Notch信号调控巨噬细胞参与心梗重塑的作用和分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌梗死随着其发病率和致死率的逐年攀升,已成为严重威胁国民身体健康的第一杀手。急性期心肌梗死主要的死亡原因是急性心衰竭,随着医疗水平的进步,内科药物溶栓、介入支架和外科的搭桥手术使急性期心梗发展成急性心衰进而导致死亡的几率大幅度下降。但随着病情的进一步发展转为慢性期。慢性期主要以心脏纤维化重塑为主,如果纤维重塑过度会引发慢性心衰导致死亡。然而,到目前为止预防和治疗心脏纤维化重塑过度尚无好的方法。有研究表明,巨噬细胞极化在心梗后纤维化重塑全程具有重要的调控作用。那么是否可以通过调控巨噬细胞极化实现对胶原纤维降解和生成的良性调控,进而成为预防和治疗心梗后心室恶性纤维化重塑的新途径呢?
     目前,许多信号通路参与巨噬细胞的极化。RBP-JК介导的经典Notch信号通路是进化上十分保守的信号通路,对细胞的生长、发育、分化、凋亡及组织重塑等过程起重要的调控作用。我们实验室王耀春博士2010年在实体瘤的研究中首次发现Notch信号与巨噬细胞的极化密切相关,阻断RBP-JК介导的Notch信号可以促进巨噬细胞向M2型极化,而同一年熊思东教授组的研究报道在系统性红斑狼疮中,Notch1通过调控巨噬细胞向M2b的极化而参与了其病理进程。2012年,曹雪涛院士研究组发现,用γ分泌酶抑制剂阻断Notch信号通路会促进TLR诱导的炎症反应,并促进巨噬细胞向M1型极化,同年《Nature Immunol》上发表了Notch信号通路通过上调IRF8促进M1型极化的文章。这些研究均说明Notch信号通路对巨噬细胞的极化起重要的调控作用。然而,RBP-JК介导的Notch信号通路在巨噬细胞参与组织损伤后重塑过程中是否也具有关键的调控作用尚无报道,是否能够通过调节巨噬细胞极化来调节心梗后心室重塑也尚不明确。
     基于上述问题,本实验首次利用在巨噬细胞中特异剔除Notch信号的小鼠对巨噬细胞在组织损伤重塑过程中是否起作用进行了探索,同时对其在心梗后重塑过程中的调控作用及其机制进行了深入分析,这些研究为寻找治疗和预防心梗后恶性纤维化重塑的新策略提供了理论依据,具有潜在的临床应用价值。
     目的
     1.探索RBP-JК介导的Notch信号通路在巨噬细胞参与组织损伤后重塑过程中的作用。
     2.观察心梗后阻断巨噬细胞中的Notch信号通路对心梗区域及心脏内、外单核/巨噬细胞的影响。
     3.探寻Notch信号通路调控巨噬细胞参与心梗重塑过程中的分子机制。
     方法
     1.构建巨噬细胞中剔除RBP-JК小鼠,并依据实验需要分为实验组(RBP-JК剔除小鼠)和对照组(RBP-JК野生小鼠或杂合小鼠)。
     2.对12周左右小鼠实验组(10只)和对照组(16只)进行高氏心梗模型的构建,4周之后利用小动物超声对两组小鼠的心脏功能及左室体重比进行比较分析。
     3.分离心梗后小鼠心脏和肺脏,称重后对两组小鼠心脏体重比和肺脏体重比进行比较分析。
     4.通过心梗小鼠心脏的大体图片及石蜡切片的Masson染色对两组小鼠心梗面积和纤维化重塑程度进行比较分析。
     5.对8周左右小鼠实验组(12只)和对照组(12只)建立四氯化碳诱导的组织损伤模型,10周之后分离肝脏、脾脏、肺脏、肾脏及心脏,通过大体图片、组织切片的Masson染色和天狼星红染色对组织损伤程度和纤维化重塑的程度进行比较分析。
     6.通过心脏石蜡切片的免疫荧光染色对两组小鼠心梗区巨噬细胞数量及类型、细胞凋亡及新生血管数量进行比较分析。
     7.通过ELISA对两组小鼠非梗死区HYP含量进行比较分析。
     8.通过Q-PCR对两组小鼠梗死区炎症因子、抗炎因子及纤维化相关因子转录水平进行比较分析。
     9.采集心梗后两组小鼠的血液并离心获得上清,通过ELISA对血清中炎症因子(TNF-α,IL-6)及抗炎因子(IL-10)进行比较分析。
     10.获得心梗后两组小鼠的血液、脾脏和骨髓,通过流式对心梗外组织中的单核/巨噬细胞进行比较分析。
     11.采用LPS加INF-γ诱导原代培养骨髓源的巨噬细胞向炎症相关M1型巨噬细胞极化,通过Western blot、流式和ELISA对两组小鼠炎症相关因子的表达及相关调控通路NF-κB信号通路进行比较分析。
     结果
     1.心梗4周后,两组小鼠生存曲线无明显区别。
     2.心梗4周后,小动物超声显示:敲除小鼠射血分数(EF%)(54.04±7.293)高于对照组(36.03±4.034);左室短轴收缩率(FS%)(27.62±4.293)高于对照组(17.31±2.180);敲除小鼠左室舒张期前壁LVAWd(mm)(0.8613±0.07792)、后壁LVPWd(mm)(0.6676±0.01436)及室间隔厚度LVIWd(mm)(3.367±0.2837)薄于对照组(分别为0.6465±0.03634;0.7284±0.06317;4.382±0.1748);敲除小鼠左室舒张期容积LV Vol d (ul)(47.92±10.31)少于对照组(87.87±8.209)。
     3.心梗4周后,敲除小鼠左室体重比、心脏体重比及肺脏体重比均低于野生组。
     4.心梗4周后,心脏大体图片和组织切片MASSON染色均显示心梗后敲除小鼠心脏梗死面积减少;此外,心脏MASSON染色还显示敲除心梗区心肌存活增多,梗死区域及非梗死区域纤维化重塑减轻。
     5.在四氯化碳诱导的组织损伤模型中,10周后分离小鼠的肝脏、肺脏、脾脏、肾脏及心脏,通过大体图片、Masson染色及天狼猩红染色对两组小鼠进行比较分析发现,敲除小鼠肝脏、肺脏、脾脏、肾脏及心脏损伤轻于对照组,同时各个器官的纤维化重塑程度也轻于对照组。
     6.心梗4周后,通过免疫荧光染色,在激光共聚焦显微镜下对两组小鼠进行比较分析发现心梗后敲除小鼠梗死区域巨噬细胞减少,主要以炎症相关的巨噬细胞减少为主,抗炎相关的巨噬细胞变化不明显,梗死区域细胞凋亡减少,心梗区域、交接区域和非梗死区域新生血管无明显统计学差异。
     7.心梗4周后,ELISA检测发现敲除小鼠血中炎症相关因子(TNF-α,IL-6)和抗炎相关因子(IL-10)与对照组相比较变化不明显。
     8.心梗4周后,大体图片和脾脏体重比显示敲除小鼠脾脏增大不明显。
     9.心梗4周后,流式细胞仪检测:心梗后敲除小鼠血、骨髓及脾脏中炎症相关(LY6CHighCD11b+)和抗炎相关(LY6CLowCD11b+)的单核细胞减少。此外,敲除小鼠脾脏中单核细胞来源的巨噬细胞(CD11b+F4/80+)减少,且炎症相关的巨噬细胞(F4/80+iNOS+)减少。
     10.LPS+INF-γ刺激原代培养巨噬细胞2小时后,通过共聚焦显微镜检测:敲除小鼠P65入核减少,IκB降解减少。流式检测:敲除小鼠炎症相关因子TNF-α表达减少。
     11.LPS+INF-γ刺激原代培养巨噬细胞24小时后,细胞培养液ELISA检测:敲除小鼠巨噬细胞分泌炎症相关因子(TNF-α,IL-6,IL-12)降低,抗炎相关因子(IL-10)升高。共聚焦显微镜检测:敲除小鼠炎症相关因子TNF-α表达减少,P65和P50表达降低,IκB降解降低。蛋白印迹检测:敲除小鼠巨噬细胞中CYLD表达升高,P65和P50表达降低,IκB降解降低。
     结论
     1.以两种不同形式的组织慢性损伤模型同时证明了巨噬细胞中RBP-JК介导的Notch信号通路与组织慢性损伤后重塑密切相关。阻断巨噬细胞中的RBP-JК可以减轻组织损伤和纤维化重塑。
     2.首次发现巨噬细胞中的Notch信号通路与心梗后心脏功能的恢复密切相关。阻断巨噬细胞中的Notch信号通路可以减轻心梗后心脏损伤,抑制纤维化重塑有助于心脏功能的恢复,为改善心梗后心脏功能及治疗和预防心梗后恶性纤维化重塑提供一个新的思路。
     3.首次发现阻断巨噬细胞中的Notch信号通路可以抑制梗死区域的巨噬细胞向炎症相关M1型极化而对抗炎相关的M2型极化没有影响,并且影响心梗以外其他组织(血液、骨髓及脾脏)中炎症相关单核细胞生成,进而减少炎症相关巨噬细胞的来源,为Notch信号通路在体内调控巨噬细胞极化的机制提供了一个新的思考方向。
     4.在体外实验中证明了阻断巨噬细胞中的Notch信号可抑制P65及P50的表达,促进CYLD上调抑制IκB降解和P65入核,进而使NF-κB信号通路活化受阻,导致炎症因子分泌减少。同时,我们还发现阻断巨噬细胞中的Notch信号可以促进抗炎相关因子IL-10分泌,提示体外阻断巨噬细胞中的Notch信号可抑制其向M1型极化,促进巨噬细胞向M2型极化。
     总之,这些研究为寻找治疗和预防心梗后恶性纤维化重塑的新策略提供了理论依据,具有潜在的临床应用价值。
Myocardial infarction (MI) has become a serious threat to national healthy withmorbidity and mortality rising year by year. Acute heart failure is the major cause of deathin the acute phase of MI, but with the progress of medical treatment (drug thrombolysis,interventional stent and bypass surgery), the incidence of acute heart failure decreasedsignificantly. With the progression of the disease, it will enter into a chronicphase-ventricular remodeling. Ventricular remodeling following MI is an independent risk factor for many cardiovascular events, which is associated with an inflammatory reaction,followed by scar formation at the site of infarction as well as changes in the non-infarctedmyocardium, including interstitial fibrosis and vascular remodelling. Fibrous tissue thatforms at the site of cardiomyocyte loss preserves structural integrity and is integral to theheart's recovery, whereas structural remodelling of viable myocardium impairs tissuebehaviour. Therefore, inappropriate ventricular remodeling will seriously affect cardiacfunction, eventually leading to chronic heart failure. Inhibiting inappropriate ventricularremodeling early may be an effective way to prevent or postpone heart failure for patientswith MI. Some studies show that macrophage polarization plays an important role in theregulation of fibrosis remodeling after MI. However, it is unclear that whether appropriatemacrophage polarization could prevente malignant ventricular fibrosis remodeling.
     Several signaling have been involved in macrophage polarization. TheRBP-JК-mediated Notch signaling is a very evolutionary conserved signaling,which playsan important regulatory role in cell growth, development, differentiation, apoptosis andtissue injury remodeling. In our laboratory, Dr. Wang Yaochun first found that Notchsignaling was closely related to macrophage polarization in mouse tumor model, blockingNotch signaling promoted M2type macrophage polarization. In the same year, Xiong et alreported that Notch1signaling-dependent macrophage M2b polarization might play apivotal role in the pathogenesis of systemic lupus erythematosus.In2012, Cao's groupfound that blocking the Notch signaling by gamma secretase inhibitors might promoteTLR-induced inflammatory response and promote M1-type macrophages polarization. Inthe same year, one study reported that Notch signaling promotes M1-type polarization byupregulating IRF8that was published by Nature Immunology.Therefore, the Notchsignaling plays an important regulatory role in macrophage polarization. However, it isunclear about the mechanism of RBP-JК-mediated Notch signaling pathway on regulatingmacrophage polarization in fibrosis remodeling after chronic tissue injury is unclear,especially in the case of the MI.
     In this study, it is the the first time for us to perform comprehensive assessment onthe role of RBP-JК-mediated Notch signaling in regulating macrophage in fibrosis remodeling following chronic tissue injury and possible mechanism of RBP-JК-mediatedNotch signaling on regulating macrophage polarization in fibrosis remodeling followingMI. Our study may provide a novel treatment and prevention strategy on maladaptiveventricular fibrosis remodeling.
     AIMS
     1. To investigate whether the RBP-JК-mediated Notch signaling pathway involved inmacrophage regualtion on tissue remodeling following chronic tissue injury.
     2. To observe whether blocking Notch signaling pathway in macrophage after MI couldinfluence monocyte/macrophage within and outside the heart and infarct area.
     3. To explore the possible molecular mechanisms of the Notch signaling regulatingmacrophages in ventricular remodeling after MI.
     METHODS
     1. To establish conditional RBP-JКknockout mouse in the macrophage. According to theexperiment, the mice could be divided into the experimental group (RBP-JКknockoutmouse) and the control group (Wildtype mouse).
     2. To establish MI model(Gao Erhe) using12-week-old mice(10experimental mice;16control mice). Comparative analyses of the heart function between experimental miceand control mice after4weeks by small animal ultrasound instrument.
     5. Comparative analyses of the heart weight ratio and lung weight ratio betweenexperimental mice and control mice after MI4weeks.
     6. Comparative analysis of infarct size and collagen content between experimental miceand control mice, which were conducted by light microscope (Masson's trichromestain) and Stereomicroscope.
     7. To establish carbon tetrachloride-induced tissue injury model using8-week-old mice(experimental mice,12; control mice,12). After10weeks,the livers, spleens, lungs,kidneys and hearts were isolated,which were used for comparative analyses of tissueinjury and fibrosis remodeling between experimental mice and control mice by lightmicroscope (Masson's trichrome stain; Sirius red stain) and Stereomicroscope.
     8. Comparative analysis of the number and type of macrophage cells, apoptosis and the number of new blood vessels in MI area between experimental mice and control mice,which were conducted by laser scanning confocal microscope (immunofluorescence).
     9. Comparative analysis of HYP in non-infarcted area between experimental mice andcontrol mice by ELISA.
     10. Comparative analysis of transcription level of inflammatory cytokines,anti-inflammatory cytokines, and fibrosis-related factor in the infarcted area betweenexperimental mice and control mice by qRT-PCR.
     11. Comparative analysis of inflammatory cytokines (TNF-α, IL-6) and anti-inflammatorycytokines (IL-10) in serum between experimental mice and control mice by ELISA.
     12. After MI4weeks the blood, spleens and bone marrow were separated,which wereused for comparative analysis of the number and type of monocytes and macrophagesbetween experimental mice and control mice by flow cytometry.
     13. To induce primary cultured bone marrow-derived macrophages differentiating toinflammation-related M1–type macrophages under LPS plus INF-γ. Comparativeanalysis of the inflammatory cytokines and their associated NF-κB signaling betweenexperimental mice and control mice by Western blot、qRT-PCR and ELISA
     RESULTS
     1. There was no significant difference on survival curves between knockout mice (KO)and wild-type mice (WT) after MI4weeks.
     2. After MI4weeks, the results showed by small animal ultrasound instrument: ejectionfraction (EF%)(54.04±7.293) in knockout group higher than that in the controlgroup (36.03±4.034%); left ventricular fractional shrinkage (FS%)(27.62±4.293)in knockout group higher than that in the control mice(17.31±2.180);left ventriculardiastolic anterior wall LVAWd (mm)(0.8613±0.07792), posterior wall LVPWd (mm)(0.6676±0.01436) and septal thickness LVIWd (mm)(3.367±0.2837) in knockoutmice were thinner than those in the control group (respectively,0.6465±0.03634;0.7284±0.06317;4.382±0.1748); left ventricular diastolic volume of the LVVol d (ul)(47.92±10.31) in knockout mice was less than that in the control group(87.87±8.209).
     3. The left ventricular mass, and heart weight ratio and lung weight in the knockout micewere less than those in the wild type mice after MI4weeks.
     4. Masson staining of cardiac tissue sections showed: in heart of knockout mouse,theinfarct size decreased, myocardial viability increased in MI area, and fibrosisdeposition decreased in the infarct zone and non-infarct zone compared with theexperimental group.
     5. After carbon tetrachloride induced tissue injury10weeks, mouse livers, lungs, spleens,kidneys and hearts were isolated. We found that the injury in livers, lungs, spleens,kidneys and hearts in knockout mouse was slighter than that in the control group, whilethe extent of fibrosis remodeling of various organs was also slighter than that in thecontrol group by gross pictures, Masson Stain and Picro-Sirius Red Stain.
     6. After MI4weeks, the result showed that the number of macrophages andinflammation-related macrophages decreased in the infarct area of knockout micecompared with the control group by immunofluorescence staining and laser scanningconfocal microscope, while that there was no statistically significant difference betweenthe two groups in the number of anti-inflammatory-related macrophages. Tunel stainingshowed that cell apoptosis decreased in knockout mouse heart compared with theexperimental group. Immunofluorescence staining of cardiac tissue sections showedthat no statistically significant difference was observed between the two groups inneovascularization in infarction area, the junction of regional and non-infarcted area.
     7. After MI4weeks, no significant difference on the expression of inflammatorycytokines (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) in serum wasobserved between the two groups.
     8. After MI4weeks, in knockout mouse, the inflammatory response of spleens were notsignificantly increased through gross pictures and spleen weight ratio compared withthe experimental group.
     9. Flow cytometry data showed that: in knockout mouse inflammation related (LY6CHighCD11b+) and anti-inflammatory related (LY6CLowCD11b+) monocytes in blood, bonemarrow and spleen decreased comparing with the experimental group after MI. Inaddition, in knockout mouse, monocyte-derived macrophages (CD11b+F4/80+) andinflammation-associated macrophages (F4/80+iNOS+) in spleen were less than thosein the experimental group.
     10. Confocal microscopy data showed in the primary cultured macrophage isolated fromknockout mouse the translocation of p65into the nucleus was inhibited and degradationof IκB was reduced compared with the control group after LPS plus INF-γ stimulationfor2hours. As while Flow cytometry data showed the expression ofinflammation-related factor TNF-α in macrophage was decreased in the knockoutmouse compared with the control group.
     11. Cell supernatant was collected from cultured macrophage and then performed ELISAassay. The results showed secretion of inflammation-related factor (TNF-α, IL-6, IL-12)decreased and anti-inflammatory-related factor (IL-10) increased in the knockout mousecompared with the control group after LPS plus INF-γ stimulation24hours:,. The dataof Immunofluorescence detection showed the expression of inflammation-related factorTNF-α and P65and P50were decreased and degradation of IκB was decreased in themacrophage of knockout mouse compared with the control group. The data of Westernblot showed in the knockout mouse macrophage, the expression of CYLD wasincreased, whereas the expression of P65and P50was decreased and the degradation ofIκB was decreased compared with the control group after LPS plus INF-γ stimulation24hours.
     CONCLUSIONS
     1. Using two different models of the mouse chronic injury, such as MI and carbontetrachloride induced organization injury, we verified RBP-JК–dependent Notch signaling in macrophages was closely related to tissue remodeling. To block RBP-JКinmacrophages can reduce chronic injury and suppress fibrosis remodeling.
     2. It was the first time that we found Notch signaling in macrophages was closelyassociated with the recovery of heart function after MI. It may provide a novel strategyto prevent or treat maladaptive ventricular fibrosis by blocking Notch signalingpathway in macrophages that can reduce cardiac injury and suppress fibrosisrestoration after MI and improve cardiac function.
     3. Analyzing the macrophage phenotype in the infarct area, we first found that blockingthe Notch signaling in macrophages could reduce the number of M1macrophages butnot affect the number of M2macrophages. Also it can affect the generation ofinflammation-related monocytes out of the MI area, such as blood, bone marrow andspleen. Furthermor it can reduce the number of inflammatory related macrophage.These studies may update the mechanism of the Notch signaling pathway regulationon macrophage polarization.
     4. Analyzing primary cultured macrophages, we demonstrated that the blockade of theNotch signaling in macrophages might inhibit the expression of P65and the P50andpromote upregulation of CYLD that can prohibit NF-κB signaling pathway bypreventing the translocation of p65into the nucleus and IκB degradation, and finallyreduce the secretion of inflammatory cytokines. Meanwhile, we also found thatblocking the Notch signaling in macrophages could promote the secretion ofanti-inflammatory-related cytokine IL-10. These data suggested blocking Notchsignaling in macrophages in vitro could inhibite M1-type macrophage polarization andpromote M2-type macrophage polarization.
     Take together, these studies may provide new therapy and prevention strategy onmaladaptive ventricular fibrosis remodeling.
引文
[1] Myron L. Weisfeldt and Susan J. Zieman. Advances In The Prevention AndTreatment Of Cardiovascular Disease. Health Aff.2007;26(1):25-37.
    [2] Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M,Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C,Nichol G, O'Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T,Wasserthiel-Smoller S, Hong Y; American Heart Association Statistics Committeeand Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics--2007Update: A Report From the American Heart Association Statistics Committee andStroke Statistics Subcommittee. Circulation2007;115(5):e69–e171.
    [3] Mann DL. Mechanisms and models in heart failure: A combinatorial approach.Circulation1999;100(9):999–1008.
    [4] Philippe Menasché. Cardiac Cell Therapy Trials: Chronic Myocardial Infarctionand Congestive Heart Failure. J. of Cardiovasc. Trans. Res.2008;1(3):201–6.
    [5] Sun Y. Intracardiac renin-angiotensin system and myocardial repair/remodelingfollowing infarction.J Mol Cell Cardiol.2010;48(3):483-9.
    [6] Sun Y. Myocardial repair/remodelling following infarction: roles of local factors.Cardiovasc Res.2009Feb15;81(3):482-90.
    [7] van den Borne SW, Diez J, Blankesteijn WM, Verjans J, Hofstra L, NarulaJ.Myocardial remodeling after infarction: the role of myofibroblasts[J].NatureReviews Cardiology,2010;7(1):30-7.
    [8] Daley JM, Brancato SK, Thomay AA, Reichner JS, Albina JE. The phenotype ofmurine wound macrophages [J]. J Leukoc Biol.2010.87(1):59-67.
    [9] Niloufar Kavian, Amélie Servettaz, Bernard Weill and Frédéric Batteux. NewInsights into the Mechanism of Notch Signalling in Fibrosis.The OpenRheumatology Journal,2012;6,(Suppl1: M5)96-102.
    [10] Kato, H., Taniguchi, Y., Kurooka, H., Minoguchi, S., Sakai, T.,Nomura-Okazaki, S.,Tamura, K., and Honjo, T. Involvement of RBP-J in biological functions of mouseNotch1and its derivatives. Development,1997;124(20):4133-41.
    [11] Krebs, L. T., Shutter, J. R., Tanigaki, K., Honjo, T., Stark, K. L.,and Gridley, T.Haploinsufficient lethality and formationof arteriovenous malformations in Notchpathway mutants. Genes Dev.2004;18(20):2469-73.
    [12] Wang YC, He F, Feng F, Liu XW, Dong GY, Qin HY, Hu XB, Zheng MH, Liang L,Feng L, Liang YM, Han H. Notch signaling determines the M1versus M2polarization of macrophages in antitumor immune responses.Cancer Res.2010;70(12):4840-49.
    [13] Zhang W,Xu W,Xiong S.Blockade of Notch1signaling alleviates m urine lupusvia blunting macrophage activation and M2b po1arization[J].J Immunol,2010;184(11):6465-78.
    [14] Zhang Q, Wang C, Liu Z, Liu X, Han C, Cao X, Li N. Notch signal suppressesToll-like receptor-triggered inflammatory responses in macrophages by inhibitingextracellular signal-regulated kinase1/2-mediated nuclear factor κB activation. JBiol Chem.2012;287(9):6208-17.
    [15] Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, Outtz H, Kitajewski J, Shi C,Weber S, Saftig P, Li Y, Ozato K, Blobel CP, Ivashkiv LB, Hu X. Notch-RBP-Jsignaling regulates the transcription factor IRF8to promote inflammatorymacrophage polarization. Nat Immunol,2012;13(7):642-50.
    [16] Frangogiannis NG, Smith CW and Entman ML. The inflammatory response inmyocardial infarction [J]. Cardiovasc Res.2002;53(1):31-47.
    [17] Holmes JW, Borg TK and Covell JW. Structure and mechanics of healingmyocardial infarcts [J]. Annu Rev Biomed Eng.2005;7:223-53.
    [18] Nian M, Lee P, Khaper N, Liu P. Inflammatory cytokines and postmyocardialinfarction remodeling [J]. Circ Res.2004;94(12):1543-53.
    [19] Fujiwara N and Kobayashi K. Macrophages in inflammation [J]. Curr Drug TargetsInflamm Allergy.2005;4(3):281-86.
    [20] Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA,Alvarez R, Rubio M, Schaefer E, Sussman MA. Activation of Notch-mediatedprotective signaling in the myocardium. Circ Res.2008;102(9):1025-35.
    [21] Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, Wang HW, Zhou Q,Radtke F, Liao R, Liao JK. Notch1in bone marrow-derived cells mediates cardiacrepair after myocardial infarction. Circulation.2011;123(8):866-76.
    [22] Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, Amano K,Gonzalez A, Vitale S, Ojaimi C, Rizzi R, Bolli R, Yutzey KE, Rota M, Kajstura J,Anversa P, Leri A. Notch1regulates the fate of cardiac progenitor cells. Proc NatlAcad Sci U S A.2008;105(40):15529-34.
    [23] Ertl G and Frantz S. Healing after myocardial infarction [J]. Cardiovasc Res.2005;66(1):22-32.
    [24] Frangogiannis NG. Targeting the inflammatory response in healing myocardialinfarcts [J]. Curr Med Chem.2006;13(16):1877-93.
    [25] Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol.2005;(12):953-64.
    [26] Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation.Nat Rev Immunol.2008;8(12):958-69.
    [27] Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development,heterogeneity, and relationship with dendritic cells. Annu Rev Immunol.2009;27:669–92.
    [28] Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development ofmonocytes, macrophages, and dendritic cells. Science.2010;327(5966):656-61.
    [29] Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterialinfection requires signals mediated by chemokine receptor CCR2. Nat Immunol.2006;7(3):311-7.
    [30] Tsou CL, Peters W, Si Y, Slaymaker S, Aslanian AM, Weisberg SP, Mack M, CharoIF. Critical roles for CCR2and MCP-3in monocyte mobilization from bonemarrow and recruitment to inflammatory sites. J Clin Invest.2007;117(4):902-9.
    [31] van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J ExpMed.1968;128(3):415-35.
    [32] Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S,Cumano A, Lauvau G, Geissmann F. Monitoring of blood vessels and tissues by apopulation of monocytes with patrolling behavior. Science.2007;317(5838):666-70.
    [33] Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. Origin of dendritic cellsin peripheral lymphoid organs of mice. Nat Immunol.2007;8(6):578-83.
    [34] Passlick B, Flieger D, Ziegler-Heitbrock HW. Identification and characterization ofa novel monocyte subpopulation in human peripheral blood. Blood.1989;74(7):2527-34.
    [35] Draude G, von Hundelshausen P, Frankenberger M, Ziegler-Heitbrock HW, WeberC. Distinct scavenger receptor expression and function in the humanCD14(+)/CD16(+) monocyte subset. Am J Physiol.1999;276(4Pt2):H1144-9.
    [36] Ziegler-Heitbrock L. The CD14+CD16+blood monocytes: their role in infection andinflammation. J Leukoc Biol.2007;81(3):584-92.
    [37] Belge KU, Dayyani F, Horelt A, Siedlar M, Frankenberger M, Frankenberger B,Espevik T, Ziegler-Heitbrock L. The proinflammatory CD14+CD16+R+monocytesare a major source of TNF. J Immunol.2002;168(7):3536-42.
    [38] Fingerle-Rowson G, Auers J, Kreuzer E, Fraunberger P, Blumenstein M,Ziegler-Heitbrock LH. Expansion of CD14+CD16+monocytes in critically illcardiac surgery patients. Inflammation.1998;22(4):367-79.
    [39] Hanai H, Iida T, Takeuchi K, Watanabe F, Yamada M, Kikuyama M, Maruyama Y,Iwaoka Y, Hirayama K, Nagata S, Takai K. Adsorptive depletion of elevatedproinflammatory CD14+CD16+DR++monocytes in patients with inflammatorybowel disease. Am J Gastroenterol.2008;103(5):1210-6.
    [40] Horelt A, Belge KU, Steppich B, Prinz J, Ziegler-Heitbrock L. The CD14+CD16+monocytes in erysipelas are expanded and show reduced cytokine production. Eur JImmunol.2002;32(5):1319-27.
    [41] Wildgruber M, Lee H, Chudnovskiy A, Yoon TJ, Etzrodt M, Pittet MJ, NahrendorfM, Croce K, Libby P, Weissleder R, Swirski FK. Monocyte subset dynamics inhuman atherosclerosis can be profiled with magnetic nano-sensors. PLoS One.2009;4(5):e5663.
    [42] Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principalsubsets with distinct migratory properties. Immunity.2003;19(1):71-82.
    [43] Ingersoll MA, Spanbroek R, Lottaz C, Gautier EL, Frankenberger M, Hoffmann R,Lang R, Haniffa M, Collin M, Tacke F, Habenicht AJ, Ziegler-Heitbrock L,Randolph GJ. Comparison of gene expression profiles between human and mousemonocyte subsets. Blood.2010;115(3):e10-9.
    [44] An G, Wang H, Tang R, Yago T, McDaniel JM, McGee S, Huo Y, Xia L. P-selectinglycoprotein ligand-1is highly expressed on Ly-6Chi monocytes and a majordeterminant for Ly-6Chimonocyte recruitment to sites of atherosclerosis in mice.Circulation.2008;117(25):3227-37.
    [45] Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M,Heikenwalder M, Bruck W, Priller J, Prinz M. Microglia in the adult brain arisefrom Ly-6ChiCCR2+monocytes only under defined host conditions. Nat Neurosci.2007;10(12):1544-53.
    [46] Noel JG, Osterburg A, Wang Q, Guo X, Byrum D, Schwemberger S, Goetzman H,Caldwell CC, Ogle CK. Thermal injury elevates the inflammatory monocytesubpopulation in multiple compartments. Shock.2007;28(6):684-93.
    [47] Robben PM, LaRegina M, Kuziel WA, Sibley LD. Recruitment of Gr-1+monocytesis essential for control of acute toxoplasmosis. J Exp Med.2005;201(11):1761-9.
    [48] Sunderkotter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA,Leenen PJ. Subpopulations of mouse blood monocytes differ in maturation stageand inflammatory response. J Immunol.2004;172(7):4410-7.
    [49] Cleutjens JP, Blankesteijn WM, Daemen MJ, Smits JF. The infracted myocardium:simply dead tissue, or a lively target for therapeutic interventions. Cardiovasc Res.1999;44(2):232-41.
    [50] Frangogiannis NG, Entman ML. Targeting the chemokines in myocardialinflammation. Circulation.2004;110(11):1341-2.
    [51] Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med.2007;357(11):1121-35.
    [52] Steffens S, Montecucco F, Mach F. The inflammatory response as a target to reducemyocardial ischaemia and reperfusion injury. Thromb Haemost.2009;102(2):240-7.
    [53] Hayashidani S, Tsutsui H, Shiomi T, Ikeuchi M, Matsusaka H, Suematsu N, Wen J,Egashira K, Takeshita A. Anti-monocyte chemoattractant protein-1gene therapyattenuates left ventricular remodeling and failure after experimental myocardialinfarction. Circulation.2003;108(17):2134-40.
    [54] Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL,Libby P, Weissleder R, Pittet MJ. The healing myocardium sequentially mobilizestwo monocyte subsets with divergent and complementary functions. J Exp Med.2007;204(12):3037-47.
    [55] Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M. Targeteddeletion of CC chemokine receptor2attenuates left ventricular remodeling afterexperimental myocardial infarction. Am J Pathol.2004;165(2):439-47.
    [56] Maekawa Y, Anzai T, Yoshikawa T, Sugano Y, Mahara K, Kohno T, Takahashi T,Ogawa S. Effect of granulocyte-macrophage colonystimulating factor inducer onleft ventricular remodeling after acute myocardial infarction. J Am Coll Cardiol.2004;44(7):1510-20.
    [57] Leor J, Rozen L, Zuloff-Shani A, Feinberg MS, Amsalem Y, Barbash IM, Kachel E,Holbova R, Mardor Y, Daniels D, Ocherashvilli A, Orenstein A, Danon D. Ex vivoactivated human macrophages improve healing, remodeling, and function of theinfarcted heart. Circulation.2006;114(1Suppl):I94-100.
    [58] Morimoto H, Takahashi M, Izawa A, Ise H, Hongo M, Kolattukudy PE, Ikeda U.Cardiac overexpression of monocyte chemoattractant protein-1in transgenic miceprevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res.2006;13(8):891-9.
    [59] van Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ.Macrophage depletion impairs wound healing and increases left ventricularremodeling after myocardial injury in mice. Am J Pathol.2007;170(3):818-29.
    [60] Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, PanizziP, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR,Libby P, Weissleder R, Pittet MJ. Identification of splenic reservoir monocytes andtheir deployment to inflammatory sites. Science.2009;325(5940):612-6.
    [61] Frantz S, Bauersachs J, Ertl G. Post-infarct remodelling: contribution of woundhealing and inflammation. Cardiovasc Res.2009;81(3):474-81.
    [62] Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, Kitabata H,Okochi K, Arita Y, Ishibashi K, Komukai K, Kataiwa H, Nakamura N, Hirata K,Tanaka A, Akasaka T. Impact of heterogeneity of human peripheral blood monocytesubsets on myocardial salvage in patients with primary acute myocardial infarction.J Am Coll Cardiol.2009;54(2):130-8.
    [63] Urra X, Villamor N, Amaro S, Gomez-Choco M, Obach V, Oleaga L, Planas AM,Chamorro A. Monocyte subtypes predict clinical course and prognosis in humanstroke. J Cereb Blood Flow Metab.2009(5):994-1002.
    [64] Robinette CD, Fraumeni JFJ. Splenectomy and subsequent mortality in veterans ofthe1939–45war. Lancet.1977;2(8029):127-9.
    [65] Tomohiko Naruse, Yukio Yuzawa, Toshiyuki Akahori, Masashi Mizuno, ShojiMaruyama, Reiji Kannagi, Nigishi Hotta and Seiichi Matsuo. P-selectin–dependentmacrophage migration into the tubulointerstitium in unilateral ureteralobstruction.Kidney International.2002;62(1):94-105.
    [66] Singer AJ, Clark RAF. Cutaneous Wound Healing. New England Journal ofMedicine.1999;341(10):738-46.
    [67].Frangogiannis NG, Mendoza LH, Ren G, Akrivakis S, Jackson PL, Michael LH,Smith CW, Entman ML. MCSF expression is induced in healing myocardialinfarcts and may regulate monocyte and endothelial cell phenotype. Am J PhysiolHeart Circ Physiol.2003;285(2):H483-92.
    [68] Mann DL. STRESS-ACTIVATED CYTOKINES AND THE HEART: FromAdaptation to Maladaptation. Annual Review of Physiology.2003;65:81–101.
    [69] Jaffer FA, Sosnovik DE, Nahrendorf M, Weissleder R. Molecular imaging ofmyocardial infarction. Journal of molecular and cellular cardiology.2006;41(6):921-33.
    [70] Cathelin S, Rebe C, Haddaoui L, Simioni N, Verdier F, Fontenay M, Launay S,Mayeux P, Solary E. Identification of Proteins Cleaved Downstream of CaspaseActivation in Monocytes Undergoing Macrophage Differentiation. J Biol Chem.2006;281(26):17779-88.
    [71] Lambert JM, Lopez EF, Lindsey ML. Macrophage roles following myocardialinfarction. Int J Cardiol.2008;130(2):147-58.
    [72] Van Ginderachter JA, Movahedi K, Hassanzadeh Ghassabeh G, Meerschaut S,Beschin A, Raes G,De Baetselier P. Classical and alternative activation ofmononuclear phagocytes: Picking the best of both worlds for tumor promotion.Immunobiology.2006;211(6-8):487-501.
    [73] Porcheray F. Macrophage activation switching: an asset for the resolution ofinflammation. Clinical and Experimental Immunology.2005;142(3):481-9.
    [74] Stein M, Keshav S, Harris N, Gordon S. Interleukin4potently enhances murinemacrophage mannose receptor activity: a marker of alternative immunologicmacrophage activation. The Journal of experimental medicine.1992;176(1):287-92.
    [75] Kodelja V, Muller C, Politz O, Hakij N, Orfanos C, Goerdt S. Alternativemacrophage activationassociated CC-chemokine-1, a novel structural homologue ofmacrophage inflammatory protein-1alpha with a Th2-associated expression pattern.Journal of Immunology.1998;160(3):1411-8.
    [76] Tormey V, Faul J, Leonard C, Burke C, Dilmec A, Poulter L. T-cell cytokines maycontrol the balance of functionally distinct macrophage populations.Immunology.1997;90(4):463-9.
    [77] Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P, Hakiy N,Klemke C, Dippel E, Kodelja V, Orfanos C. Alternative versus classical activationof macrophages. Pathobiology.1999;67(5-6):222-6.
    [78] Frangogiannis NG. Chemokines in ischemia and reperfusion. Thrombosis andhaemostasis.2007;97(5):738-47.
    [79] Hart P, Vitti G, Burgess D, Whitty G, Piccoli D, Hamilton J. Potentialantiinflammatory effects of interleukin4: suppression of human monocyte tumornecrosis factor alpha, interleukin1, and prostaglandin E2. Proceedings of theNational Academy of Sciences of the United States of America.1989;86(10):3803-7.
    [80] Hart P, Whitty G, Burgess D, Croatto M, Hamilton J. Augmentation ofglucocorticoid action on human monocytes by interleukin-4. Lymphokine Research.1990;9(2):147-53.
    [81] Chizzolini C, Rezzonico R, De Luca C, Burger D, Dayer J. Th2cell membranefactors in association with IL-4enhance matrix metalloproteinase-1(MMP-1) whiledecreasing MMP-9production by granulocyte-macrophage colony-stimulatingfactor-differentiated human monocytes. Journal of Immunology.2000;164(11):5952-60.
    [82] Gibbs DF, Shanley TP, Warner RL, Murphy HS, Varani J, Johnson KJ. Role ofmatrix metalloproteinases in models of macrophage-dependent acute lung injury.Evidence for alveolar macrophage as source of proteinases. American Journal ofRespiratory Cell and Molecular Biology.1999;20(6):1145-54.
    [83] Gibbs DF, Warner RL, Weiss SJ, Johnson KJ, Varani J. Characterization of matrixmetalloproteinases produced by rat alveolar macrophages. Am J Respir Cell MolBiol.1999Jun;20(6):1136-44.
    [84] Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton M. Influence ofalternatively and classically activated macrophages on fibrogenic activities ofhuman fibroblasts.Cellular Immunology.2000;204(1):19-28.
    [85] Cao B, Guo Z, Zhu Y, Xu W.The potential role of PDGF, IGF-1, TGF-betaexpression in idiopathic pulmonary fibrosis. Chinese Medical Journal (EnglishEdition).2000;113(9):776-82.
    [86] Sunderkotter C, Goebeler M, Schulze-Osthoff K, Bhardwaj R, Sorg C.Macrophage-derived angiogenesis factors. Pharmacol Ther.1991;51(2):195-216.
    [87] Zhang X, Mosser D. Macrophage activation by endogenous danger signals. J Pathol.2008;214(2):161-178.
    [88] M artinez FO,Helming L,Gordon S.Alternative activation of macrophages:an immunologic functional perspective [J].Annu Rev Im muno1.2009;27:451-83.
    [89] Luikart SD, Levay-Young B, Hinkel T, Shearer J, Mills C, Caldwell MD, Gy]etkoMR, OegemaTR. Mactinin treatment promotes wound-healing-associatedinflammation in urokinase knockoutmice. Wound Repair Regen.2006;14(2):123-8.
    [90] Frenkel O, Shani E, Ben-Bassat I, Brok-Simoni F, Shinar E, Danon D.Activation ofhuman monocytes/macrophages by hypo-osmotic shock [J]. Clin Exp Immunol.2001.124(1):103-109.
    [91] Tsujita K, Kaikita K, Hayasaki T, Honda T, Kobayashi H, Sakashita N, Suzuki H,Kodama T, Ogawa H, Takeya M. Targeted deletion of class A macrophagescavenger receptor increases the risk of cardiac rupture after experimentalmyocardial infarction [J]. Circulation.2007.115(14):1904-1911.
    [92] Hu Y, Zhang H, Lu Y, Bai H, Xu Y, Zhu X, Zhou R, Ben J, Xu Y, Chen Q. Class Ascavenger receptor attenuates myocardial infarction-induced cardiomyocytenecrosis through suppressing M1macrophage subset polarization. Basic ResCardiol.2011;106(6):1311-1328.
    [93] Zamilpa R, Kanakia R, Cigarroa J4th, Dai Q, Escobar GP, Martinez H, Jimenez F,Ahuja SS, Lindsey ML. CC chemokine receptor5deletion impairs macrophageactivation and induces adverse remodeling following myocardial infarction. Am JPhysiol Heart Circ Physiol.2011;300(4):H1418-26.
    [94] Condeelis J, Pollard JW. Macrophages: Obligate Partners for Tumor Cell Migration,Invasion, and Metastasis. Cell.2006;124(2):263-6.
    [95] Duffield JS, Tipping PG, Kipari T, Cailhier JF, Clay S, Lang R, Bonventre JV,Hughes J. Conditional ablation of macrophages halts progression of crescenticglomerulonephritis. Am J Pathol.2005;167(5):1207-19.
    [96] Sano H, Hsu DK, Apgar JR, Yu L, Sharma BB, Kuwabara I, Izui S, Liu F-T. Criticalrole of galectin-3in phagocytosis by macrophages. J Clin Invest.2003;112(3):389-97.
    [97] Maree AFM, Komba M, Dyck C, Labecki M, Finegood DT, Edelstein-Keshet L.Quantifying macrophage defects in type1diabetes. Journal of Theoretical Biology.2005;233(4):533-51.
    [98] Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiacfibroblasts.Cardiovascular research.2005;65(1):40-51.
    [99] MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors inmodulating cardiac fibroblast function and extracellular matrix synthesis.Cardiovascular research.2000;46(2):257-63.
    [100] Keane MP, Strieter RM, Lynch JP3rd, Belperio JA. Inflammation and angiogenesisin fibrotic lung disease. Seminars in respiratory and critical care medicine.2006;27(6):589-99.
    [101] Willis BC, duBois RM, Borok Z. Epithelial origin of myofibroblasts during fibrosisin the lung. Proceedings of the American Thoracic Society.2006;3(4):377-82.
    [102] Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, Belperio JA,Keane MP,Strieter RM. Circulating fibrocytes traffic to the lungs in response toCXCL12and mediate fibrosis. J Clin Invest.2004;114(3):438-46.
    [103] Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated Production ofType I Collagen and Inflammatory Cytokines by Peripheral Blood Fibrocytes. JImmunol.1998;160(1):419-25.
    [104] Quan TE, Cowper S, Wu S-P, Bockenstedt LK, Bucala R. Circulating fibrocytes:collagensecreting cells of the peripheral blood. The International Journal ofBiochemistry&Cell Biology.2004;36(4):598-606.
    [105] Haudek SB, Xia Y, Huebener P, Lee JM, Carlson S, Crawford JR, Pilling D, GomerRH, Trial J,Frangogiannis NG, Entman ML. Bone marrow-derived fibroblastprecursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad SciUSA.2006;103(48):18284-9.
    [106] Bouzegrhane F. Is angiotensin II a proliferative factor of cardiac fibroblasts?Cardiovascular Research.2002;53(2):304-12.
    [107] Booz GW, Baker KM. Molecular signalling mechanisms controlling growth andfunction of cardiac fibroblasts. Cardiovasc Res.1995;30(4):537-43.
    [108] Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovascular research.2000;46(2):250-6.
    [109] Tyagi SC, Lewis K, Pikes D, Marcello A, Mujumdar VS, Smiley LM, Moore CK.Stretch-Induced Membrane Type Matrix Metalloproteinase and Tissue PlasminogenActivator in Cardiac Fibroblast Cells. J Cell Physiology.1998;176(2):374-82.
    [110] Siwik DA, Pagano PJ, Colucci WS. Oxidative stress regulates collagen synthesisand matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol CellPhysiol.2001;280(1):C53-60.
    [111] Tummalapalli CM, Heath BJ, Tyagi SC. Tissue inhibitor of metalloproteinase-4instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem.2001;80(4):512-21.
    [112] Ahmed MS, Oie E, Vinge LE, Yndestad A, Oystein Andersen G, Andersson Y,Attramadal T, Attramadal H. Connective tissue growth factor--a novel mediator ofangiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. Journalof molecular and cellular cardiology.2004;36(3):393-404.
    [113] Lin J, Liliensiek B, Kanitz M, Schimanski U, Bohrer H, Waldherr R, Martin E,Kauffmann G, Ziegler R, Nawroth PP. Molecular cloning of genes differentiallyregulated by TNF-alpha in bovine aortic endothelial cells, fibroblasts and smoothmuscle cells. Cardiovascular research.1998;38(3):802-13.
    [114] Gurantz D, Cowling R, Villarreal F, Greenberg B. Tumor necrosis factor-alphaupregulates angiotensin II type1receptors on cardiac fibroblasts. CirculationResearch.1999;85(3):272-9.
    [115] Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growthfactor-beta1induces alpha-smooth muscle actin expression in granulation tissuemyofibroblasts and in quiescent and growing cultured fibroblasts. J CellBiol.1993;122(1):103-11.
    [116] Sutton M, Sharpe N. Left ventricular remodeling after myocardial infarction:pathophysiology and therapy. Circulation.2000;101(25):2981-8.
    [117] Sun Y, Ramires FJ, Zhou G, Ganjam VK, Weber KT. Fibrous tissue and angiotensinII.J Mol Cell Cardiol.1997Aug;29(8):2001-12.
    [118] Weber KT. Tissue repair and angiotensin II generated at sites of healing. BasicResearch in Cardiology.1997;92(2):75-8.
    [119] Falkenhahn M, Franke F, Bohle R, Zhu Y, Stauss H, Bachmann S, Danilov S, UngerT. Cellular distribution of angiotensin-converting enzyme after myocardialinfarction. Hypertension.1995;25(2):219-26.
    [120] Guarda E, Katwa LC, Myers PR, Tyagi SC, Weber KT. Effects of endothelins oncollagen turnover in cardiac fibroblasts. Cardiovasc Res.1993;27(12):2130-4.
    [121] Yano T, Miura T, Whittaker P, Miki T, Sakamoto J, Nakamura Y, Ichikawa Y, IkedaY, Kobayashi H, Ohori K, Shimamoto K. Macrophage colony-stimulating factortreatment after myocardial infarction attenuates left ventricular dysfunction byaccelerating infarct repair.J Am Coll Cardiol.2006Feb7;47(3):626-34.
    [122] Manoonkitiwongsa PS, Jackson-Friedman C, McMillan PJ, Schultz RL, Lyden PD.Angiogenesis after stroke is correlated with increased numbers of macrophages: theclean-up hypothesis. J Cereb Blood Flow Metab.2001;21(10):1223-31.
    [123] Ogawa K, Suzuki J, Narasaki M, Mori M. Healing of focal injury in the rat liver.Am J Pathol.1985;119(1):158-67.
    [124] Kobayashi S, Nagaura T, Kimura I, Kimura M. Interferon-gamma-activatedmacrophages enhance angiogenesis from endothelial cells of rat aorta.Immunopharmacology.1994;27(1):23-30.
    [125] Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages andangiogenesis. J Leukoc Biol.1994;55(3):410-22.
    [126] Visse R, Nagase H. Matrix Metalloproteinases and Tissue Inhibitors ofMetalloproteinases: Structure, Function, and Biochemistry. Circulation research.2003;92(8):827-39.
    [127] Egeblad M, Werb Z. New Functions for the Matrix Metalloproteinases in CancerProgression. Nat Rev Cancer.2002;2(3):161-74.
    [128] Shapiro SD. Diverse roles of macrophage matrix metalloproteinases in tissuedestruction and tumor growth. Thrombosis and haemostasis.1999;82(2):846-9.
    [129] Sellebjerg F, Sorensen TL. Chemokines and matrix metalloproteinase-9inleukocyte recruitment to the central nervous system. Brain Research Bulletin.2003;61(3):347-55.
    [130] Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, RossenRD, Michael L, Entman M. Matrix-Dependent Mechanism of Neutrophil-MediatedRelease and Activation of Matrix Metalloproteinase9in MyocardialIschemia/Reperfusion. Circulation.2001;103(17):2181-7.
    [131] Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ,Kelly RA, Werb Z, Libby P, Lee RT. Targeted deletion of matrixmetalloproteinase-9attenuates left ventricular enlargement and collagenaccumulation after experimental myocardial infarction. The Journal of clinicalinvestigation.2000;106(1):55-62.
    [132] Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS. Matrix Metalloproteinase-9Is Required for Adequate Angiogenic Revascularization of Ischemic Tissues:Potential Role in Capillary Branching. Circulation research.2004;94(2):262-8.
    [133] Lindsey ML, Escobar GP, Dobrucki LW, Goshorn DK, Bouges S, Mingoia JT,McClister DM Jr, Su H, Gannon J, MacGillivray C, Lee RT, Sinusas AJ, et al.Matrix metalloproteinase-9gene deletion facilitates angiogenesis after myocardialinfarction. Am J Physiol Heart Circ Physiol.2006;290(1):H232-9.
    [134] Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M.. The chemokinesystem in diverse forms of macrophage activation and polarization. TrendsImmunol.2004;25(12):677-86.
    [135] Reese TA, Liang HE, Tager AM, Luster AD, Van Rooijen N, Voehringer D,Locksley RM. Chitin induces accumulation in tissue of innate immune cellsassociated with allergy. Nature.2007;447(7140):92-6.
    [136] Raes G, De Baetselier P, No l W, Beschin A, Brombacher F, Hassanzadeh Gh G.Differential expression of FIZZ1and Ym1in alternatively versus classicallyactivated macrophages. J Leukoc Biol.2002;71(4):597-602.
    [137] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization:enabling diversity with identity.Nat Rev Immunol.2011;11(11):750-61.
    [138] Darnell, J. E., Jr, Kerr, I. M.&Stark, G. R. Jak–STAT pathways and transcriptionalactivation in response to IFNs and other extracellular signaling proteins.Science.1994;264(5164):1415-21.
    [139] Park, C., Li, S., Cha, E.&Schindler, C. Immune response in Stat2knockoutmice.Immunity.2000;13(6):795-804.
    [140] Marten A. Hoeksema&J. Lauran St ger&Menno P. J. de Winther. MolecularPathways Regulating Macrophage Polarization:Implications for Atherosclerosis.Curr Atheroscler Rep.2012;14(3):254-63.
    [141] Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. Possible new role forNF-kappaB in the resolution of inflammation. Nat Med.2001;7(12):1291–97.
    [142] Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, Page M, KaltschmidtC, Baeuerle PA, Neumeier D. Activated transcription factor nuclear factor-kappa Bis present in the atherosclerotic lesion. J Clin Invest.1996;97(7):1715–22.
    [143] Fong CH, Bebien M, Didierlaurent A, Nebauer R, Hussell T, Broide D, Karin M,Lawrence T. An anti-inflammatory role for IKKbeta through the inhibition of“classical” macrophage activation. J Exp Med.2008;205(6):1269–76.
    [144] Kanters E, Pasparakis M, Gijbels MJ, Vergouwe MN, Partouns-Hendriks I,Fijneman RJ, Clausen BE, F rster I, Kockx MM, Rajewsky K, Kraal G, Hofker MH,de Winther MP. Inhibition of NFkappaB activation in macrophages increasesatherosclerosis in LDL receptor-deficient mice. J Clin Invest.2003;112(8):1176–85.
    [145] Porta C, Rimoldi M, Raes G, Brys L, Ghezzi P, Di Liberto D, Dieli F, Ghisletti S,Natoli G, De Baetselier P, Mantovani A, Sica A. Tolerance and M2(alternative)macrophage polarization are related processes orchestrated by p50nuclear factorkappaB. Proc Natl Acad Sci U S A.2009;106(35):14978–83.
    [146] Bouhlel MA, Derudas B, Rigamonti E, Dièvart R, Brozek J, Haulon S, Zawadzki C,Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G.. PPARγ activationprimes human monocytes into alternative M2macrophages with anti-inflammatoryproperties. Cell Metab.2007;6(2):137-43.
    [147] Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V,Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A..Macrophage-specific PPARγ controls alternative activation and improves insulinresistance. Nature.2007;447(7148):1116-20.
    [148] Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, FunkCD, Conrad D, Glass CK. Interleukin-4dependent production of PPAR-γ ligandsin macrophages by12/15lipoxygenase. Nature.1999;400(6742):378-82.
    [149] Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, Szeles L, Poliska S, OrosM, Evans RM, Barak Y, Schwabe J, Nagy L.. STAT6transcription factor is afacilitator of the nuclear receptor PPARγ-regulated gene expression in macrophagesand dendritic cells. Immunity.2010;33(5):699-712.
    [150] Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N,Nerlov C. A CREB–C/EBPβ cascade induces M2macrophage-specific geneexpression and promotes muscle injury repair. Proc. Natl Acad. Sci. USA.2009;106(41):17475-80.
    [151] Friedman, A. D. Transcriptional control of granulocyte and monocyte development.Oncogene.2007;26(47):6816-28.
    [152] El Kasmi KC, Qualls JE, Pesce JT, Smith AM, Thompson RW, Henao-Tamayo M,Basaraba RJ, K nig T, Schleicher U, Koo MS, Kaplan G, Fitzgerald KA, TuomanenEI, Orme IM, Kanneganti TD, Bogdan C, Wynn TA, Murray PJ. Toll-likereceptor-induced arginase1in macrophages thwarts effective immunity againstintracellular pathogens. Nature Immunol.2008;99(12):1399-406.
    [153] Hu, H. M., Baer, M., Williams, S. C., Johnson, P. F.&Schwartz, R. C. Redundancyof C/EBPα,-β, and-δ in supporting the lipopolysaccharide-induced transcription ofIL6and monocyte chemoattractant protein1. J. Immunol.1998;160(5):2334-42.
    [154] Gorgoni, B., Maritano, D., Marthyn, P., Righi, M.&Poli, V. C/EBPβ geneinactivation causes both impaired and enhanced gene expression and inverseregulation of IL12p40and p35mRNAs in macrophages. J. Immunol.2002;168(8):4055-62.
    [155] Kim C, Wilcox-Adelman S, Sano Y, Tang WJ, Collier RJ, Park JM..Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthraxbacillus. Proc. Natl Acad. Sci. USA.2008;105(16):6150-5.
    [156] Ananieva O, Darragh J, Johansen C, Carr JM, McIlrath J, Park JM, Wingate A,Monk CE, Toth R, Santos SG, Iversen L, Arthur JS. The kinases MSK1and MSK2act as negative regulators of Toll-like receptor signaling. Nature Immunol.2008;9(9):1028-36.
    [157] Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T,Matsushita K, Okazaki T, Saitoh T, Honma K, Matsuyama T, Yui K, Tsujimura T,Standley DM, Nakanishi K, Nakai K, Akira S. The Jmjd3-Irf4axis regulates M2macrophage polarization and host responses against helminth infection. NatImmunol.2010;11(10):936–944.
    [158] El Chartouni, C., Schwarzfischer, L.&Rehli, M. Interleukin4induced interferonregulatory factor (Irf)4participates in the regulation of alternative macrophagepriming. Immunobiology.2010;215(9-10):821-5.
    [159] Takaoka A, Yanai H, Kondo S, et al. Integral role of IRF-5in the gene inductionprogramme activated by toll-like receptors. Nature.2005;434(7030):243–9.
    [160] Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T,Feldmann M, Udalova IA. IRF5Promotes inflammatory macrophage polarizationand TH1-TH17responses. Nat Immunol.2011;12(3):231–238.
    [161] Liu J, Cao S, Herman LM, Ma X. Differential regulation of interleukin (IL)-12p35and p40gene expression and interferon (IFN)-gamma-primed IL-12production byIFN regulatory factor1. J Exp Med.2003;198(8):1265–1276.
    [162] Yoshida K, Yamamoto K, Kohno T, Hironaka N, Yasui K, Kojima C, Mukae H,Kadota J, Suzuki S, Honma K, Kohno S, Matsuyama T. Active repression of IFNregulatory factor-1-mediated transactivation by IFN regulatory factor-4. IntImmunol.2005;17(11):1463–1471.
    [163] Guo M, Mao X, Ji Q, Lang M, Li S, Peng Y, Zhou W, Xiong B, Zeng Q.. Inhibitionof IFN regulatory factor-1down-regulate Th1cell function in patients with acutecoronary syndrome. J Clin Immunol.2010;30(2):241–252.
    [164] Liu Y, Stewart KN, Bishop E, Marek CJ, Kluth DC, Rees AJ, Wilson HM.. Uniqueexpression of suppressor of cytokine signaling3is essential for classicalmacrophage activation in rodents in vitro and in vivo[J].J lmmunol.2008;180(9):6270-8.
    [165] Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, Paruchuri K, MahabeleshwarGH, Dalmas E, Venteclef N, Flask CA, Kim J, Doreian BW, Lu KQ, Kaestner KH,Hamik A, Clément K, Jain MK. Kruppel-like factor4regulates macrophagepolarization. J Clin Invest.2011;121(7):2736-49.
    [166] Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI,Mui A, Krystal G. SHIP represses the generation of alternatively activatedmacrophages. Immunity.2005;23(4):361-74.
    [167] Baron M. An overview of the Notch signalling pathway.Semin Cell Dev Biol.2003;14(2):113-119.
    [168] ROBERT J F.Structural conservation of Notch receptors and ligands [J].Cell&Developmental Biology,1998;9(6):599-607.
    [169] Fleming RJ. Structural conservation of Notch receptors and ligands.Semin Cell DevBiol,1998;9(6):599-607.
    [170] Greenwald I, Seydoux G. Analysis of gain-of-function mutations of the lin-12geneof Caenorhabditis elegans. Nature,1990;346(6280):197-9.
    [171] Rand MD, Grimm LM, Artavanis-Tsakonas S, Patriub V, Blacklow SC, Sklar J,Aster JC. Calcium depletion dissociates and activates heterodimeric notch receptors.Mol Cell Biol,2000;20(5):1825-35.
    [172] Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P, Artavanis-Tsakonas S.Specific EGF repeats of Notch mediate interactions with Delta and Serrate:implications for Notch as a multifunctional receptor. Cell.1991;67(4):687-99.
    [173] Sanchez-Irizarry C, Carpenter AC, Weng AP, Pear WS, Aster JC, Blacklow SC.Notch subunit heterodimerization and prevention of ligand-independent proteolyticactivation depend, respectively, on a noveldomain and the LNR repeats. Mol CellBiol.2004;24(21):9265-73.
    [174] Fryer CJ, White JB, Jones KA. Mastermind recruits CycC: CDK8to phosphorylatethe Notch ICD and coordinate activation with turnover.2004;16(4):509-20.
    [175] Oberg C, Li J, Pauley A, Wolf E, Gurney M, Lendahl U. The Notch intracellulardomain is ubiquitinated and negatively regulated by the mammalian Sel-10homolog. J Biol Chem.2001;276(38):35847-53.
    [176] Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T.Physical interaction between a novel domain of the receptor Notch and thetranscription factor RBP-J kappa/Su(H). Curr Biol.1995;5(12):1416-23.
    [177] Beatus P, Lundkvist J, Oberg C, Pedersen K, Lendahl U. The origin of the ankyrinrepeat region in Notch intracellular domains is critical for regulation of HESpromoter activity. Mech Dev.2001;104(1-2):3-20.
    [178] Ehebauer MT, Chirgadze DY, Hayward P, Martinez Arias A, Blundell TL.High-resolution crystal structure of the human Notch1ankyrin domain. BiochemJ.2005;392(Pt1):13-20.
    [179] Kurooka H, Kuroda K, Honjo T. Roles of the ankyrin repeats and C-terminal regionof the mouse notch1intracellular region. Nucleic Acids Res,1998,26(23):5448-55.
    [180] Ong CT, Cheng HT, Chang LW, Ohtsuka T, Kageyama R, Stormo GD, Kopan R.Target selectivity of vertebrate notch proteins. Collaboration between discretedomains and CSL-binding site architecture determines activation probability. J BiolChem.2006;281(8):5106-19.
    [181] Zweifel ME, Leahy DJ, Hughson FM, Barrick D. Structure and stability of theankyrin domain of the Drosophila Notch receptor. Protein Sci.2003;12(11):2622-32.
    [182] THOMAS G.Notch signaling and inherited disease syndromes[J].Human MolecularGenetics.2003;12Spec No1:R9-13.
    [183] Kolev V, Kacer D, Trifonova R, Small D, Duarte M, Soldi R, Graziani I, Sideleva O,Larman B, Maciag T, Prudovsky I. The intracellular domain of Notch ligand Delta1inbduces cell growth arrest. FEBS Lett.2005;579(25):5798-802
    [184] Weinmaster G. Notch signal transduction: a real rip and more. Curr Opin GenetDev.2000;10(4):363-69.
    [185] Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of theNotch signaling pathway. J Cell Physiol.2003;194(3):237-55.
    [186] Fischer A, Gessler M. Delta-Notch—and then? Protein interactions and proposedmodes of repression by Hes and Hey bHLH factors. Nucleic Acids Res.2007;35(14):4583-96.
    [187] Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S. Crossing paths withNotch in the hyper-network. Curr Opin Cell Biol.2007;19(2):166-75.
    [188] Ayyanan A, Civenni G, Ciarloni L, Morel C, Mueller N, Lefort K, Mandinova A,Raffoul W, Fiche M, Dotto GP, Brisken C. Increased Wnt signaling triggersoncogenic conversion of human breast epithelial cells by a Notch-dependentmechanism. Proc Natl Acad Sci U S A.2006;103(10):3799-804.
    [189] Sundaram MV. The love-hate relationship between Ras and Notch. Genes Dev.2005;19(16):1825-39.
    [190] Zhao Y, Katzman RB, Delmolino LM, Bhat I, Zhang Y, Gurumurthy CB,Germaniuk-Kurowska A, Reddi HV, Solomon A, Zeng MS, Kung A, Ma H, Gao Q,Dimri G, Stanculescu A, Miele L, Wu L, Griffin JD, Wazer DE, Band H, Band V..The notch regulator MAML1interacts with p53and functions as a coactivator. JBiol Chem.2007;282(16):11969-81.
    [191] Kennard S, Liu H, Lilly B. Transforming growth factor-beta (TGF-β1)down-regulates Notch3in fibroblasts to promote smooth muscle gene expression. JBiol Chem.2008;283(3):1324-33.
    [192] Su MT, Fujioka M, Goto T, Bodmer R.The drosophila homeobox genes zfh-1andeven-skipped are required for cardiac-specific differentiation of a numb-dependentlineage decision [J].Development.1999;126(14):3241-51.
    [193] Ward EJ, Skeath JB. Characterization of a novel subset of cardiac cells and theirprogenitors in the Drosophila embryo. Development.2000;127(22):4959-69.
    [194] Rones MS, McLaughlin KA, Raffin M, Mercola M. Serrate and Notch specify cellfates in the heart field by suppressing cardiomyogenesis. Development.2000;127(17):3865-76.
    [195] McLaughlin KA, Rones MS, Mercola M. Notch regulates cell fate in the developingpronephros. Dev Biol,2000,227(2):567-80.
    [196] Nemir M, Croquelois A, Pedrazzini T, Radtke F. Induction of cardiogenesis inembryonic stem cells via downregulation of Notch1signaling. Circ Res.2006;98(12):1471-8.
    [197] Swiatek PJ, Lindsell CE, del Amo FF, Weinmaster G, Gridley T. Notch1is essentialfor postimplantation development in mice. Genes Dev.1994;8(6):707-19.
    [198] McCright B, Gao X, Shen L, Lozier J, Lan Y, Maguire M, Herzlinger D,Weinmaster G, Jiang R, Gridley T. Defects in development of the kidney, heart andeye vasculature in mice homozygous for a hypomorphic Notch2mutation.Development.2001;128(4):491-502.
    [199] Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J,Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC, de la Pompa JL. Notchpromotes epithelial-mesenchymal transition during cardiacdevelopment andoncogenic transformation. Genes Dev.2004;18(1):99-115.
    [200] Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P, Arandilla A, GarrattAN, Zang H, Mukouyama YS, Chen H, Shou W, Ballestar E, Esteller M, Rojas A,Pérez-Pomares JM, de la Pompa JL.Notch signaling is essential for ventricularchamber development. Dev Cell.2007;12(3):415-29.
    [201] Benedito R, Duarte A. Expression of Dll4during mouse embryogenesis suggestsmultiple developmental roles. Gene Expr Patterns.2005;5(6):750-5.
    [202] Duarte A, Hirashima M, Benedito R, Trindade A, Diniz P, Bekman E, Costa L,Henrique D, Rossant J.Dosage-sensitive requirement for mouse Dll4in arterydevelopment. Genes Dev.2004;18(20):2474-8.
    [203] Xue Y, Gao X, Lindsell CE, Norton CR, Chang B, Hicks C, Gendron-Maguire M,Rand EB, Weinmaster G, Gridley T. Embryonic lethality and vascular defects inmice lacking the Notch ligand Jagged1. Hum Mol Genet.1999;8(5):723-30.
    [204] Loomes KM, Underkoffler LA, Morabito J, Gottlieb S, Piccoli DA, Spinner NB, etal. The expression of Jagged1in the developing mammalian heart correlates withcardiovascular disease in Alagille syndrome.Hum Mol Genet.1999;8(13):2443-9.
    [205] Loomes KM, Taichman DB, Glover CL, Williams PT, Markowitz JE, Piccoli DA,Baldwin HS, Oakey RJ. Characterization of Notch receptor expression in thedeveloping mammalian heart and liver. Am J Med Genet.2002;112(2):181-9.
    [206] Fischer A, Gessler M. Hey genes in cardiovascular development. Trends CardiovascMed.2003Aug;13(6):221-6.
    [207] Tumialán LM, Dhall SS, Tomak PR, Barrow DL. Alagille syndrome andaneurysmal subarachnoid hemorrhage. Case report and review of the literature.Pediatr Neurosurg.2006;42(1):57-61.
    [208] Turnpenny PD, Alman B, Cornier AS, Giampietro PF, Offiah A, Tassy O, PourquiéO, Kusumi K, Dunwoodie S. Abnormal vertebral segmentation and the notchsignaling pathway in man. Dev Dyn.2007;236(6):1456-1474.
    [209] Dziewulska D, Kwieciński H. CADASIL syndrome–cerebral autosomal dominantarteriopathy with subcortical infarcts and leukoencephalopathy. Neurol NeurochirPol.2008;42(2):123-130.
    [210] Nagarsheth MH, Viehman A, Lippa SM, Lippa CF. Notch-1immunoexpression isincreased in Alzheimer’s and Pick’s disease.J Neurol Sci.2006;244(1/2):111-116.
    [211] Demarest RM, Ratti F, Capobianco AJ. It’s T-ALL about Notch. Oncogene.2008;27(38):5082-91.
    [212] Leong KG, Gao WQ. The Notch pathway in prostate development and cancer.Differentiation.2008;76(6):699-716.
    [213] Wu F, Stutzman A, Mo YY. Notch signaling and its role in breast cancer. FrontBiosc.2007;12:4370-83
    [214] Maliekal TT, Bajaj J, Giri V, Subramanyam D, Krishna S. The role of Notchsignaling in human cervical cancer: implications for solid tumors. Oncogene.2008;27(38):5110-5114.
    [215] Wu L, Griffin JD. Modulation of Notch signaling by mastermind-like (MAML)transcriptional co-activators and their involvement in tumorigenesis. Semin CancerBiol.2004;14(5):348-356.
    [216] Sharma VM, Draheim KM, Kelliher MA. The Notch1/c-Myc pathway in T cellleukemia. Cell Cycle.2007;6(8):927-930.
    [217] Dotto GP. Notch tumor suppressor function. Oncogene,2008,27(38):5115-5123
    [218] Kwon SM, Alev C, Asahara T. The role of notch signaling in endothelial progenitorcell biology. Trends Cardiovasc Med.2009;19(5):170-173.
    [219] Takeshita K, Satoh M, Ii M, Silver M, Limbourg FP, Mukai Y, Rikitake Y, RadtkeF, Gridley T, Losordo DW, Liao JK. Critical role of endothelial Notch1signaling inpostnatal angiogenesis. Circ Res.2007;5;100(1):70-78.
    [220] High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA. Endothelialexpression of the Notch ligand Jagged1is required for vascular smooth muscledevelopment.2008;105(6):1955-1959.
    [221] Campa VM, Gutiérrez-Lanza R, Cerignoli F, Díaz-Trelles R, Nelson B, Tsuji T,Barcova M, Jiang W, Mercola M. Notch activates cell cycle reentry and progressionin quiescent cardiomyocytes.J Cell Biol.2008;183(1):129-141.
    [222] Collesi C, Zentilin L, Sinagra G, Giacca M; Notch1signaling stimulatesproliferation of immature cardiomyocytes.2008;183(1):117-128.
    [223] Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N, Mourkioti F.Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of theembryonic and adult heart.Circ Res.2010;106(3):559-572.
    [224] Ide M, Kuwamura M, Kotani T, Sawamoto O, Yamate J. Effects of gadoliniumchloride (GdCl(3)) on the appearance of macrophage populations and fibrogenesisin thioacetamide-induced rat hepatic lesions. J Comp Pathol.2005;133(2-3):92-102.
    [225] Monsalve E, Pérez MA, Rubio A, Ruiz-Hidalgo MJ, Baladrón V, García-Ramírez JJ,Gómez JC, Laborda J, Díaz-Guerra MJ. Notch-1up-regulation and signalingfollowing macrophage activation modulates gene expression patterns known toaffect antigen-presenting capacity and cytotoxic activity. J Immunol.2006;176(9):5362-5373.
    [226] Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction ofdistinct CD4T helper cell fates by different notch ligands on antigen-presentingcells. Cell.2004;117(4):515-26.176(9):5362-73.
    [227] Ohishi K, Katayama N, Shiku H, Varnum-Finney B, Bernstein ID. Notch signallingin hematopoiesis. Semin Cell Dev Biol.2003;14(2):143-50.
    [228] Fung E, Tang SM, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA,Carlesso N, Aster JC, Aikawa M. Delta-like4induces notch signaling inmacrophages: implications for inflammation. Circulation.2007;115(23):2948-56.
    [229] Hu X, Chung AY, Wu I, Foldi J, Chen J, Ji JD, Tateya T, Kang YJ, Han J, Gessler M,Kageyama R, Ivashkiv LB. Integrated regulation of Toll-like receptor responses byNotch and interferon-gamma pathways. Immunity.2008;29(5):691-703.
    [230] Monsalve E, Ruiz-García A, Baladrón V, Ruiz-Hidalgo MJ, Sánchez-Solana B,Rivero S, García-Ramírez JJ, Rubio A, Laborda J, Díaz-Guerra MJ. Notch1upregulates LPS-induced macrophage activation by increasing NF-kappaB activity.Eur J Immunol.2009;39(9):2556-70.
    [231] Outtz HH, Wu JK, Wang X, Kitajewski J. Notch1deficiency results in decreasedinflammation during wound healing and regulates vascular endothelial growthfactor receptor-1and inflammatory cytokine expression in macrophages. J Immunol.2010;185(7):4363-73.
    [232] Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID. The Notchligand,Delta-1, inhibits the differentiation of monocytes into macrophages butpermits their differentiation into dendritic cells. Blood.2001;98(5):1402-7.
    [233] Foldi J, Chung AY, Xu H, Zhu J, Outtz HH, Kitajewski J, Li Y, Hu X, Ivashkiv LB.Autoamplification of Notch signaling in macrophages by TLR-induced andRBP-J-dependent induction of Jagged1. J Immunol.2010;185(9):5023-31.
    [234] Leibovich SJ, Ross R. A macrophage-dependent factor that stimulates theproliferation of fibroblasts in vitro. Am J Pathol.1976;84(3):501-14.
    [235] Zhang-Hoover J, Sutton A, van Rooijen N, Stein-Streilein J. A critical role foralveolar macrophages in elicitation of pulmonary immune fibrosis. Immunology.2000,101(4):501-11.
    [236] Kodelja V, Müller C, Tenorio S, Schebesch C, Orfanos CE, Goerdt S. Differences inangiogenic potential of classically vs alternatively activated macrophages.Immunobiology.1997;197(5):478-93.
    [237] Danenberg HD, Fishbein I, Gao J, M nkk nen J, Reich R, Gati I, Moerman E,Golomb G. Macrophage depletion by clodronate-containing liposomes reducesneointimal formation after balloon injury in rats and rabbits. Circulation.2002;106(5):599-605.
    [238] Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol.2009;9(4):259-70.
    [239] Leibovich SJ, Ross R. The role of the macrophage in wound repair. A study withhydrocortisone and antimacrophage serum. Am J Pathol.1975;78(1):71-100.
    [240] Friedman SL. Mac the knife? Macrophages-the double-edged sword of hepaticfibrosis. J Clin Invest.2005;115(1):29-32.
    [241] Mantovani A, Sica A, Locati M. New vistas on macrophage differentiation andactivation. Eur J Immunol.2007;37(1):14-6.
    [242] Matsuoka M, Tsukamoto H. Stimulation of hepatic lipocyte collagen production byKupffer cell-derived transforming growth factor beta: implication for a pathogeneticrole in alcoholic liver fibrogenesis. Hepatology.1990,11(4):599-605.
    [243] Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, WuS,Lang R, Iredale JP. Selective depletion of macrophages reveals distinct, opposingroles during liver injury and repair. J Clin Invest.2005;115(1):56-65.
    [244] Imamura M, Ogawa T, Sasaguri Y, Chayama K, Ueno H. Suppression ofmacrophage infiltration inhibits activation of hepatic stellate cells and liverfibrogenesis in rats. Gastroenterology.2005;128(1):138-46.
    [245] Gao E, Lei YH, Shang X, Huang ZM, Zuo L, Boucher M, Fan Q, Chuprun JK, MaXL, Koch WJ. A novel and efficient model of coronary artery ligation andmyocardial infarction in the mouse. Circ Res.2010;107(12):1445-53.
    [246] Joshua M. Hare, MD.Bone Marrow Therapy for Myocardial Infarction JAMA.2011;306(19):2156-57.
    [247] Kared H, Adle-Biassette H, Fo s E, Masson A, Bach JF, Chatenoud L, Schneider E,Zavala F. Jagged2-expressing hematopoietic progenitors promote regulatory T cellexpansion in the periphery through notch signaling. Immunity2006;25(5):823-34.
    [248] Wang Y, Chan SL, Miele L, Yao PJ, Mackes J, Ingram DK, Mattson MP, FurukawaK. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc NatlAcad Sci USA.2004;101(25):9458-62.
    [249] Arumugam TV, Chan SL, Jo DG, Yilmaz G, Tang SC, Cheng A, Gleichmann M,Okun E, Dixit VD, Chigurupati S, Mughal MR, Ouyang X, Miele L, Magnus T,Poosala S, Granger DN, Mattson MP. Gamma secretase-mediated Notch signalingworsens brain damage and functional outcome in ischemic stroke. Nat Med.2006;12(6):621-3.
    [250] Limbourg FP, Takeshita K, Radtke F, Bronson RT, Chin MT, Liao JK. Essential roleof endothelial Notch1in angiogenesis. Circulation.2005;111(14):1826-32.
    [251] Krebs LT, Xue Y, Norton CR, Shutter JR, Maguire M, Sundberg JP, Gallahan D,Closson V, Kitajewski J, Callahan R, Smith GH, Stark KL, Gridley T. Notchsignaling is essential for vascular morphogenesis in mice. Genes Dev.2000;14(11):1343-52.
    [252] Marimuthu S, Adluri RS, Rajagopalan R, Menon VP. Protective role of ferulic acidon carbon tetrachloride-induced hyperlipidemia and histological alterations inexperimental rats. J Basic Clin Physiol Pharmacol.2013;24(1):59-66.
    [253] Ganie SA, Haq E, Hamid A, Qurishi Y, Mahmood Z, Zargar BA, Masood A, ZargarMA. Carbon tetrachloride induced kidney and lung tissue damages and antioxidantactivities of the aqueous rhizome extract of Podophyllum hexandrum. BMCComplement Altern Med.2011;11:17.
    [254] Jiang L, Huang J, Wang Y, Tang H. Metabonomic analysis reveals the CCl4-inducedsystems alterations for multiple rat organs.J Proteome Res.2012;11(7):3848-59.
    [255] Pirin io lu M, K z l G, K z l M, zdemir G, Kanay Z, Ketani MA. Protectiveeffect of küzg zü (Vitis vinifera L. cv.) grape juice against carbon tetrachlorideinduced oxidative stress in rats.Food Funct.2012;3(6):668-73.
    [256] Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T, Haase I, Brachvogel B,Hammerschmidt M, Nagy A, Ferrara N, Pasparakis M, Eming SA.CCR2recruits aninflammatory macrophage subpopulation critical for angiogenesis in tissuerepair.Blood.2012;120(3):613-25.
    [257] Bujak M, Frangogiannis NG. The role of TGF-beta signaling in myocardialinfarction and cardiac remodeling.Cardiovasc Res.2007;74(2):184-95.
    [258] Espinosa L, Cathelin S, D'Altri T, Trimarchi T, Statnikov A, Guiu J, Rodilla V,Inglés-Esteve J, Nomdedeu J, Bellosillo B, Besses C, Abdel-Wahab O, Kucine N, SunSC, Song G, Mullighan CC, Levine RL, Rajewsky K, Aifantis I, Bigas A. TheNotch/Hes1pathway sustains NF-κB activation through CYLD repression in T cellleukemia.Cancer Cell.2010;18(3):268-81.
    [259] Bonini SA, Ferrari-Toninelli G, Uberti D, Montinaro M, Buizza L, Lanni C, GrilliM, Memo M. Nuclear factor κB-dependent neurite remodeling is mediated byNotch pathway. J Neurosci.2011;31(32):11697-705.21,26,28,43-50,62,64,68,78-82,85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700