl Acid Sci USA,1988,85:856~860.
    [43] Augustin J,Gotz F.FEMS Microbiol.Lett 1990,66:203~208.
    [44] Shigekawa K,Dower W J.Biotechniques,1988,6:742~751.
    [45] Mullaney E J,Daly C B ,Ullah A H J.Adbances in phytase research[J].Advances Appl.Microbiol,2002,47:157~159.
    [46] Ullah A H,Sethumadha,Mullaney E J,et al. Cloned and expressed fungal phyA gene in alfalfa produces a stable phytase[J].Biochem Biophys Res Commun,2002,290(4):1343~1348.
    [47] Ullah A H. In potato leaves produces active and stable phytase[J]. Biochem Biophys Res Commun,2003,306(2):603~609.
    [48] Yangming H,Dacid B W.Expression of an Aspergillus niger phytase gene(phyA)in Saccharomyces cerevisiae[J]. Appl.Environ.Microbiol.1999,65(5):1915~1918.
    [49] Hegeman J C E,Hanlon R W,Lacy G H,Hanlon M D,Denbow M D,Grabau E A.Secretion of active recombinant phytase from soybean cell-suspension cultures[J].Plant Physiol.1997,114:1103~1111.
    [50] Pen J,Verwoerd T C,Paridon P A,Beudeker R F,et al.Phytase containing transgentic seeds as a novel feed additive for improved phosphorus utilization[J].Bio.Technology,1993,11:811~814.
    [51] Hartingsveldt V,Eikl W C M J,Harteveld G M,et al.Cloning,characterization and overerpression of the phytase-encoding gene(phyA) of Aspergillus niger[J].Gene,1993,127:87~94.
    [52] Verwoerd T C,Paridon P A,Ooyen A J J V,Lent J W M ,Hoekema J W M, et al. Stable accumulation of Aspergillus niger phytase in transgentic tobacco leaves[J].Plant Physiol. (Rockville)1995,109:1199~1205.
    [53] Dvorakova J. Phytase:source,preparation and exploitation[J]. Folia Microbiol,1998,43:323~338.
    [54] Shimizu M.Purification and characterization of phytase from bacillus subtills (netto)N-77[J].Bicsci.Biotech.Biochem.1992,56:1266~1269.
    [55]周顺伍.动物生物化学[M].中国农业出版社,北京:1999,225~232.
    [56] Kui Hong,an Ma,Meiqiu Li.Solid-state fermentation of phytase from cassava dregs[J].Appli. Biochem. Biotech.2001,91-93:777~785.
    [57] Wyss M,Passamontes L,Remy R,et al.Appli.Environ. Microbiol,65:4446~4451.
    [58] Pasamontes L, Haiker,Wyss M M,Tessier M, van Loon A P G H.Gene cloning, purification,and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus.Appl Environ Microbiol,1997,63:1696~1700.
    [59] Berka R M,Rey M W,Brown K M,Byun T,Klotz AV.Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Appl. Environ. Microbiol,1998,64:4423~4427.
    [60] Wyss M R, Brugger A, Kronenberger R R,Fimbel R,Oesterhelt G,Lehmann M,Loon A P G M. Biochemical characterization of fungal phytases(myo-inositol hexakisphosphate phosphohydrolases):catalytic properties[J].Appl. Enbiron.Mrcrobiol,1999,65:367~373.
    [61] Mandbiwala T N,Khire J M.Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation[J]. JInd Microbiol Biotechmol,2000,24:237~243.
    [62] Kerovuo J,Lauraeus M,Numinen P,Kalkkinen N,Apajalahti J.Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755.Lett[J]. Appl.Environ.Microbiol,64:2079~2085.
    [63]杨凤.动物营养学[M].中国农业出版社,北京:1999,143~157.
    [64] Kurmann J A,Rasic J L.The health potential of products containing bifidobacteria. Therapeutic Properties of Fermented Milks[M]. London:Elsevier Science Pulishers Ltd, 1991,117~158.
    [65] Guarner F,Schaafsma G J. Probiotics[J].Int.J.Food Microbiol,1998,39:237~238.
    [66] Rao A V,Shiwnarain N,Maharaj J.Survial of microencapsulated Bifidobacterium pseudolongum in simulated gastric and intestinal juices[J].Food Sci.Technol.J,1989,22(4):345~347.
    [67] Singh B,Yousef A E. Microencapsulation of bifidobacterium longum for use in food[M]. IFT annual meeting,1996,book of abstracts,p212.
    [68]张篪.双歧杆菌微胶囊及其制造方法[P]. 1995,CN-1113515A.
    [69]杨基础,刘佳.双歧杆菌固定化的研究[J].微生物学通报,1996,23(1):35~36.
    [70]刘丽英,张日俊.乳酸菌类微生态制剂微胶囊化的研究进展[J].饲料工业,2003(6):16~18.
    [71]卢行安,陈明生,袁杰利,康白.乳酸菌冷冻干燥工艺的研究进展[J].中国微生态学杂志,2001,Vol 13,Num 1:58~61.
    [72]王里奥,崔志强,袁辉,胡刚,张军.固定化微生物处理甲醇废水的包埋条件优化选择[J].重庆大学学报(自然科学版),2005,28(6):113-117.
    [73]贾英民.食品微生物学[M].北京:中国轻工业出版社,2003,177-178.
    [74]陆英,陈卫,田丰伟等.利用热激处理提高益生菌Lactobacillus casei BD-11抗热性研究[J].中国乳品工业,2006,34(7):17.
    [75]张兰威,鄂志强.乳酸菌增菌培养基筛选及干燥保护剂的选择[J] .中国乳品工业,2000,28(2):8.
    [76] Corcoran B M,Ross R P,Fitzgerald G F.Enhanced survival of GroESL-Overproducing Lactobacillus paracasei NFBC338 under stressful conditions induced by Drying.Appl Environmental Microbiology,2006,72(7):5104~5107.
    [77]靳慧杰.细菌素及其在乳制品中的应用[J].中国乳业,2007,1:35~36.
    [78]邹鹏.产细茵素乳酸菌分离鉴定及培养条件的研究[D].黑龙江:黑龙江大学硕士学位论文,2006,6:11~12.
    [79]吴春梅.酸马奶酒中乳酸菌抑菌特性稳定性的研究[D].内蒙古:内蒙古农业大学学位论文,2004,6:3~5.
    [80]黄红,张伶俐,辛学琼.浅谈乳酸菌素的作用机理及应用[J].职业与卫生病伤,2004,l9(3):229.
    [81]饶正华,李丽蓓,高生.细菌素在饲料中的应用[J].中国饲料,2001,24:17~18.
    [82] Villami L L,Figuera S A,Novo A B.Immunomodulatory effects of nisin in turbot[J].Fish Shellfish Immunol,200 3,14(2):157~169.
    [83]张凤莲,付惠玲.乳酸菌素治疗消化性溃疡的临床分析[J].中国微生态学杂志,2003, 1 5(2):105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700