TEA CO_2激光器的大体积放电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能脉冲CO_2激光器由于近年兴起的激光推进、激光强场物理等应用的需求,又一次得到了人们的重视。实现稳定、均匀的大体积放电,是获得高单脉冲能量的必经途径。
     本文较为详尽的论述了在大放电体积下TEA(Transversely Excited Atmospheric)CO_2激光器的放电理论与实验研究结果。主要从放电电极、预电离方式、放电电路、放电发展过程和放电发光光谱分析出发,旨在优化放电结构,提高高气压大体积下的放电稳定性。
     从理论上对TEA CO_2激光器的均匀场放电电极进行了研究。利用有限元计算方法,计算并讨论了均匀场电极中电极面型、电极板安装结构和电极板厚度对实际电场分布影响。根据放电等离子体辉光分布,我们认为电极表面的电场强度分布,仅对放电的初始发展具有影响,而放电区中央的电场分布以及预电离强度,对最终放电区的均匀性具有决定性的影响。
     对影响小信号增益的各种因素进行了实验研究。系统地讨论了电路因素(放电区结构、放电电路、充电电压等)和非电路因素(气体成分、工作气压、种子气体等)对小信号增益的基本影响规律。
     从预电离技术和均匀场电极方面综合考虑,对预电离结构进行了优化。比较了多种电极和预电离结构组合的放电效果,其中采用近罗可夫斯基电极和紧密排列火花针预电离的组合方式能够获得更宽的放电区域和更高的小信号增益。
     使用放电电压、电流波形以及放电区小信号增益系数作为评价手段,对Marx高压脉冲发生器放电电路进行了实验分析和改进。实验研究发现,储能相同的条件下,Marx高压脉冲发生器的结构和参数能极大地影响注入效率。在放电电路中采用峰值电容提高了初始预电离强度,最佳峰值电容与储能电容比为Cp/Cs=0.075。最终采用的单级储能电容为0.5μF的电阻隔离型三级Marx高压脉冲发生电路,对无氦工作气体,小信号增益系数最大可达3.2%cm~(-1)。
     为了了解放电的微观发展过程,利用ICCD相机对脉冲CO_2激光器的放电区进行观测,获得了完整的放电辉光时空发展过程,并且利用发射光谱法对TEA CO_2激光器放电致等离子体发光光谱进行了诊断。从实验结果来看,TEA CO_2激光器中放电辉光强度、等离子体发射光谱强度和放电电压波形之间存在对应关系,都随放电电压波形而同步变化。根据测得的氮分子第二正带系发射光谱的顺序带组进行了等离子体的振动温度的拟合和计算,所得的振动温度范围在3300K~4100K之间。
     利用本论文的研究成果,成功实现70mm和100mm放电间距的高气压稳定放电。采用电感镇流紧密排列火花塞预电离技术,近似Rogowski-Ernst混合电极,在4L的放电体积里,最大单脉冲能量达到了169J的水平。
Recently,studies on high power pulsed CO_2 laser become active again due to the newly growing applications such as laser propulsion and opto-electronic countermeasures. Stable and uniform large aperture discharge is the key technology to obtain high pulsed energy.
     In this dissertation,the theoretical and experimental results of large aperture discharge are discussed in detail.In order to optimize discharge configuration and obtain stable large aperture discharge,the effects of electrode profiles,preionization methods,discharge circuit have been studied respectively.
     Firstly,the uniform-field electrode of TEA CO_2 laser is analyzed theoretically.The effects of electrode profile,thickness and installing structure on the distribution of electric field are calculated and discussed.Compared with the discharge photos,it can be concluded that the initial development of discharge may be influenced by the distribution of electric field on the electrode surface,while the uniformity in the whole pulsed discharge process mainly depends on the distribution of electric field on the central area and the preionization.
     Secondly,the factors influencing small signal gain performance of TEA CO_2 laser are studied experimentally.The effects of discharge zone configuration,discharge circuit,gas composition,pressure and additives on small signal gain have been obtained.
     Thirdly,considering both preionization method and electrode profile,the preionization configuration is optimized.The discharge characteristics of several combinations of electrode and preionization are compared,in which the combination of plate-arc electrode and dense spark preionization show the best performance.
     Then,the modification of pulse discharge circuit is studied experimentally to improve the discharge and gain performance.It reveals that with the same storage energy,the parameters of Marx high voltage pulse generator circuits have an important influence on the injection efficiency.Using peaking capacitor can improve the initial preionization strength, the optimized ratio of peaking capacitor to charging capacitor is 0.075.The discharge circuit of resistance-isolated three-stage Marx high voltage pulse generator with 0.5μF capacitance each stage gives good results.When helium-free gas mixture is used,the highest small-signal gain coefficient reaches 3.2%cm~(-1).
     In order to obtain the microcosmic development of discharge,time-resolved photos of discharge plasma taken by ICCD camera are analyzed.Quantitative data on the spatial and temporal development of glow discharge are given.The emission spectra of discharge plasma are also measured and analyzed.It reveals that the intensity of discharge glow and the intensity of emission spectra are correspondent with the waveform of discharge voltage, they are both variable with the change of discharge voltage.Through the analysis of the second positive system of N_2,the vibrational temperature is calculated by sequence band method.The vibrational temperature varies in the range from 3300 K to 4100 K.
     Finally,applying the research results obtained in this thesis,stable discharge is established successfully in the discharge zone with the aperture of 70 mm and 100 mm.For a discharge construction with plate-arc electrode and dense spark preionization,169 J pulse energy was obtained from a discharge volume about 4 L.
引文
[1]C.K.N.Patel.Interpretation of CO_2 optical maser experiments.Phys.Rev.Lett.,1964,12(21):588-590
    [2]T.F.Deutsch,F.A.Horrigan,R.I.Rudko.CW operation of high-pressure flowing CO_2 lasers.Appl.Phys.Lett.,1969,15(3):88-91
    [3]A.J.Beaulieu.Transversely excited atmospheric pressure CO_2 laser.Appl.Phys.Lett.,1970,16(2):504-505
    [4]E.T.Gerry.Gasdynamic lasers.IEEE Spectrum,1970,(11):51-58
    [5]Richardson M C,Alcock A J,Leopold K et al.A 300 J multigigawatt CO2 laser[J].IEEE Journal of quantum electronics,1973,9(2):236-243
    [6]J.L.Lachambre,J.Maefariane,G.Otis et al.A transversely Rf-excited CO_2waveguide laser.Appl.Phys.Lett.,1978,32(10):652-653
    [7]C.R.Chatwin,D.W.Mcdonald,B.F.Scott.Design of a high P.R.F.carbon dioxide laser for processing high damage threshold materials.SPIE 1989,1042:32-40
    [8]C.Yamanaka.Super high power laser systems and their application.SPIE,1999,3886:2-15
    [9]M.Miki,A.Wada,T.Shindo.Model experiments of the laser-triggered lightning using an intense CO_2 laser pulse.SPIE,2000,3886:680-690
    [10]G.Schweizer,L.Wemer.Industrial 2kW TEA CO_2 laser for paint stripping of aircraft.SPIE,1994,2502:57-62
    [11]赵广福.光电对抗技术平评述.红外技术,1996,18(2):13-19
    [12]Willy L.Bohn and Wolfgang O.Schall.Laser propulsion activities in Germany.Beamed energy propulsion:First international symposium on beamed energy propulsion,AIP Conf.Proc.2002,664,79-94.
    [13] H. Seguin, J. Tulip. Photoinitiated and photosustained laser. Appl. Phys. Lett., 1972, 21(9): 476-475
    [14] Manoj Kumar, Ashish K. Nath. Optimizaition study of an ultraviolet preionized TEA CO_2 laser. Optical Engineering, 1994, 33(6): 1886-1888
    [15] R. L. Carlson, J. P. Carpenter, D. E. Casoerson et al. A 15 TW Carbon Dioxide laser-fusion facility. IEEE Journal of Quantum Electronics, 1981,17(9): 1662-1678
    [16] C. Yamanaka, S. Nakai, M. Matoba et al. The LEKKO VIII CO_2 gas laser system. IEEE Journal of Quantum Electronics, 1981,17(9): 1678-1688
    [17] V. F. Tarasenko, V.M. Orlovskii. High-energy CO_2 lasers pumped by e-beam-controlled discharge with different pulse durations. Proceedings of SPIE, , 1997, 2987:62-67
    [18] G. Renz, M. Jung, W. Mayerhofer, et al. Pulsed CO_2 laser with 15 kW average power at 100Hz rep-rate, in: XI International Symposium on Gas Flow and Chemical Lasers and High Power Laser Conference. H. J. Baker, ed. Proc. SPIE, 1997,3092: 114-117
    [19] W. Mayerhofer, E. Zeyfang, W. Riede. Design data of a repetitively pulsed 50 kW multigas laser and recent experimental results. SPIE, 1998, 3574: 644-648
    [20] W. L. Bonn and W. O. Schall. Laser propulsion activities in Germany. in: CP664, Beamed Energy Propulsion: First International Symposium on Beamed Energy Propulsion, A.V. Pakhomov. ed., 2003. 79-91
    [21] L. N. Myrabo. Brief history of the lightcraft technology demonstrator project. In :CP664, Beam energy propulsion: First International Symposium On Beamed Energy Propulsion, A.V. Pakhomov. ed., 2003. 49-60
    
    [22] Pulsed Laser Vulnerability Test System, http:// helstf-www.wsmr.army.mil
    [23] L. N. Myrabo, et al. Laser-boosted light sail experiments with the 150 kW LHMEL II CO_2 laser. SPIE, 2002, 4760:774-798
    [24] A. V. Rodin, V. G.Nanmov, A. F, Nastoyashchii et al. High energy pulsed repetitive CO_2 laser for lightcraft experiments.Beamed Energy Propulsion:First International Symposium on Beamed Energy Propulsion,A.V.Pakhomov.ed.2003.612-619
    [25]V.D.Bulaev,V.S.Gusev,I.P Zhigan,et al.The experimental laser facility based on the high-power repetitively-pulsed e-beam-sustained CO_2 laser.Beam energy propulsion:Third International Symposium on Beamed Energy Propulsion,A.V.Pakhomov.ed.2005.361-372
    [26]Igor V.Pogerelsky,Ilan Ben-Zvi,Marcus Babzien et al.The first picosecond terawatt CO_2 laser.SPIE,1998,3683:16-24
    [27]V.V.Apollonov,K.Kh.Kazakov,N.V.Pletnyev et al.Wide aperture picosecend CO_2 laser system.SPIE,1998,3343:750-758
    [28]V.V.Apollonov,K.Kh.Kazakov,N.V.Pletnyev,et al.Towards 1 TW train of 10 tm picosecond laser pulses.SPIE,2000,3889:351-357
    [29]V.V.Apollonov.High-power self-controlled volume-discharge based molecular lasers.Opt.Eng.,2004,43(1):1-18
    [30]http://www.gpi.ru/hpl/pulse.htm
    [31]V.V.Apollonov.High power self-controled volume discharge based molecular lasers.Central European Journal of Physics,2003,4:1-47
    [32]R.T.Brown.Mini-TEA 1000Hz CO_2 laser pulse.Appl.Opt.,1984,23(15):2485-2487
    [33]K.Midorikawa,H.Hatanaka,M.Obara,et al.A 1kHz repetititon-rate 500 W CO_2TEA laser employing solid-state pulse power conditioning.Meas.Sci.Technol.,1993,4:388-391
    [34]S.Wieneke,S.Born,W.Viol.Multikilohertz TEA CO_2 laser driven by an all-solid-state exciter.SPIE,2000,4184:18-22
    [35]蔡英时,楼棋洪,丁爱臻.重复脉冲光预电离TEA CO_2激光器及其特性.激光,6(2),1979:22-25
    [36]Wan Chongyi,Liu Shiming,Jinwen Zhou et al.High-repetition rate industrial TEA CO_2 laser with output power of 1.5kW.SPIE,1995,2502:87-94
    [37]Chongyi Wan,Yanning Yu,Yan Lu et al.Rotating spark gap switched discharge TEA CO_2 laser with average power up to 12kW.SPIE,2005,5777:426-432
    [38]柯常军,谭荣清,郑义军,等.100J侧面滑闪预电离TE CO2激光器.中国激光,2006,33(8):1009-1012
    [39]Y.C.Qu,F.M.Liu,X.Y.Hu et al.Miniature high-repetition-rate TEA CO_2 laser with surface-wire-corona preionization.Infrared Physics & Technology,2000,41:139-142
    [40]李小芬.TEA CO_2激光器放电特性及电源系统的研究:[硕士学位论文].武汉:华中科技大学图书馆,2004
    [41]J.A.Harrison.A computer study of uniform-Field Electrodes,Brit.J.Appl.Phys.,1967,18:1617-1627
    [42]T.Y.Chang.Improved uniform-field electrode profiles for TEA CO2 laser and high-voltage application[J].Rev.Sci.Instrurn.,1973,44(4):405-407
    [43]G.J.Ernst.Uniform-field electrodes with minimum width.Opt.Commun.,1984,49(4):275-277
    [44]侯冬兰.高功率气体激光器光束整形:[硕士学位论文].武汉:华中科技大学图书馆,2003
    [45]陈冰.TEA CO_2激光器放电方式研究:[硕士学位论文].武汉:华中科技大学图书馆,2003
    [46]赵小云.高重复率脉冲TEA CO_2激光器电源系统的研究:[硕士毕业论文].武汉:华中科技大学图书馆,2003
    [47]赫光生,雷仕湛等.激光器设计基础.上海:上海科技出版社,1979.180-182
    [48]J.I.Levatter,S.C.Lin.Necessary Conditions for the Homogeneous Formation of Pulsed Avalanche Discharge at High Gas Pressures.J.Appl.Phys.,1980,51(1):210-222
    [49]杨津基.气体放电.北京:科学出版社,1983.182-186
    [50]丘军林.气体电子学.武汉:华中理工大学出版社,1999.60-61
    [51]A.J.Palmer.A Physical Model on the Initiation of Atmospheric-pressure Glow Discharges.Appl.Phys.Lett.,1974,25(3):138-140
    [52]L.E.Kline,L.J.Denes.Investigations of Gtow Discharge Formation with Volume Preionization.J.Appl.Phys.,1975,46(4):1567-1574
    [53]楼祺洪,徐捷,傅淑芬等.脉冲放电气体激光器.北京:科学出版社,1993:391-420
    [54]D.C.Mcken,H.J.Seguin,J.Tulip.Photoionization Parameters in the Carbon Dioxide Laser Gases.IEEE J.Quantum Electron,1976,12(8):470-482
    [55]R.V.Babcock,I.Liberman,W.D.Partlow.Volume Ultraviolet Preionization from Bare Sparks.IEEE J.Quantum Electron,1976,12(1):29-34
    [56]S.J.Scott,A.L.S.Smith.Ultraviolet Photoionization in TEA Lasers.J.Appl.Phys.,1988,64(2):528-536
    [57]O.P.Judd,J.Y.Wada.Investigations of a UV Preionized Electrical Discharge and CO2 Laser.IEEE J.Quantum Electron,1974,10(1):12-20
    [58]R.V.Babcock,I.Liberman,W.D.Partlow.Volume Ultraviolet Preionization from Bare Sparks.IEEE J.Quantum Electron,1976,12(1):29-34
    [59]B.Norris,A.L.S.Smith.Compact Sealed Photopreionized TEA CO_2 Laser Without Heterogeneous Catalysis or Gas Recycling.Appl.Phys.Lett.,1979,34:386-386
    [60]N.H.Burnett,A.A.Offenburger.Simple Electrode Configuration for UV Initiated High-Power TEA Laser Discharges.J.Appl.Phys.1973,44(8):3617-3618
    [61]H.Seguin,J.Tulip.Photoinitiated and Photosustained Laser.Appl.Phys.Lett.,1972,21(2):416-415
    [62]H.M.Lamberton,P.R.Pearson.Improved Excitation Techniques for Atmospheric Pressure CO_2 Lasers.Electron.Lett.,1971,7:141-142
    [63]G.R.Ernst,A.G.Boer.Construction and Performance Characteristics of A Rapid Discharge TEA CO_2 Laser.Opt.Commun.,1978,27:106-110
    [64]V.Hasson,H.M.yon Bergrnan.Simple and Compact Photopreionization Stabilized Excimer Lasers.Rev.Sci.Instrum.,1979,50(2):1542-1544
    [65]K.R.Rickwood.A Semiconductive Preionizer for Transversely Excited Atmospheric CO_2 Lasers.J.Appl.Phys,1982,53(4):2840-2842
    [66]A.A.Serafetinides,A.D.Papadopoilos,K.R.Rickwood.SiC preionised TEA nitrogen and carbon dioxide lasers.J.Phys.E:Sci.Instrum.,1987,20:917-920
    [67]V.V.Apollonov,K.Kh.Kazakov,N.V.Pletnyev et al.Wide aperture picosecend CO_2 laser system.SPIE,1998,3343:750-758
    [68]Witteman W J.The CO_2 laser[M].London:Springer-Verlag,1987:170-171
    [69]T.Y.Chang.Improved uniform-field electrode profiles for TEA CO_2 laser and high-voltage application[J].Rev.Sci.Instrum.,1973,44(4):405-407
    [70]Gerard J.Ernst.Compact uniform field electrode profiles.Optics Communications,1983,47(1):47-51
    [71]I.Leyva and J.M.Guerra.A compacted Ernst-electrodes profile for pulsed high-pressure lasers.Meas.Sci.Technol.,1999,10:N1-N2
    [72]E.A.Stappaerts.A novel analytical design method for discharge laser electrode profiles.Appl.Phys.Lett.,1982,40(12):1018-1019
    [73]F.Flora,L.Mezi.New techniques for compact discharge electrodes design.Rev.Sci.Instrum.,1994,65(12):3639-3645
    [74]V.V.Apollonov.High power self-controlled volume-discharge based molecular lasers[J].Ont.Eng.2004.43(1):1-18
    [75]梁昆淼.数学物理方法(第三版).北京:高等教育出版社,1998.19
    [76]胡嗣柱,徐建军.数学物理方法解题指导.北京:高等教育出版社,1997.385
    [77]J.M.Elizondo,J.W.Benze,W.M.Money,and J.G.Small.High performance electrode profile generation mothod[J].Rev.Sci.Instrum.,1985,56,532-534
    [78]绳宇纲,万重怡.三维均匀场电极的设计[J].中国激光.2000,A27,1093-1096
    [79]赵翔,左都罗,卢宏等.TEA CO_2激光器几种放电电极的比较[J].强激光与粒子束.2006,18(4),569-574
    [80]谈克雄,薛家麒.高电压静电场数值计算.北京:水利电力出版社.1990,1-66
    [81]李适民等.激光器件原理与设计.第一版.北京:国防工业出版社,1998
    [82]B.S.Patel.Role of Helium in TEA CO_2 lasers.IEEE Journal of Quantum Electronics,1973,11:1160-1161
    [83]R.Marchetti,E.Penco and G.Salvetti.Sealed,miniaturized,coma-preionized,high-repetition-rate TEA CO_2 laser using Hydrogen buffered gas mixtures
    [84]P.W.Pace and M.Lacombe.A sealed high-repetition-rate TEA CO_2 laser.IEEE Journal of Quantum Electronics,1978,QE-14(4):263-27
    [85]P.E.Dyer and B.L.Tait.Miniature 250Hz,TEA CO_2 laser using H2 buffered gas mixture.J.Phys.E:Sci.Instrum.,1983,16:467-469
    [86]H.J.Seguin,J.Tulip and Don C.Mcken.Ultraviolet photoionization in TEA lasers.IEEE J.Quantum Electron.1974,QE-10(3):311-319
    [87]奚惠江,刘金授,陈宗柱等.紫外预电离TEA CO_2激光器放电特性的研究.激光与红外,1989,19(3):34-37
    [88]T.Y.You,W.S.Seow,W.O.Siew et al.Synchronization of ultraviolet preionization in a Marx-driven TEA CO_2 laser.Optics & Laser Technology,1995,27(3):163-166
    [89]T.Y.Tou,K.K.Tham,W.O.Siew et al.Circuit modeling of a two-satege Blumlein-driven TEA N_2 laser.Meas.Sci.Technol.,1998,9:1247-1251
    [90]王新新,张卓,肖如泉.重复频率Marx发生器的充电回路.高电压技术.1997,23(1):37-39
    [91]H.Houtman,A.Cheuck,A.Y.Elezzabi and etc.High-speed circuits for discharge lasers and high-voltage applications.Rec.Sci.Instrum,1993,64(4):839-853
    [92]D.G..Pellinen,M.S.Di Capua,S.E.Sampayan and etc.Rogowski coil for measuring fast,high-level pulsed currents.Rev.Sci.Instrum.,1980,51(11):1535-1540
    [93]F.E.Sanz,J.M.Guerra Perez.Peaking capacitor in an incomplete corona surface discharge preionized TEA CO_2 laser,IEEE J.Quantum Electronics.,1991,27(4):891-894
    [94]Myrabo L N.Brief History of the Lightcraft Technology Demonstrator(LTD)Project[A].AIP Conference Proceedings[C].2003,664:49-60.
    [95]Pakhomov A V,Thompson M S,Gregory D A.Laser ablation for space propulsion:the concept and its dynamic characteristics[A].Pacific Rim Conference on Lasers and Electro-Optics,CLEO[C].2001,1:I314-I315.
    [96]Macheret S O,Shneider M N and Miles R B.Modeling of air plasma generation by repetitive high-voltage nanosecond pulses[J].IEEE Transactions on plasma science,2002,30(3):1301-1314
    [97]Osipov V V and Lisenkov V V.Development of a Self-sustained Gas Volume Discharge[J].Gas Discharge Plasma,2000,70(10):27-33.
    [98]李小芬,左都罗,程祖海.紫外预电离TEA CO_2激光器放电过程的数值模拟激光技术,2004,28(5):476-479
    [99]Z.D.Kang,Y.K.Pu.Molecular nitrogen viberational temperature in a inductively coupled plasma.Chin.Phys.Lett.,2002,19(2):211-233
    [100]E.M.Hollmann,A.Yu.Pigarov measurement and modeling of molecular ion concentrations in hydrogen reflex-arc discharge.Physics of Plasmas,2002,9(10):4330-4339
    [101]董丽芳,刘峰,李树锋等.大气压氩气/空气介质阻挡放电中分子振动温度.光谱学与光谱分析,2006,26(5):802-804
    [102]Kang,ZD,Pu Yi-kang.Molecular nitrogen vibrational temperature in an inductively coupled plasma.Chin.Phys.Lett.2002,19(2):211-213
    [103]G.Herzberg.分子光谱与分子结构.(第一卷).王鼎昌.北京:科学出版社,1983.446-447
    [104]M.A.Naveed,A.Qayyum,Shujaat Ali et al.Effects of helium gas mixing on the production of active species in nitrogen plasma.Physics Letters A.2006,359:499-503
    [105]H.Nassar,S.Pellerin,K.Musiol et al.N_2~+/N_2 ratio and temperature measurements based on the first negative N2+ and second positive N_2 overlapped molecular emission spectra.Journal of Physics D:Applied Physics.2007,37:1904-1916
    [106]赵化侨.等离子体化学与工艺中国科技大学出版社
    [107]唐书凯,高压脉冲电晕放电N2、N_2~+、O_2等离子体的分子束质谱诊断研究:[硕士学位论文].大连:大连理工大学图书馆,2000
    [108]肖重发,徐勇,王文春等.氮气大气压介质阻挡放电发射光谱诊断.大连理工大学学报,2004,44(5):625-629
    [109]D.E.Shemansky,A.L.Broadfoot.Excitation of N_2 and N_2~+ systems by electrons-I absolute transition probabilities.Quant.Spectrosc.Radiat Transfer,1971,11:1385-1400

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700