巨噬细胞的替代激活抑制脂毒性引起的巨噬细胞死亡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
巨噬细胞是参与机体先天性免疫与细胞免疫的重要的免疫细胞,它们与树突细胞以及其他各种效应细胞组成了人类抵御外界侵害的屏障。根据其活化状态、细胞表型及功能的差异,可大致分为经典激活的巨噬细胞(M1型)及替代激活的巨噬细胞(M2型)。
     肥胖症是21世纪威胁人类健康的主要原因之一。肥胖常伴随着一系列的代谢性疾病,包括胰岛素抵抗、Ⅱ型糖尿病、脂肪肝、动脉粥样硬化及高血压等,这些疾病的发生大多是由慢性炎症引起,而在慢性炎症中巨噬细胞具有举足轻重的地位。
     目前发现,白色脂肪组织的M2型巨噬细胞的激活可减少肥胖所引起的炎症反应以及胰岛素抵抗,其机制目前尚不明确。本课题研究发现M2型巨噬细胞可发挥抗自身死亡的重要生理功能,该生理功能一定程度上可以解释M2型巨噬细胞在肥胖症中对机体的保护机制。具体的研究成果如下:
     1.通过比较M2型巨噬细胞诱导剂白细胞介素-4(IL-4)以及过氧化物酶体增殖物激活受体δ/γ(PPARδ/PPARγ)的激动剂所引起的基因表达的改变,我们发现M2型巨噬细胞可参与促细胞存活、抗细胞死亡的调控过程。PPARδ/y也同时参与调控脂肪酸的生成、氧化、运输以及贮存。
     2.在体外,PPARδ/y或STAT6在巨噬细胞中的敲除可促进棕榈酸所引起的巨噬细胞死亡,在体内,高脂饮食或者β-肾上腺素能受体激动剂所引发的脂解效应使得骨髓细胞PPARδ/γ特异性敲除的小鼠(Mac-PPARδ/γ-/-)以及STAT6全身性敲除小鼠(STAT6-/-)的脂肪组织巨噬细胞表现出更多的半胱天冬酶-3活性。
     3. Angiopoietin-like4(Angptl4)以及neurogenic locus notch homolog protein4(Notch4)是PPARs/STAT6下游抗细胞死亡通路的靶点基因,Angpt14或Notch4的敲除可促进棕榈酸催化的巨噬细胞凋亡。
     4.巨噬细胞死亡可引起其自身炎症反应,并通过炎症因子的释放,促进其他巨噬细胞与脂肪细胞的炎性反应的发生,这可能是肥胖症中脂肪组织炎症反应发生的根源之一。
Immune cells, such as macrophages, dendritic cells and a number of other effector cells are involved in the important human host mechanism against external threats. Macrophages function in both innate (non-specific) and adaptive (specific) immunity in vertebrate animals. Based on their functional importance, they can be divided into classically activated macrophages (also known as M1) and alternatively activated macrophages (also known as M2).
     Obesity is one of the major threats to human health in the21st century. It presents a low grade inflammatory and can progress to other metabolic diseases including insulin resistance, type II diabetes, fatty liver, atherosclerosis and hypertension. Recent evidence indicates that macrophages are key players in the progression of metabolic diseases.
     Alternative activation of adipose tissue resident macrophages (ATM) reduces obesity-induced metabolic inflammation and insulin resistance. The molecular detail of this protective effect remains unclear. Here we show that alternatively activated (M2) macrophages are protected from cellular dysfunction caused by lipid overload which can, at least partially explain the protective effect of M2macrophages during obesity. The major findings in this paper are:
     1. Cross-comparisons of genes regulated two M2inducers, interleukin-4(IL-4) or peroxisome proliferator-activated receptor delta/gamma (PPARs/PPARy) agonists, reveal that alternative activation promotes the cell survival program while inhibiting that of apoptosis. PPAR signaling also controls pathways that direct fatty acids toward storage, oxidation and biosynthesis of lipid mediators.
     2. In cultured macrophages, deletion of PPARδ/PPARγ or (signal transducer and activator of transcription6) STAT6(a downstream effector of IL-4) genes increases the susceptibility to palmitic acid-induced necrotic cell death. In concert, higher levels of caspase-3activities are detected in ATMs derived from myeloid-specific PPARδ/γ-/-or STAT6-/-mice either challenged with a high fat diet or p-adrenergic agonist.
     3. At the molecular level, Angptl4and Notch4are identified as PPAR targets in the survival pathway. Angptl4-/-or Notch4-/-macrophages are shown to be more prone to death after palmitic acid treatment.
     4. Palmitic acid induced macrophage death is sufficient to cause inflammatory response and this response can be amplified by crosstalk between macrophages and adipocytes, which may contribute to the initiation of inflammation during obesity.
引文
[1]况晓东,周晓燕,艾有生.巨噬细胞极化与代谢性疾病的研究进展.实用临床医学.2012年4期
    [2]马兴义,王海鸥.动脉粥样硬化中的巨噬细胞分化.医学综述.2012年11期
    [3]Kirbis S, Breskvar UD. Sabovic M, et al.:Inflammation markers in patients with coronary artery disease--comparison of intracoronary and systemic levels. Wiener klinische Wochenschrift 2010; 122 Suppl 2:31-34
    [4]Moser MD. Matsuzaki S, Humphries KM:Inhibition of succinate-linked respiration and complex II activity by hydrogen peroxide. Arch Biochem Biophys 2009;488:69-75
    [5]Martinez FO, Helming L, Gordon S:Alternative activation of macrophages:an immunologic functional perspective. Annual review of immunology 2009;27:451-483
    [6]Mosser DM. Edwards JP:Exploring the full spectrum of macrophage activation. Nature reviews Immunology 2008;8:958-969
    [7]Fujiu K, Manabe I, Nagai R:Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest 2011:121:3425-3441
    [8]周宪宾.巨噬细胞M1/M2极化分型的研究进展.中国免疫学杂志.2012年10期
    [9]Suganami T, Nishida J, Ogawa Y:A paracrine loop between adipocytes and macrophages aggravates inflammatory changes:role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vase Biol 2005;25:2062-2068
    [10]刘媛媛,谢晓娜,李广红,等.巨噬细胞与胰岛素抵抗研究进展.实用医学杂志.2011年20期
    [11]Morris DL, Singer K, Lumeng CN:Adipose tissue macrophages:phenotypic plasticity and diversity in lean and obese states. Current opinion in clinical nutrition and metabolic care 2011:14:341-346
    [12]Cancello R, Henegar C, Viguerie N, et al.:Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005;54:2277-2286
    [13]Darnell JE, Jr.:STATs and gene regulation. Science 1997;277:1630-1635
    [14]Ihle JN:The Stat family in cytokine signaling. Current opinion in cell biology 2001;13:211-217
    [15]张俊峰,王长谦.过氧化物酶体增殖物激活受体与单核/巨噬细胞系.医学综述.2004年3期
    [16]Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al.:Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007;447:1116-1120
    [17]Shu H, Wong B, Zhou G, et al.:Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000;267:345-349
    [18]Akdis CA, Blaser K:Mechanisms of interleukin-10-mediated immune suppression. Immunology 2001;103:131-136
    [19]Lumeng CN, Bodzin JL, Saltiel AR:Obesity induces a phenotypic switch in adipose tissue macrophage polarization. The Journal of clinical investigation 2007;117:175-184
    [20]Fujisaka S, Usui I, Bukhari A, et al.:Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009;58:2574-2582
    [21]Cacicedo JM, Benjachareowong S, Chou E, et al.:Palmitate-induced apoptosis in cultured bovine retinal pericytes:roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes 2005;54:1838-1845
    [22]康海静,王化良.代谢综合征的研究进展.医学综述.2007年1期
    [23]Gordon S, Taylor PR:Monocyte and macrophage heterogeneity. Nature reviews Immunology 2005;5:953-964
    [24]Mantovani A, Sica A, Sozzani S, et al.:The chemokine system in diverse forms of macrophage activation and polarization. Trends in immunology 2004;25:677-686
    [25]Prieur X, Mok CY, Velagapudi VR, et al.:Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 2011;60:797-809
    [26]Kang K, Reilly SM, Karabacak V, et al.:Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell metabolism 2008;7:485-495
    [27]Chawla A:Control of macrophage activation and function by PPARs. Circulation research 2010; 106:1559-1569
    [28]Varga T, Czimmerer Z, Nagy L:PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochimica et biophysica acta 2011;1812:1007-1022
    [29]Kang YK, Guermah M, Yuan CX, et al.:The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc Natl Acad Sci U S A 2002;99:2642-2647
    [30]Conaway JW, Florens L, Sato S, et al.:The mammalian Mediator complex. Febs Lett 2005;579:904-908
    [31]Kwon H, Imbalzano AN, Khavari PA, et al.:Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 1994;370:477-481
    [32]Spiegelman BM, Heinrich R:Biological control through regulated transcriptional coactivators. Cell 2004;119:157-167
    [33]Lee SK, Anzick SL, Choi JE, et al.:A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo. J Biol Chem 1999:274:34283-34293
    [34]Mahajan MA, Samuels HH:A new family of nuclear receptor coregulators that integrate nuclear receptor signaling through CREB-binding protein. Mol Cell Biol 2000;20:5048-5063
    [35]Caira F, Antonson P, Pelto-Huikko M, et al.:Cloning and characterization of RAP250, a novel nuclear receptor coactivator. J Biol Chem 2000;275:5308-5317
    [36]Zhu Y, Qi C, Cao WQ, et al.:Cloning and characterization of PIMT, a protein with a methyltransferase domain, which interacts with and enhances nuclear receptor coactivator PRIP function. Proc Natl Acad Sci U S A 2001;98:10380-10385
    [37]Roeder RG:Transcriptional regulation and the role of diverse coactivators in animal cells. Febs Lett 2005;579:909-915
    [38]McKenna NJ, O'Malley BW:Minireview:nuclear receptor coactivators--an update. Endocrinology 2002;143:2461-2465
    [39]Viswakarma N, Jia Y, Bai L, et al.:Coactivators in PPAR-Regulated Gene Expression. PPAR research 2010;2010
    [40]Kersten S, Desvergne B, Wahli W:Roles of PPARs in health and disease. Nature 2000;405:421-424
    [41]Evans RM, Barish GD, Wang YX:PPARs and the complex journey to obesity. Nat Med 2004;10:355-361
    [42]Kliewer SA, Xu HE, Lambert MH, et al.:Peroxisome proliferator-activated receptors:from genes to physiology. Recent progress in hormone research 2001;56:239-263
    [43]Ihle JN:The Janus protein tyrosine kinase family and its role in cytokine signaling. Advances in immunology 1995;60:1-35
    [44]Taniguchi T:Cytokine signaling through nonreceptor protein tyrosine kinases. Science 1995;268:251-255
    [45]Izuhara K, Yang G, Miyajima A, et al.:Structure of the IL4 receptor and signal transduction mechanism of IL4. Research in immunology 1993;144:584-590
    [46]Murata T, Noguchi PD, Puri RK:Receptors for interleukin (IL)-4 do not associate with the common gamma chain, and IL-4 induces the phosphorylation of JAK2 tyrosine kinase in human colon carcinoma cells. J Biol Chem 1995;270:30829-30836
    [47]Johnston JA, Kawamura M, Kirken RA, et al.:Phosphorylation and activation of the Jak-3 Janus kinase in response to interleukin-2. Nature 1994:370:151-153
    [48]Witthuhn BA, Silvennoinen O, Miura O, et al.:Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 1994:370:153-157
    [49]Velazquez L, Fellous M, Stark GR, et al.:A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell 1992:70:313-322
    [50]Kaplan MH, Schindler U, Smiley ST, et al.:Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996;4:313-319
    [51]Shimoda K, van Deursen J, Sangster MY, et al.:Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996;380:630-633
    [52]Reichel M, Nelson BH, Greenberg PD; et al.:The IL-4 receptor alpha-chain cytoplasmic domain is sufficient for activation of JAK-1 and STAT6 and the induction of IL-4-specific gene expression. J Immunol 1997:158:5860-5867
    [53]Ryan JJ, McReynolds LJ. Keegan A. et al.:Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor. Immunity 1996;4:123-132
    [54]Delphin S. Stavnezer J:Characterization of an interleukin 4 (IL-4) responsive region in the immunoglobulin heavy chain germline epsilon promoter: regulation by NF-IL-4, a C/EBP family member and NF-kappa B/p50. J Exp Med 1995;181:181-192
    [55]Varin A, Gordon S:Alternative activation of macrophages:immune function and cellular biology. Immunobiology 2009;214:630-641
    [56]Vats D, Mukundan L, Odegaard JI. et al.:Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell metabolism 2006;4:13-24
    [57]Szanto A. Balint BL, Nagy ZS, et al.:STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity 2010;33:699-712
    [58]Nagy L, Szanto A, Szatmari I, et al.:Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiological reviews 2012;92:739-789
    [59]Zhang LL, Gao CY, Fang CQ, et al.:PPARgamma attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovasc Res 2011;92:484-493
    [60]Niu XL, Zhang XW, Guo ZG:Oxidized low-density lipoproteins induce apoptosis in macrophages. Zhongguo yao li xue bao= Acta pharmacologica Sinica 1996;17:467-470
    [61]方丽娟,刘乃丰.细胞凋亡与动脉粥样硬化关系的研究进展.东南大学学报(医学版).2010年01期
    [62]Reid VC, Hardwick SJ, Mitchinson MJ:Fragmentation of DNA in P388D1 macrophages exposed to oxidised low-density lipoprotein. FEBS letters 1993;332:218-220
    [63]吴巍,陈锡昌,戴冀斌.巨噬细胞凋亡研究的若干进展.解剖科学进展.2001年Ol期
    [64]李静岩.Caspase-3与肿瘤关系的研究.医学综述.2005年05期
    [65]West AP, Shadel GS, Ghosh S:Mitochondria in innate immune responses. Nature reviews Immunology 2011;11:389-402
    [66]易铁男,周云峰,伍钢.Caspase家族与细胞凋亡的研究进展,国外医学(肿瘤学分册).2001年01期
    [67]Suzuki A, Iwasaki M, Wagai N:Involvement of cytoplasmic serine proteinase and CPP32 subfamily in the molecular machinery of caspase 3 activation during Fas-mediated apoptosis. Experimental cell research 1997;233:48-55
    [68]Saikumar P, Dong Z, Mikhailov V, et al.:Apoptosis:definition, mechanisms, and relevance to disease. The American journal of medicine 1999;107:489-506
    [69]Jennette JC, Falk RJ, Hu P, et al.:Pathogenesis of antineutrophil cytoplasmic autoantibody-associated small-vessel vasculitis. Annual review of pathology 2013;8:139-160
    [70]Proskuryakov SY, Konoplyannikov AG, Gabai VL:Necrosis:a specific form of programmed cell death? Experimental cell research 2003;283:1-16
    [71]Denecker G, Vercammen D, Declercq W, et al.:Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol Life Sci 2001;58:356-370
    [72]Kroemer G, Dallaporta B, Resche-Rigon M:The mitochondrial death/life regulator in apoptosis and necrosis. Annual review of physiology 1998;60:619-642
    [73]Faleiro L, Lazebnik Y:Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 2000;151:951-959
    [74]Vermes I, Haanen C, Reutelingsperger C:Flow cytometry of apoptotic cell death. Journal of immunological methods 2000;243:167-190
    [75]Vermes I, Haanen C, Steffens-Nakken H, et al.:A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of immunological methods 1995:184:39-51
    [76]Gavrieli Y, Sherman Y, Ben-Sasson SA:Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of cell biology 1992; 119:493-501
    [77]Boden G:Interaction between free fatty acids and glucose metabolism. Current opinion in clinical nutrition and metabolic care 2002;5:545-549
    [78]Palkar PS, Borland MG, Naruhn S. et al.:Cellular and pharmacological selectivity of the peroxisome proliferator-activated receptor-beta/delta antagonist GSK3787. Molecular pharmacology 2010;78:419-430
    [79]Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI, et al.:IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 2010; 107:22617-22622
    [80]Lawrence T. Natoli G:Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nature reviews Immunology 2011;11:750-761
    [81]Kosteli A, Sugaru E. Haemmerle G, et al.:Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. The Journal of clinical investigation 2010; 120:3466-3479
    [82]Chawla A, Nguyen KD, Goh YP:Macrophage-mediated inflammation in metabolic disease. Nature reviews Immunology 2011;11:738-749
    [83]Odegaard JI, Chawla A:Alternative macrophage activation and metabolism. Annual review of pathology 2011;6:275-297
    [84]Huang JT, Welch JS, Ricote M, et al:Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 1999;400:378-382
    [85]Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al.:Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell metabolism 2008;7:496-507
    [86]Kinjyo I, Hanada T, Inagaki-Ohara K, et al.:SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 2002; 17:583-591
    [87]Shuai K, Liu B:Regulation of JAK-STAT signalling in the immune system. Nature reviews Immunology 2003;3:900-911
    [88]Lee CH, Chawla A, Urbiztondo N, et al.:Transcriptional repression of atherogenic inflammation:modulation by PPARdelta. Science 2003;302:453-457
    [89]Liao X, Sharma N, Kapadia F, et al.:Kruppel-like factor 4 regulates macrophage polarization. The Journal of clinical investigation 2011;121:2736-2749
    [90]Araki N, Johnson MT, Swanson JA:A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. The Journal of cell biology 1996;135:1249-1260
    [91]Montaner LJ, da Silva RP, Sun J, et al.:Type 1 and type 2 cytokine regulation of macrophage endocytosis:differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10. Journal of immunology 1999; 162:4606-4613
    [92]Wainszelbaum MJ, Proctor BM, Pontow SE, et al.:IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent. Experimental cell research 2006;312:2238-2251
    [93]Jay SM, Skokos E, Laiwalla F, et al.:Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Racl activation. The American journal of pathology 2007; 171:632-640
    [94]Henson PM. Bratton DL, Fadok VA:Apoptotic cell removal. Current biology CB 2001;11:R795-805
    [95]Schrijvers DM, De Meyer GR, Kockx MM, et al.:Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology 2005;25:1256-1261
    [96]Tabas I:Macrophage death and defective inflammation resolution in atherosclerosis. Nature reviews Immunology 2010; 10:36-46
    [97]Khan T, Muise ES, Iyengar P, et al.:Metabolic dysregulation and adipose tissue fibrosis:role of collagen VI. Molecular and cellular biology 2009;29:1575-1591
    [98]Lee MJ, Wu Y, Fried SK:Adipose tissue remodeling in pathophysiology of obesity. Current opinion in clinical nutrition and metabolic care 2010:13:371-376
    [99]Glass CK, Witztum JL:Atherosclerosis, the road ahead. Cell 2001;104:503-516
    [100]Lusis AJ:Atherosclerosis. Nature 2000;407:233-241
    [101]Schroeder AP, Falk E:Pathophysiology and inflammatory aspects of plaque rupture. Cardiology clinics 1996:14:211-220
    [102]Vassiliadis E. Barascuk N, Karsdal MA:Atherofibrosis-a unique and common process of the disease pathogenesis of atherosclerosis and fibrosis-lessons for biomarker development. American journal of translational research 2013;5:1-14
    [103]Roberts AB, Sporn MB, Assoian RK, et al.:Transforming growth factor type beta:rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences of the United States of America 1986:83:4167-4171
    [104]Sunderkotter C, Steinbrink K, Goebeler M, et al.:Macrophages and angiogenesis. Journal of leukocyte biology 1994;55:410-422
    [105]Murray PJ, Wynn TA:Protective and pathogenic functions of macrophage subsets. Nature reviews Immunology 2011;11:723-737
    [106]Shimokado K, Raines EW, Madtes DK, et al.:A significant part of macrophage-derived growth factor consists of at least two forms of PDGF. Cell 1985;43:277-286
    [107]Gargalovic PS, Gharavi NM, Clark MJ, et al.:The unfolded protein response is an important regulator of inflammatory genes in endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 2006;26:2490-2496
    [108]Kockx MM, De Meyer GR, Muhring J, et al.:Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 1998;97:2307-2315
    [109]Myoishi M, Hao H, Minamino T, et al.:Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 2007;116:1226-1233
    [110]Sanson M, Auge N, Vindis C, et al.:Oxidized low-density lipoproteins trigger endoplasmic reticulum stress in vascular cells:prevention by oxygen-regulated protein 150 expression. Circulation research 2009;104:328-336
    [111]Cai L, Wang Z, Ji A, et al.:Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PloS one2012;7:e36785
    [112]Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, et al.:Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007;56:1986-1998
    [113]Seimon TA, Nadolski MJ, Liao X, et al.:Atherogenic lipids and lipoproteins trigger CD36-TLR2-dependent apoptosis in macrophages undergoing endoplasmic reticulum stress. Cell metabolism 2010; 12:467-482
    [114]Schilling JD, Machkovech HM, He L, et al.:TLR4 activation under lipotoxic conditions leads to synergistic macrophage cell death through a TRIF-dependent pathway. Journal of immunology 2013; 190:1285-1296
    [115]Weisberg SP, Hunter D, Huber R, et al.:CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006; 116:115-124
    [116]Kanda H. Tateya S, Tamori Y, et al.:MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494-1505
    [117]Kamei N, Tobe K, Suzuki R, et al.:Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281:26602-26614
    [118]Inouye KE, Shi H, Howard JK. et al.:Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 2007;56:2242-2250
    [119]Kirk EA. Sagawa ZK, McDonald TO, et al.:Monocyte chemoattractant protein deficiency fails to restrain macrophage infiltration into adipose tissue [corrected]. Diabetes 2008;57:1254-1261
    [120]Chapman J, Miles PD, Ofrecio JM, et al.:Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PloS one 2010;5:e13959
    [121]Kiefer FW. Neschen S. Pfau B, et al.:Osteopontin deficiency protects against obesity-induced hepatic steatosis and attenuates glucose production in mice. Diabetologia 2011;54:2132-2142
    [122]Nomiyama T, Perez-Tilve D, Ogawa D, et al.:Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. The Journal of clinical investigation 2007:117:2877-2888
    [123]Cinti S, Mitchell G, Barbatelli G. et al.:Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. Journal of lipid research 2005;46:2347-2355
    [124]Hummasti S, Hotamisligil GS:Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circulation research 2010;107:579-591
    [125]Sun K, Kusminski CM, Scherer PE:Adipose tissue remodeling and obesity. The Journal of clinical investigation 2011:121:2094-2101
    [126]Fischer-Posovszky P, Wang QA, Asterholm IW, et al.:Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology 2011;152:3074-3081
    [127]Greenwood MR, Hirsch J:Postnatal development of adipocyte cellularity in the normal rat. Journal of lipid research 1974;15:474-483
    [128]Konner AC, Bruning JC:Toll-like receptors:linking inflammation to metabolism. Trends in endocrinology and metabolism:TEM 2011;22:16-23
    [129]Shi H, Kokoeva MV, Inouye K, et al.:TLR4 links innate immunity and fatty acid-induced insulin resistance. The Journal of clinical investigation 2006;116:3015-3025
    [130]Saberi M, Woods NB, de Luca C, et al.:Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell metabolism 2009;10:419-429
    [1]况晓东,周晓燕,艾有生.巨噬细胞极化与代谢性疾病的研究进展.实用临床医学.2012年4期
    [2]马兴义,王海鸥.动脉粥样硬化中的巨噬细胞分化.医学综述.2012年11期
    [3]Kirbis S, Breskvar UD. Sabovic M. et al.:Inflammation markers in patients with coronary artery disease--comparison of intracoronary and systemic levels. Wiener klinische Wochenschrift 2010; 122 Suppl 2:31-34
    [4]Moser MD, Matsuzaki S, Humphries KM:Inhibition of succinate-linked respiration and complex Ⅱ activity by hydrogen peroxide. Arch Biochem Biophys 2009;488:69-75
    [5]Martinez FO. Helming L, Gordon S:Alternative activation of macrophages:an immunologic functional perspective. Annual review of immunology 2009;27:451-483
    [6]Mosser DM. Edwards JP:Exploring the full spectrum of macrophage activation. Nature reviews Immunology 2008:8:958-969
    [7]Fujiu K. Manabe I, Nagai R:Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. J Clin Invest 2011:121:3425-3441
    [8]周宪宾.巨噬细胞M1/M2极化分型的研究进展.中国免疫学杂志.2012年10期
    [9]Suganami T, Nishida J. Ogawa Y:A paracrine loop between adipocytes and macrophages aggravates inflammatory changes:role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vase Biol 2005;25:2062-2068
    [10]刘媛媛,谢晓娜,李广红,等.巨噬细胞与胰岛素抵抗研究进展.实用医学杂志.2011年20期
    [11]Morris DL, Singer K, Lumeng CN:Adipose tissue macrophages:phenotypic plasticity and diversity in lean and obese states. Current opinion in clinical nutrition and metabolic care 2011;14:341-346
    [12]Cancello R, Henegar C, Viguerie N, et al.:Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 2005;54:2277-2286
    [13]Darnell JE, Jr.:STATs and gene regulation. Science 1997;277:1630-1635
    [14]Ihle JN:The Stat family in cytokine signaling. Current opinion in cell biology 2001;13:211-217
    [15]张俊峰,王长谦.过氧化物酶体增殖物激活受体与单核/巨噬细胞系.医学综述.2004年3期
    [16]Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al.:Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007;447:1116-1120
    [17]Shu H, Wong B, Zhou G, et al.:Activation of PPARalpha or gamma reduces secretion of matrix metalloproteinase 9 but not interleukin 8 from human monocytic THP-1 cells. Biochem Biophys Res Commun 2000;267:345-349
    [18]Akdis CA, Blaser K:Mechanisms of interleukin-10-mediated immune suppression. Immunology 2001;103:131-136
    [19]Lumeng CN, Bodzin JL, Saltiel AR:Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175-184
    [20]Fujisaka S, Usui I, Bukhari A, et al.:Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 2009;58:2574-2582
    [21]Reaven GM:Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988;37:1595-1607
    [22]康海静,王化良.代谢综合征的研究进展.医学综述.2007年1期
    [23]胡仁明.巨噬细胞相关内分泌疾病的诊断和治疗进展.2010-2010中国医师协会内分泌代谢科医师分会年会66-67
    [24]黄晓菁,江立生.巨噬细胞的吞噬功能与动脉粥样硬化斑块的稳定性,中国动脉硬化杂志.2011年3期
    [25]Waldo SW, Li Y. Buono C, et al.:Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol 2008; 172:1112-1126
    [26]Matthijsen RA, de Winther MP, Kuipers D. et al.:Macrophage-specific expression of mannose-binding lectin controls atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2009;119:2188-2195
    [27]Hansson GK:Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685-1695
    [28]Tsimikas S, Miller YI:Oxidative modification of lipoproteins:mechanisms, role in inflammation and potential clinical applications in cardiovascular disease. Curr Pharm Des 2011; 17:27-37
    [29]Mallat Z, Gojova A, Marchiol-Fournigault C, et al.:Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001;89:930-934
    [30]Khallou-Laschet J, Varthaman A, Fornasa G, et al.:Macrophage plasticity in experimental atherosclerosis. Plos One 2010:5:e8852
    [31]Glintborg D, Hojlund K. Andersen M, et al.:Soluble CD36 and risk markers of insulin resistance and atherosclerosis are elevated in polycystic ovary syndrome and significantly reduced during pioglitazone treatment. Diabetes Care 2008:31:328-334
    [32]Newby AC. George SJ, Ismail Y. et al.:Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 2009;101:1006-1011
    [33]Harwood HJ, Jr.:The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology 2012;63:57-75
    [34]李春燕.脂肪组织巨噬细胞与胰岛素抵抗关系的研究进展.国际病理科学与临床杂志.2012年4期
    [35]Tajiri Y, Mimura K, Umeda F:High-sensitivity C-reactive protein in Japanese patients with type 2 diabetes. Obesity research 2005:13:1810-1816
    [36]Hotamisligil GS, Arner P, Caro JF, et al.:Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995;95:2409-2415
    [37]Kern PA, Ranganathan S, Li C, et al.:Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab 2001;280:E745-751
    [38]刘萍,何岚.白细胞介素-6与胰岛素抵抗.医学综述.2006年4期
    [39]Pradhan AD, Manson JE, Rifai N, et al.:C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA:the journal of the American Medical Association 2001;286:327-334
    [40]Sandler S, Bendtzen K, Eizirik DL, et al.:Interleukin-6 affects insulin secretion and glucose metabolism of rat pancreatic islets in vitro. Endocrinology 1990; 126:1288-1294
    [41]方芳,肖常青.白细胞介素6与代谢综合征.医学综述.2007年24期
    [42]Ridker PM, Rifai N, Stampfer MJ, et al.:Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101:1767-1772
    [43]Sartipy P, Loskutoff DJ:Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 2003;100:7265-7270
    [44]Shiuchi T, Cui TX, Wu L, et al.:ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO. Hypertension 2002;40:329-334
    [45]李梦娟,李素梅.巨噬细胞选择性活化与胰岛素抵抗.国际老年医学杂志.2012年1期
    [46]姚岚,刘石平,周智广.Toll样受体4与代谢综合征.国际内分泌代谢杂志.2010年4期
    [47]Shi H, Kokoeva MV, Inouye K, et al.:TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116:3015-3025
    [48]Walsh C, Gangloff M, Monie T, et al.:Elucidation of the MD-2/TLR4 interface required for signaling by lipid IVa. J Immunol 2008;181:1245-1254
    [49]Rees MD, Kennett EC, Whitelock JM, et al.:Oxidative damage to extracellular matrix and its role in human pathologies. Free Radic Biol Med 2008;44:1973-2001
    [50]Lehmann JM, Moore LB, Smith-Oliver TA, et al.:An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995;270:12953-12956
    [51]Chinetti G, Griglio S, Antonucci M, et al.:Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998;273:25573-25580
    [52]Ricote M, Li AC, Willson TM, et al.:The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:79-82
    [53]Hevener AL, Olefsky JM, Reichart D, et al.:Macrophage PPAR gamma is required for nolmal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 2007; 117:1658-1669
    [54]Kang K, Reilly SM, Karabacak V. et al.:Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 2008;7:485-495
    [55]Oliver WR, Jr., Shenk JL, Snaith MR. et al.:A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001:98:5306-5311
    [56]Choi KC. Lee SY Yoo HJ, et al.:Effect of PPAR-delta agonist on the expression of visfatin, adiponectin, and resistin in rat adipose tissue and 3T3-L1 adipocytes. Biochem Biophys Res Commun 2007;357:62-67
    [57]Peters-Golden M:The alveolar macrophage:the forgotten cell in asthma. Am J Respir Cell Mol Biol 2004;31:3-7
    [58]Tang WW, Yi ES, Remick DG, et al.:Intratracheal injection of endotoxin and cytokines. IX. Contribution of CD11a/ICAM-1 to neutrophil emigration. Am J Physiol 1995;269:L653-659
    [59]张伟,蒋耀光,李磊.肺泡巨噬细胞与急性肺损伤.创伤外科杂志.2003年5期
    [60]Rizzo M, SivaSai KS, Smith MA, et al.:Increased expression of inflammatory cytokines and adhesion molecules by alveolar macrophages of human lung allograft recipients with acute rejection:decline with resolution of rejection. The Journal of heart and lung transplantation:the official publication of the International Society for Heart Transplantation 2000; 19:858-865
    [61]O'Brien-Ladner AR, Blumer BM, Wesselius LJ:Differential regulation of human alveolar macrophage-derived interleukin-1beta and tumor necrosis factor-alpha by iron. The Journal of laboratory and clinical medicine 1998;132:497-506
    [62]Hashimoto S, Gon Y, Matsumoto K, et al.:N-acetylcysteine attenuates TNF-alpha-induced p38 MAP kinase activation and p38 MAP kinase-mediated IL-8 production by human pulmonary vascular endothelial cells. British journal of pharmacology 2001; 132:270-276
    [63]Triggiani M, Gentile M, Secondo A, et al.:Histamine induces exocytosis and IL-6 production from human lung macrophages through interaction with HI receptors. J Immunol 2001; 166:4083-4091
    [64]Sirois J, Bissonnette EY:Alveolar macrophages of allergic resistant and susceptible strains of rats show distinct cytokine profiles. Clin Exp Immunol 2001;126:9-15
    [65]Mills CD, Kincaid K, Alt JM, et al.:M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000;164:6166-6173
    [66]Ho LP, Davis M, Denison A, et al.:Reduced interleukin-18 levels in BAL specimens from patients with asthma compared to patients with sarcoidosis and healthy control subjects. Chest 2002;121:1421-1426
    [67]Plummeridge MJ, Armstrong L, Birchall MA, et al.:Reduced production of interleukin 12 by interferon gamma primed alveolar macrophages from atopic asthmatic subjects. Thorax 2000;55:842-847
    [68]王传夏,李昌崇.肺泡巨噬细胞与支气管哮喘.国际呼吸杂志.2007年1期
    [69]Kay AB:Immunomodulation in asthma:mechanisms and possible pitfalls. Current opinion in pharmacology 2003;3:220-226
    [70]Courts A, Chen G, Stephens N, et al.:Release of biologically active TGF-beta from airway smooth muscle cells induces autocrine synthesis of collagen. Am J Physiol Lung Cell Mol Physiol 2001;280:L999-1008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700