PD-1对巨噬/小胶质细胞极化的作用机制及其在脊髓损伤修复中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全世界有超过250万人受到脊髓损伤(spinal cord injury,SCI),并且以每年13万的例数在增加[1]。SCI所导致的感觉、运动功能丧失、疼痛、溃疡、尿路感染等病症,给患者带来极大的痛苦,也给家庭及社会带来了沉重的负担[1]。虽然对SCI的治疗已经取得很大的进步,但是到目前为止仍然没有十分满意的方法治疗SCI,其原因就是SCI后的病理变化过程非常复杂[2],因此充分了解SCI后的病理过程的各个方面对SCI的治疗有着非常重要的作用。
     随着深入的研究,SCI的病理过程被分为原发性损伤和继发性损伤两个阶段。原发性损伤指:创伤直接造成的损伤;而由原发性损伤引起的继发性损伤的损伤范围及严重程度远大于原发性损伤。继发性损伤的机理主要包括:兴奋性毒性,自由基,血管的破坏及炎症反应等[3-5]。其中炎症反应是SCI过程中最重要的病理过程,对SCI的预后至关重要,而血液来源的浸润的巨噬细胞及脊髓本身活化的小胶质细胞是其主要的参与者[6,7]。近期的研究报道,SCI后损伤区的各种信号微环境可使巨噬/小胶质细胞发生极化[8]。
     所谓极化就是巨噬细胞处在不同的微环境中表现出不同的功能表型[8]。它们可以极化为M1和M2两种主要的细胞亚群,即经典活化巨噬细胞和替代活化巨噬细胞[9]。经典活化M1型巨噬细胞是指在LPS+IFN-γ作用下诱导产生的。替代活化M2型巨噬细胞可由IL-4诱导获得。M1型巨噬细胞典型的特征是高水平的氧化代谢产物(如超氧化物和一氧化氮)促炎症细胞因子(如IL-12, IL-1β, TNF-,IL-15, IL-18)[10,11]。这些物质会对神经元及胶质细胞产生细胞毒性作用[12]。而M2型巨噬细胞产生高水平的精氨酸酶1(arginase1),CD206,IL-10和TGF-β [13,14],同时也会分泌一些神经营养因子(如睫状神经营养因子、胰岛素样生长因子、表皮生长因子、神经生长因子)[8,15]。这些物质可以发挥调节免疫反应,促进组织修复和功能重塑的作用。因此SCI后,巨噬/小胶质细胞既可以加剧SCI,也可以减轻SCI促进功能恢复。而SCI后不同阶段M1型巨噬细胞和M2型巨噬细胞的比例决定着SCI的转归[8]。
     Programmed cell death(PD-1)是一个由288个氨基酸组成的I型跨膜蛋白,属于CD28家族。其氨基酸序列与CTLA-4的序列有23%的同源[16]。PD-1作为一个共抑制受体,其功能在T淋巴细胞中阐述的最为详尽。当它的配体PD-L与受体PD-1结合后,募集蛋白酪氨酸磷酸酶SHP-2或SHP-1/SHP-2与其胞内段的ITIM和ITSM结合,从而抑制T淋巴细胞增殖和细胞因子的产生[17,18]。PD-1信号通路与巨噬细胞的活动密切相关,这已被最近的报道所提示[19]。Said等报道HIV感染后单核细胞PD-1的表达明显上调[20];Ma等报道丙型肝炎病毒感染后,PD-1可以通过抑制巨噬细胞STAT1(signal transducer and activator of transcription1)的磷酸化来负性调控IL-12的分泌[21]。但是PD-1途径是否参与调控巨噬/小胶质细胞的极化,如何来调控,尤其是SCI后PD-1途径发挥什么样的功能有待于进一步的研究。
     在本课题中,我们引进了C57BL/6背景的PD-1敲除小鼠,体外分别培养野生型和PD-1敲除两种小鼠的巨噬细胞和小胶质细胞,来观察PD-1在巨噬/小胶质细胞极化过程中的作用,并初步探讨其作用机制。
     本课题所取得的结果分述如下:
     1.首先,在体外培养了来源于野生小鼠和PD-1敲除小鼠的巨噬细胞和小胶质细胞,并给予LPS+IFN-γ和IL-4分别诱导为M1和M2表型,我们发现PD-1参与调节了巨噬/小胶质细胞的极化,PD-1敲除的巨噬/小胶质细胞更容易被诱导成M1型。
     2. PD-1敲除的巨噬/小胶质细胞会分泌更多的M1型特征的炎症因子(IL-1、TNF-、IL-12、IFN-γ等),同时分泌较少的M2型特征的炎症因子(IL-10,IL-4等)。
     3. STAT1和STAT6在巨噬/小胶质细胞存在有相互拮抗的现象,而PD-1主要通过调节JAK-STAT (janus kinase-signal transducer and activator oftranscription)通路而发挥其调节巨噬/小胶质细胞极化的作用。
     4.我们发现巨噬细胞和小胶质细胞吞噬葡聚糖珠的能力上面有明显的不同。
     5.最后我们在体内检测了SCI后PD-1的表达时程,并通过两种小鼠的比较,发现PD-1在SCI后起到的作用。
     综上所述,PD-1通路在调控巨噬/小胶质细胞极化中发挥着重要的作用。缺失PD-1使巨噬/小胶质细胞以削弱M2型为代价偏向于被极化为M1型。巨噬细胞和小胶质细胞在吞噬葡聚糖珠子的能力上有巨大差异。在体内,SCI后PD-1的缺失使炎症加剧,功能恢复减慢。所有这些为SCI后调控巨噬/小胶质细胞的极化提供了新的手段,并为治疗SCI提供了新的思路。
About2.5million people live with spinal cord injury (SCI), with more than130000new cases reported annually [1]. SCI often cause paralysis with complications of pain,ulcer and urethra infection, which result in enormous suffering and burden to the familiesand society [1]. Although great progresses have made in treatment after SCI, there is nonesatisfactory therapy till now. The reason lies in the fact that the very complicatedpathological changes after SCI [2]. So well study and understand every aspect of thepathology after SCI has become the main tasks for neuroscience scientists.
     With more and more study in this area, the pathological sequelae after SCI aredivided into two phases: primary injury and secondary injury. The primary injury meansthe direct damage caused by the trauma. Caused by the primary injury, the secondaryinjury leads to more seriouse extent than the primary injury. Several interrelated processes are thought to contribute to the secondary injury after SCI, including excitotoxity, freeradical, vascular broken and inflammatory responses et al [3-5]. In which, inflammatoryresponses plays the most important role and determines the recovery consequences. Andthe main inflammatory cells are macrophages/microglia the main inflammatory cells aremacrophages/microglia [6,7]. It is already known that macrophages/microglia can bepolarized into M1or M2based on signals in the lesion microenvironment [8].
     Polarizaion means macrophages retain different functional phenotypes in differentmicroenvironments [8]. Macrophages can be mainly polarized into two phenotypes:“classic activated” M1phenotype macrophages and “alternative activated” M2phenotypemacrophages. in vitro, Lipopolysaccharide (LPS) and interferon-gamma (IFN-r) inducemacrophages/microglia into “classically activated”M1phenotype and interleukin-4(IL-4)or IL-13induces the cells into “alternatively activated” M2phenotype [9]. The phenotypethat defines M1macrophages/microglia is characterized by increased oxidativemetabolites (such as inducible nitric oxide synthase (iNOS) and nitric oxide synthase2(NOS2)) and high levels of pro-inflammatory cytokines (e.g., IL-12, IL-1β, TNF-, IL-15,IL-18)[10,11], which is cytotoxic to neurons and glia cells [12]. Conversely, in thepresence of IL-4, macrophages/microglia will be polarized into M2phenotype andproduce high levels of Arginase1(Arg1), CD206, IL-10and TGF-β [13,14], and alsosecret kinds of neurotrophic factors (e.g., CNTF, IGF, EGF, NGF), which suppressinflammatory responses and facilitate wound healing [8,15]. In SCI, formacrophages/microglia, to facilitate or inhibit the recovery is determined by the ratio ofM1versus M2during pathological processes [8].
     Programmed cell death1(PD-1) is a288amino acid type I transmembrane proteinwhich belongs to the CD28superfamily and shares23%amino acid sequence homologywith cytotoxic T-lymphocyte-associated antigen4(CTLA-4)[16]. As a co-inhibitoryreceptor, it has been well studied in T lymphocyte. Ligation of PD-1with its ligandPD-L1could recruit SHP-2or SHP-1/SHP-2to combine with its cytoplasmic domainimmunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM), and then inhibit proliferation and cytokineproduction of T lymphocyte [17]. A relationship between PD-1singnaling pathway andmacrophage activation has been suggested by several studies [19]. The upregulation ofPD-1has been reported in monocytes after HIV infection [20]. PD-1has been proved tonegatively regulate IL-12production by limiting STAT1(signal transducer and activatorof transcription1) phosphorylation in monocytes/macrophages during chronic hepatitis Cvirus infection [21]. While more studies need to be done to explore the roles of PD-1signaling pathway in the polarization of macrophages/microglia, especially its functionduring the process after SCI.
     In this study, we have introduced PD-1knock out mice based on C57BL/6background mice. Macrophages and microglia were cultured from these two kinds ofmice. The roles and mechanisms of PD-1were detected in the polarization ofmacrophages/microglia in vitro.
     The results we have obtained are as follows:
     1. First, macrophages and microglia were cultured from C57BL/6(WT) mice andPD-1KO mice. Then LPS+IFN-γ and IL-4were given toinducedmacrophages/microglia into M1and M2phenotypes respectively. Wefound PD-1paticipated in the regulation of macrophages/microglia polarizationand PD-1KO macrophages/microglia were prone to be polarized into M1phenotype.
     2. PD-1KO macrophages/microglia secreted more pro-inflammatory factors (IL-1,TNF-, IL-12, IFN-γ, et al) which were the characteristic of M1phenotype. Atthe same time secreted less anti-inflammatory fators (IL-10, IL-4, et al) whichwere the characteristic of M2phenotype
     3. STAT1and STAT6were reciprocal antagonism in macrophages/microglia, andone of the mechanisms that PD-1regulated macrophages/microglia polarizationis through the regulation of janus kinase-STAT (JAK-STAT) pathway.
     4. We found there were widely differences in phagocytosis lates beads between bone marrow derived macrophages and microglia.
     5. In vivo, we detected the expression of PD-1and PD-L1at each time point afterSCI, and we found the roles of PD-1played through the comparation WT andPD-1KO mice after SCI.
     In summary, PD-1signaling pathway plays important roles in regulation ofmacrophages/microglia polarization, and compromised PD-1signaling pathway,macrophages/microglia are prone to be polarized into M1phenotype in the expense of M2phenotype. There is wide difference between macrophages and microglia in thephagocytosis of latex beads. In vivo, PD-1deficient mice exacerbate inflammatoryresponses and retard functional recovery after SCI compared with WT mice. These resultsprovide new insights into the modulation mechanisms of macrophages/microgliapolarization and shed light on new therapies for SCI through the modulation ofmacrophages/microglia polarization through the PD-1signaling.
引文
[1] Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: anugget of this multiply cascade. Acta Neurobiol Exp (Wars).20112011-01-20;71(2):281-99.
    [2] Wu B, Ren X. Promoting axonal myelination for improving neurologicalrecovery in spinal cord injury. J Neurotrauma.20092009-10-01;26(10):1847-56.
    [3] Ray SK, Hogan EL, Banik NL. Calpain in the pathophysiology of spinal cordinjury: neuroprotection with calpain inhibitors. Brain Res Brain Res Rev.20032003-05-01;42(2):169-85.
    [4] Simon CM, Sharif S, Tan RP, LaPlaca MC. Spinal cord contusion causes acuteplasma membrane damage. J Neurotrauma.20092009-04-01;26(4):563-74.
    [5] Tator CH. Biology of neurological recovery and functional restoration after spinalcord injury. Neurosurgery.19981998-04-01;42(4):696-707,707-8.
    [6] Chan CC. Inflammation: beneficial or detrimental after spinal cord injury? RecentPat CNS Drug Discov.20082008-11-01;3(3):189-99.
    [7] David S, Kroner A. Repertoire of microglial and macrophage responses afterspinal cord injury. Nat Rev Neurosci.20112011-07-01;12(7):388-99.
    [8] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization:enabling diversity with identity. Nat Rev Immunol.20112011-11-01;11(11):750-61.
    [9] Murray PJ, Wynn TA. Protective and pathogenic functions of macrophagesubsets. Nat Rev Immunol.20112011-11-01;11(11):723-37.
    [10] Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation andpolarization. Front Biosci.20082008-01-20;13:453-61.
    [11] Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat RevImmunol.20052005-12-01;5(12):953-64.
    [12] Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG.Identification of two distinct macrophage subsets with divergent effects causing eitherneurotoxicity or regeneration in the injured mouse spinal cord. J Neurosc i.20092009-10-28;29(43):13435-44.
    [13] Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, et al.Essential role of Stat6in IL-4signalling. Nature.19961996-04-18;380(6575):627-30.
    [14] Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: animmunologic functional perspective. Annu Rev Immunol.20092009-01-20;27:451-83.
    [15] Lee TT, Green BA, Dietrich WD, Yezierski RP. Neuroprotective effects of basicfibroblast growth factor following spinal cord contusion injury in the rat. J Neurotrauma.19991999-05-01;16(5):347-56.
    [16] Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance.Trends Immunol.20062006-04-01;27(4):195-201.
    [17] Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1and its ligands in toleranceand immunity. Annu Rev Immunol.20082008-01-20;26:677-704.
    [18] Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al.PD-L2is a second ligand for PD-1and inhibits T cell activation. Nat Immunol.20012001-03-01;2(3):261-8.
    [19] Huang X, Venet F, Wang YL, Lepape A, Yuan Z, Chen Y, et al. PD-1expressionby macrophages plays a pathologic role in altering microbial clearance and the innateinflammatory response to sepsis. Proc Natl Acad Sci U S A.20092009-04-14;106(15):6303-8.
    [20] Said EA, Dupuy FP, Trautmann L, Zhang Y, Shi Y, El-Far M, et al. Programmeddeath-1-induced interleukin-10production by monocytes impairs CD4+T cell activationduring HIV infection. Nat Med.20102010-04-01;16(4):452-9.
    [21] Ma CJ, Ni L, Zhang Y, Zhang CL, Wu XY, Atia AN, et al. PD-1negativelyregulates interleukin-12expression by limiting STAT-1phosphorylation inmonocytes/macrophages during chronic hepatitis C virus infection. Immunology.20112011-03-01;132(3):421-31.
    [22] Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury.Nat Rev Neurosci.20062006-08-01;7(8):628-43.
    [23] Campagnolo DI, Bartlett JA, Keller SE. Influence of neurological level onimmune function following spinal cord injury: a review. J Spinal Cord Med.20002000-01-01;23(2):121-8.
    [24] Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR. Pathophysiology andpharmacologic treatment of acute spinal cord injury. Spine J.20042004-07-01;4(4):451-64.
    [25] Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injuredspinal cord. J Neurotrauma.20062006-03-01;23(3-4):318-34.
    [26] Ali H, Bahbahani H. Umbilical cord blood stem cells-potential therapeutic toolfor neural injuries and disorders. Acta Neurobiol Exp (Wars).20102010-01-20;70(3):316-24.
    [27] Fehlings MG, Nguyen DH. Immunoglobulin G: a potential treatment to attenuateneuroinflammation following spinal cord injury. J Clin Immunol.20102010-05-01;30Suppl1:S109-12.
    [28] David S, Zarruk JG, Ghasemlou N. Inflammatory pathways in spinal cord injury.Int Rev Neurobiol.20122012-01-20;106:127-52.
    [29] Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinalcord trauma with emphasis on vascular mechanisms. J Neurosurg.19911991-07-01;75(1):15-26.
    [30] Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cordinjury. Adv Physiol Educ.20022002-12-01;26(1-4):238-55.
    [31] Tanhoffer RA, Yamazaki RK, Nunes EA, Pchevozniki AI, Pchevozniki AM,Nogata C, et al. Glutamine concentration and immune response of spinal cord-injured rats.J Spinal Cord Med.20072007-01-20;30(2):140-6.
    [32] Pineau I, Lacroix S. Proinflammatory cytokine synthesis in the injured mousespinal cord: multiphasic expression pattern and identification of the cell types involved.J Comp Neurol.20072007-01-10;500(2):267-85.
    [33] Yang L, Blumbergs PC, Jones NR, Manavis J, Sarvestani GT, Ghabriel MN.Early expression and cellular localization of proinflammatory cytokines interleukin-1beta,interleukin-6, and tumor necrosis factor-alpha in human traumatic spinal cord injury.Spine (Phila Pa1976).20042004-05-01;29(9):966-71.
    [34] Yang L, Jones NR, Blumbergs PC, Van Den Heuvel C, Moore EJ, Manavis J, etal. Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cordinjury in the rat. J Clin Neurosci.20052005-04-01;12(3):276-84.
    [35] Rice T, Larsen J, Rivest S, Yong VW. Characterization of the earlyneuroinflammation after spinal cord injury in mice. J Neuropathol Exp Neurol.20072007-03-01;66(3):184-95.
    [36] Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonalregeneration and functional recovery after spinal cord injury. Exp Neurol.20082008-02-01;209(2):378-88.
    [37] Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD,et al. The cellular inflammatory response in human spinal cords after injury. Brain.20062006-12-01;129(Pt12):3249-69.
    [38] Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury:defining the problems. J Neurotrauma.20042004-04-01;21(4):429-40.
    [39] Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, et al.Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke.20092009-05-01;40(5):1849-57.
    [40] Stirling DP, Yong VW. Dynamics of the inflammatory response after murinespinal cord injury revealed by flow cytometry. J Neurosci Res.20082008-07-01;86(9):1944-58.
    [41] Pineau I, Sun L, Bastien D, Lacroix S. Astrocytes initiate inflammation in theinjured mouse spinal cord by promoting the entry of neutrophils and inflammatorymonocytes in an IL-1receptor/MyD88-dependent fashion. Brain Behav Immun.20102010-05-01;24(4):540-53.
    [42] Kigerl KA, McGaughy VM, Popovich PG. Comparative analysis of lesiondevelopment and intraspinal inflammation in four strains of mice following spinalcontusion injury. J Comp Neurol.20062006-02-01;494(4):578-94.
    [43] Sroga JM, Jones TB, Kigerl KA, McGaughy VM, Popovich PG. Rats and miceexhibit distinct inflammatory reactions after spinal cord injury. J Comp Neurol.20032003-07-21;462(2):223-40.
    [44] Ankeny DP, Lucin KM, Sanders VM, McGaughy VM, Popovich PG. Spinal cordinjury triggers systemic autoimmunity: evidence for chronic B lymphocyte activation andlupus-like autoantibody synthesis. J Neurochem.20062006-11-01;99(4):1073-87.
    [45] Ankeny DP, Popovich PG. Mechanisms and implications of adaptive immuneresponses after traumatic spinal cord injury. Neuroscience.20092009-02-06;158(3):1112-21.
    [46] George R, Griffin JW. Delayed macrophage responses and myelin clearanceduring Wallerian degeneration in the central nervous system: the dorsal radiculotomymodel. Exp Neurol.19941994-10-01;129(2):225-36.
    [47] David S, Ousman SS. Recruiting the immune response to promote axonregeneration in the injured spinal cord. Neuroscientist.20022002-02-01;8(1):33-41.
    [48] Stoll G, Trapp BD, Griffin JW. Macrophage function during Walleriandegeneration of rat optic nerve: clearance of degenerating myelin and Ia expression. JNeurosci.19891989-07-01;9(7):2327-35.
    [49] Rotshenker S. Wallerian degeneration: the innate-immune response to traumaticnerve injury. J Neuroinflammation.20112011-01-20;8:109.
    [50] Perrin FE, Lacroix S, Aviles-Trigueros M, David S. Involvement of monocytechemoattractant protein-1, macrophage inflammatory protein-1alpha and interleukin-1betain Wallerian degeneration. Brain.20052005-04-01;128(Pt4):854-66.
    [51] Ousman SS, David S. Lysophosphatidylcholine induces rapid recruitment andactivation of macrophages in the adult mouse spinal cord. Glia.20002000-03-01;30(1):92-104.
    [52] Ousman SS, David S. MIP-1alpha, MCP-1, GM-CSF, and TNF-alpha control theimmune cell response that mediates rapid phagocytosis of myelin from the adult mousespinal cord. J Neurosci.20012001-07-01;21(13):4649-56.
    [53] Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muia C, Esposito E, et al.TNF-alpha blockage in a mouse model of SCI: evidence for improved outcome. Shock.20082008-01-01;29(1):32-41.
    [54] Zong S, Zeng G, Wei B, Xiong C, Zhao Y. Beneficial effect of interleukin-1receptor antagonist protein on spinal cord injury recovery in the rat. Inflammation.20122012-04-01;35(2):520-6.
    [55] Fleming JC, Bao F, Cepinskas G, Weaver LC. Anti-alpha4beta1integrin antibodyinduces receptor internalization and does not impair the function of circulatingneutrophilic leukocytes. Inflamm Res.20102010-08-01;59(8):647-57.
    [56] Gris D, Marsh DR, Oatway MA, Chen Y, Hamilton EF, Dekaban GA, et al.Transient blockade of the CD11d/CD18integrin reduces secondary damage after spinalcord injury, improving sensory, autonomic, and motor function. J Neurosci.20042004-04-21;24(16):4043-51.
    [57] Bao F, Chen Y, Dekaban GA, Weaver LC. Early anti-inflammatory treatmentreduces lipid peroxidation and protein nitration after spinal cord injury in rats. JNeurochem.20042004-03-01;88(6):1335-44.
    [58] Bao F, Chen Y, Schneider KA, Weaver LC. An integrin inhibiting moleculedecreases oxidative damage and improves neurological function after spinal cord injury.Exp Neurol.20082008-12-01;214(2):160-7.
    [59] David S, Greenhalgh AD, Lopez-Vales R. Role of phospholipase A2s and lipidmediators in secondary damage after spinal cord injury. Cell Tissue Res.20122012-07-01;349(1):249-67.
    [60] Ghasemlou N, Lopez-Vales R, Lachance C, Thuraisingam T, Gaestel M,Radzioch D, et al. Mitogen-activated protein kinase-activated protein kinase2(MK2)contributes to secondary damage after spinal cord injury. J Neurosci.20102010-10-13;30(41):13750-9.
    [61] Horiuchi H, Ogata T, Morino T, Chuai M, Yamamoto H. Continuous intrathecalinfusion of SB203580, a selective inhibitor of p38mitogen-activated protein kinase,reduces the damage of hind-limb function after thoracic spinal cord injury in rat.Neurosci Res.20032003-10-01;47(2):209-17.
    [62] Xu Z, Wang BR, Wang X, Kuang F, Duan XL, Jiao XY, et al. ERK1/2and p38mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration afteracute traumatic spinal cord injury. Life Sci.20062006-10-12;79(20):1895-905.
    [63] Stirling DP, Liu J, Plunet W, Steeves JD, Tetzlaff W. SB203580, a p38mitogen-activated protein kinase inhibitor, fails to improve functional outcome followinga moderate spinal cord injury in rat. Neuroscience.20082008-07-31;155(1):128-37.
    [64] Xu L, Chen S, Bergan RC. MAPKAPK2and HSP27are downstream effectors ofp38MAP kinase-mediated matrix metalloproteinase type2activation and cell invasion inhuman prostate cancer. Oncogene.20062006-05-18;25(21):2987-98.
    [65] Kotlyarov A, Neininger A, Schubert C, Eckert R, Birchmeier C, Volk HD, et al.MAPKAP kinase2is essential for LPS-induced TNF-alpha biosynthesis. Nat Cell Biol.19991999-06-01;1(2):94-7.
    [66] Winzen R, Kracht M, Ritter B, Wilhelm A, Chen CY, Shyu AB, et al. The p38MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAPkinase-activated protein kinase2and an AU-rich region-targeted mechanism. Embo J.19991999-09-15;18(18):4969-80.
    [67] Thuraisingam T, Xu YZ, Moisan J, Lachance C, Garnon J, Di Marco S, et al.Distinct role of MAPKAPK-2in the regulation of TNF gene expression by Toll-likereceptor7and9ligands. Mol Immunol.20072007-07-01;44(14):3482-91.
    [68] Gomez-Nicola D, Valle-Argos B, Pita-Thomas DW, Nieto-Sampedro M.Interleukin15expression in the CNS: blockade of its activity prevents glial activationafter an inflammatory injury. Glia.20082008-04-01;56(5):494-505.
    [69] Wang X, Xu L, Wang H, Young PR, Gaestel M, Feuerstein GZ.Mitogen-activated protein kinase-activated protein (MAPKAP) kinase2deficiencyprotects brain from ischemic injury in mice. J Biol Chem.20022002-11-15;277(46):43968-72.
    [70] Murakami M, Kudo I. Diversity and regulatory functions of mammalian secretoryphospholipase A2s. Adv Immunol.20012001-01-20;77:163-94.
    [71] Neininger A, Kontoyiannis D, Kotlyarov A, Winzen R, Eckert R, Volk HD, et al.MK2targets AU-rich elements and regulates biosynthesis of tumor necrosis factor andinterleukin-6independently at different post-transcriptional levels. J Biol Chem.20022002-02-01;277(5):3065-8.
    [72] Chrestensen CA, Schroeder MJ, Shabanowitz J, Hunt DF, Pelo JW, WorthingtonMT, et al. MAPKAP kinase2phosphorylates tristetraprolin on in vivo sites includingSer178, a site required for14-3-3binding. J Biol Chem.20042004-03-12;279(11):10176-84.
    [73] Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR.Mitogen-activated protein kinase p38controls the expression and posttranslationalmodification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability.Mol Cell Biol.20012001-10-01;21(19):6461-9.
    [74] Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, et al.Mitogen-activated protein kinase-activated protein kinase2regulates tumor necrosisfactor mRNA stability and translation mainly by altering tristetraprolin expression,stability, and binding to adenine/uridine-rich element. Mol Cell Biol.20062006-03-01;26(6):2399-407.
    [75] Karimi-Abdolrezaee S, Billakanti R. Reactive astrogliosis after spinal cordinjury-beneficial and detrimental effects. Mol Neurobiol.20122012-10-01;46(2):251-64.
    [76] Basso DM, Fisher LC, Anderson AJ, Jakeman LB, McTigue DM, Popovich PG.Basso Mouse Scale for locomotion detects differences in recovery after spinal cord injur yin five common mouse strains. J Neurotrauma.20062006-05-01;23(5):635-59.
    [77] Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z. Matrix metalloproteinaseslimit functional recovery after spinal cord injury by modulation of early vascular events. JNeurosci.20022002-09-01;22(17):7526-35.
    [78] Hsu JY, McKeon R, Goussev S, Werb Z, Lee JU, Trivedi A, et al. Matrixmetalloproteinase-2facilitates wound healing events that promote functional recoveryafter spinal cord injury. J Neurosci.20062006-09-27;26(39):9841-50.
    [79] GARDOS G. The function of calcium in the potassium permeability of humanerythrocytes. Biochim Biophys Acta.19581958-12-01;30(3):653-4.
    [80] Kaushal V, Koeberle PD, Wang Y, Schlichter LC. The Ca2+-activated K+channel KCNN4/KCa3.1contributes to microglia activation and nitric oxide-dependentneurodegeneration. J Neurosci.20072007-01-03;27(1):234-44.
    [81] Khanna R, Chang MC, Joiner WJ, Kaczmarek LK, Schlichter LC. hSK4/hIK1, acalmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation andvolume regulation. J Biol Chem.19991999-05-21;274(21):14838-49.
    [82] Reich EP, Cui L, Yang L, Pugliese-Sivo C, Golovko A, Petro M, et al. Blockingion channel KCNN4alleviates the symptoms of experimental autoimmuneencephalomyelitis in mice. Eur J Immunol.20052005-04-01;35(4):1027-36.
    [83] Mauler F, Hinz V, Horvath E, Schuhmacher J, Hofmann HA, Wirtz S, et al.Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4)blockers are potent and effective therapeutics in experimental brain oedema and traumaticbrain injury caused by acute subdural haematoma. Eur J Neurosci.20042004-10-01;20(7):1761-8.
    [84] Chen YJ, Raman G, Bodendiek S, O'Donnell ME, Wulff H. The KCa3.1blockerTRAM-34reduces infarction and neurological deficit in a rat model ofischemia/reperfusion stroke. J Cereb Blood Flow Metab.20112011-12-01;31(12):2363-74.
    [85] Bouhy D, Ghasemlou N, Lively S, Redensek A, Rathore KI, Schlichter LC, et al.Inhibition of the Ca(2)(+)-dependent K(+) channel, KCNN4/KCa3.1, improves tissueprotection and locomotor recovery after spinal cord injury. J Neurosci.20112011-11-09;31(45):16298-308.
    [86] Sallenave JM. Secretory leukocyte protease inhibitor and elafin/trappin-2:versatile mucosal antimicrobials and regulators of immunity. Am J Respir Cell Mol Biol.20102010-06-01;42(6):635-43.
    [87] Jin FY, Nathan C, Radzioch D, Ding A. Secretory leukocyte protease inhibitor: amacrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell.19971997-02-07;88(3):417-26.
    [88] Zhang Y, DeWitt DL, McNeely TB, Wahl SM, Wahl LM. Secretory leukocyteprotease inhibitor suppresses the production of monocyte prostaglandin H synthase-2,prostaglandin E2, and matrix metalloproteinases. J C lin Invest.19971997-03-01;99(5):894-900.
    [89] Ashcroft GS, Lei K, Jin W, Longenecker G, Kulkarni AB, Greenwell-Wild T, etal. Secretory leukocyte protease inhibitor mediates non-redundant functions necessary fornormal wound healing. Nat Med.20002000-10-01;6(10):1147-53.
    [90] Wang X, Li X, Xu L, Zhan Y, Yaish-Ohad S, Erhardt JA, et al. Up-regulation ofsecretory leukocyte protease inhibitor (SLPI) in the brain after ischemic stroke: adenoviralexpression of SLPI protects brain from ischemic injury. Mo l Pharmacol.20032003-10-01;64(4):833-40.
    [91] Ghasemlou N, Bouhy D, Yang J, Lopez-Vales R, Haber M, Thuraisingam T, et al.Beneficial effects of secretory leukocyte protease inhibitor after spinal cord injury. Brain.20102010-01-01;133(Pt1):126-38.
    [92] Taggart CC, Cryan SA, Weldon S, Gibbons A, Greene CM, Kelly E, et al.Secretory leucoprotease inhibitor binds to NF-kappaB binding sites in monocytes andinhibits p65binding. J Exp Med.20052005-12-19;202(12):1659-68.
    [93] Lopez-Vales R, Ghasemlou N, Redensek A, Kerr BJ, Barbayianni E,Antonopoulou G, et al. Phospholipase A2superfamily members play divergent roles afterspinal cord injury. Faseb J.20112011-12-01;25(12):4240-52.
    [94] Liu NK, Zhang YP, Titsworth WL, Jiang X, Han S, Lu PH, et al. A novel role ofphospholipase A2in mediating spinal cord secondary injury. Ann Neurol.20062006-04-01;59(4):606-19.
    [95] Bonventre JV, Huang Z, Taheri MR, O'Leary E, Li E, Moskowitz MA, et al.Reduced fertility and postischaemic brain injury in mice defic ient in cytosolicphospholipase A2. Nature.19971997-12-11;390(6660):622-5.
    [96] Kalyvas A, Baskakis C, Magrioti V, Constantinou-Kokotou V, Stephens D,Lopez-Vales R, et al. Differing roles for members of the phospholipase A2superfamily inexperimental autoimmune encephalomyelitis. Brain.20092009-05-01;132(Pt5):1221-35.
    [97] Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mappinganalysis reveals that adult microglia derive from primitive macrophages. Science.20102010-11-05;330(6005):841-5.
    [98] Yong VW, Rivest S. Taking advantage of the systemic immune system to curebrain diseases. Neuron.20092009-10-15;64(1):55-60.
    [99] Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, et al.Targeted disruption of the mouse colony-stimulating factor1receptor gene results inosteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cellfrequencies, and reproductive defects. Blood.20022002-01-01;99(1):111-20.
    [100] Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principalsubsets with distinct migratory properties. Immunity.20032003-07-01;19(1):71-82.
    [101] Fogg DK, Sibon C, Miled C, Jung S, Aucouturier P, Littman DR, et al. Aclonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science.20062006-01-06;311(5757):83-7.
    [102] Naik SH, Metcalf D, van Nieuwenhuijze A, Wicks I, Wu L, O'Keeffe M, et al.Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. NatImmunol.20062006-06-01;7(6):663-71.
    [103] Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG.TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterialinfection. Immunity.20032003-07-01;19(1):59-70.
    [104] Auffray C, Fogg DK, Narni-Mancinelli E, Senechal B, Trouillet C, Saederup N,et al. CX3CR1+CD115+CD135+common macrophage/DC precursors and the role ofCX3CR1in their response to inflammation. J Exp Med.20092009-03-16;206(3):595-606.
    [105] Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, et al.Langerhans cells arise from monocytes in vivo. Nat Immunol.20062006-03-01;7(3):265-73.
    [106] Landsman L, Varol C, Jung S. Distinct differentiation potential of bloodmonocyte subsets in the lung. J Immunol.20072007-02-15;178(4):2000-7.
    [107] Landsman L, Jung S. Lung macrophages serve as obligatory intermediatebetween blood monocytes and alveolar macrophages. J Immunol.20072007-09-15;179(6):3488-94.
    [108] Varol C, Landsman L, Fogg DK, Greenshtein L, Gildor B, Margalit R, et al.Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med.20072007-01-22;204(1):171-80.
    [109] Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, et al.Dendritic cells permit immune invasion of the CNS in an animal model of multiplesclerosis. Nat Med.20052005-03-01;11(3):328-34.
    [110] King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+myeloid precursorsmigrate to the CNS and play a pathogenic role during autoimmune demyelinating disease.Blood.20092009-04-02;113(14):3190-7.
    [111] Pruss H, Kopp MA, Brommer B, Gatzemeier N, Laginha I, Dirnagl U, et al.Non-resolving aspects of acute inflammation after spinal cord injury (SCI): indices andresolution plateau. Brain Pathol.20112011-11-01;21(6):652-60.
    [112] Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor-induced Tregulatory cells and T-cell anergy in tumor-bearing host. Cancer Res.20062006-01-15;66(2):1123-31.
    [113] Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, et al.Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressorcell-like properties. Neuro Oncol.20102010-04-01;12(4):351-65.
    [114] Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al.Monitoring of blood vessels and tissues by a population of monocytes with patrollingbehavior. Science.20072007-08-03;317(5838):666-70.
    [115] Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development,heterogeneity, and relationship with dendritic cells. Annu Rev Immunol.20092009-01-20;27:669-92.
    [116] Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, FigueiredoJL, et al. The healing myocardium sequentially mobilizes two monocyte s ubsets withdivergent and complementary functions. J Exp Med.20072007-11-26;204(12):3037-47.
    [117] Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, et al.Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possibleroles in the regulation of T-cell responses. Immunol Cell Biol.20082008-07-01;86(5):398-408.
    [118] Kobayashi M, Jeschke MG, Shigematsu K, Asai A, Yoshida S, Herndon DN, et al.M2b monocytes predominated in peripheral blood of severely burned patients. J Immunol.20102010-12-15;185(12):7174-9.
    [119] London A, Itskovich E, Benhar I, Kalchenko V, Mack M, Jung S, et al.Neuroprotection and progenitor cell renewal in the injured adult murine retina requireshealing monocyte-derived macrophages. J Exp Med.20112011-01-17;208(1):23-39.
    [120] Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, et al.Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role inrecovery from spinal cord injury in mice. PLoS Med.20092009-07-01;6(7):e1000113.
    [121] Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediatesrapid microglial response to local brain injury in vivo. Nat Neurosci.20052005-06-01;8(6):752-8.
    [122] Hines DJ, Hines RM, Mulligan SJ, Macvicar BA. Microglia processes block thespread of damage in the brain and require functional chloride channels. Glia.20092009-11-15;57(15):1610-8.
    [123] Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, et al. TheP2Y12receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci.20062006-12-01;9(12):1512-9.
    [124] Wu LJ, Vadakkan KI, Zhuo M. ATP-induced chemotaxis of microglial processesrequires P2Y receptor-activated initiation of outward potassium currents. Glia.20072007-06-01;55(8):810-21.
    [125] Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, et al. P2Y12receptor-mediated integrin-beta1activation regulates microglial process extension inducedby ATP. Glia.20102010-05-01;58(7):790-801.
    [126] Franke H, Sauer C, Rudolph C, Krugel U, Hengstler JG, Illes P. P2receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia.20092009-08-01;57(10):1031-45.
    [127] Irino Y, Nakamura Y, Inoue K, Kohsaka S, Ohsawa K. Akt activation is involvedin P2Y12receptor-mediated chemotaxis of microglia. J Neurosci Res.20082008-05-15;86(7):1511-9.
    [128] Liang KJ, Lee JE, Wang YD, Ma W, Fontainhas AM, Fariss RN, et al.Regulation of dynamic behavior of retinal microglia by CX3CR1signaling. InvestOphthalmol Vis Sci.20092009-09-01;50(9):4444-51.
    [129] Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, et al.NO mediates microglial response to acute spinal cord injury under ATP control in vivo.Glia.20102010-07-01;58(9):1133-44.
    [130] Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specializedresponses. Annu Rev Immunol.20092009-01-20;27:119-45.
    [131] Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S. Expression ofCCR2in both resident and bone marrow-derived microglia plays a critical role inneuropathic pain. J Neurosci.20072007-11-07;27(45):12396-406.
    [132] Deng YY, Lu J, Ling EA, Kaur C. Monocyte chemoattractant protein-1(MCP-1)produced via NF-kappaB signaling pathway mediates migration of amoeboid microglia inthe periventricular white matter in hypoxic neonatal rats. Glia.20092009-04-15;57(6):604-21.
    [133] Schwab JM, Frei E, Klusman I, Schnell L, Schwab ME, Schluesener HJ. AIF-1expression defines a proliferating and alert microglial/macrophage phenotype followingspinal cord injury in rats. J Neuroimmunol.20012001-10-01;119(2):214-22.
    [134] Ip CW, Kroner A, Bendszus M, Leder C, Kobsar I, Fischer S, et al. Immune cellscontribute to myelin degeneration and axonopathic changes in mice overexpressingproteolipid protein in oligodendrocytes. J Neurosci.20062006-08-02;26(31):8206-16.
    [135] Ip CW, Kroner A, Crocker PR, Nave KA, Martini R. Sialoadhesin deficiencyameliorates myelin degeneration and axonopathic changes in the CNS of PLPoverexpressing mice. Neurobiol Dis.20072007-01-01;25(1):105-11.
    [136] Ip CW, Kohl B, Kleinschnitz C, Reuss B, Nave KA, Kroner A, et al. Origin ofCD11b+macrophage-like cells in the CNS of PLP-overexpressing mice: low influx ofhaematogenous macrophages and unchanged blood-brain-barrier in the optic nerve. MolCell Neurosci.20082008-08-01;38(4):489-94.
    [137] Schonrock LM, Kuhlmann T, Adler S, Bitsch A, Bruck W. Identification of glialcell proliferation in early multiple sclerosis lesions. Neuropathol Appl Neurobiol.19981998-08-01;24(4):320-30.
    [138] Imamoto K, Leblond CP. Presence of labeled monocytes, macrophages andmicroglia in a stab wound of the brain following an injection of bone marrow cells labeledwith3H-uridine into rats. J Comp Neurol.19771977-07-15;174(2):255-79.
    [139] Popovich PG, Hickey WF. Bone marrow chimeric rats reveal the uniquedistribution of resident and recruited macrophages in the contused rat spinal cord. JNeuropathol Exp Neurol.20012001-07-01;60(7):676-85.
    [140] Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. Depletionof hematogenous macrophages promotes partial hindlimb recovery and neuroanatomicalrepair after experimental spinal cord injury. Exp Neurol.19991999-08-01;158(2):351-65.
    [141] Nesic O, Xu GY, McAdoo D, High KW, Hulsebosch C, Perez-Pol R. IL-1receptor antagonist prevents apoptosis and caspase-3activation after spinal cord injury. JNeurotrauma.20012001-09-01;18(9):947-56.
    [142] Ferguson AR, Christensen RN, Gensel JC, Miller BA, Sun F, Beattie EC, et a l.Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced traffickingof GluR2-lacking AMPARs to the plasma membrane. J Neurosci.20082008-10-29;28(44):11391-400.
    [143] Probert L, Eugster HP, Akassoglou K, Bauer J, Frei K, Lassmann H, et al.TNFR1signalling is critical for the development of demyelination and the limitation ofT-cell responses during immune-mediated CNS disease. Brain.20002000-10-01;123(Pt10):2005-19.
    [144] Letellier E, Kumar S, Sancho-Martinez I, Krauth S, Funke-Kaiser A, LaudenklosS, et al. CD95-ligand on peripheral myeloid cells activates Syk kinase to trigger theirrecruitment to the inflammatory site. Immunity.20102010-02-26;32(2):240-52.
    [145] Lopez-Vales R, Garcia-Alias G, Fores J, Udina E, Gold BG, Navarro X, et al. FK506reduces tissue damage and prevents functional deficit after spinal cord injury in the rat.J Neurosci Res.20052005-09-15;81(6):827-36.
    [146] Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, et al.Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback,and improves functional outcome after spinal cord injury. J Neurosci.20042004-03-03;24(9):2182-90.
    [147] Iannotti CA, Clark M, Horn KP, van Rooijen N, Silver J, Steinmetz MP. Acombination immunomodulatory treatment promotes neuroprotection and locomotorrecovery after contusion SCI. Exp Neurol.20112011-07-01;230(1):3-15.
    [148] Kaushal V, Schlichter LC. Mechanisms of microglia-mediated neurotoxicity in anew model of the stroke penumbra. J Neurosci.20082008-02-27;28(9):2221-30.
    [149] Chatzipanteli K, Garcia R, Marcillo AE, Loor KE, Kraydieh S, Dietrich WD.Temporal and segmental distribution of constitutive and inducible nitric oxide synthasesafter traumatic spinal cord injury: effect of aminoguanidine treatment. J Neurotrauma.20022002-05-01;19(5):639-51.
    [150] Lopez-Vales R, Garcia-Alias G, Fores J, Navarro X, Verdu E. Increasedexpression of cyclo-oxygenase2and vascular endothelial growth factor in lesionedspinal cord by transplanted olfactory ensheathing cells. J Neurotrauma.20042004-08-01;21(8):1031-43.
    [151] Pearse DD, Chatzipanteli K, Marcillo AE, Bunge MB, Dietrich WD. Comparisonof iNOS inhibition by antisense and pharmacological inhibitors after spinal cord injur y. JNeuropathol Exp Neurol.20032003-11-01;62(11):1096-107.
    [152] Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, et al.Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci.20062006-07-01;9(7):917-24.
    [153] Denes A, Ferenczi S, Halasz J, Kornyei Z, Kovacs KJ. Role of CX3CR1(fractalkine receptor) in brain damage and inflammation induced by focal cerebralischemia in mouse. J Cereb Blood Flow Metab.20082008-10-01;28(10):1707-21.
    [154] Soriano SG, Amaravadi LS, Wang YF, Zhou H, Yu GX, Tonra JR, et al. Micedeficient in fractalkine are less susceptible to cerebral ischemia-reperfusion injury. JNeuroimmunol.20022002-04-01;125(1-2):59-65.
    [155] Lee S, Varvel NH, Konerth ME, Xu G, Cardona AE, Ransohoff RM, et al.CX3CR1deficiency alters microglial activation and reduces beta-amyloid deposition intwo Alzheimer's disease mouse models. Am J Pathol.20102010-11-01;177(5):2549-62.
    [156] Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP. TNF alphapromotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci.20012001-11-01;4(11):1116-22.
    [157] Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons withoutinflammation by microglial triggering receptor expressed o n myeloid cells-2. J Exp Med.20052005-02-21;201(4):647-57.
    [158] Fry EJ, Ho C, David S. A role for Nogo receptor in macrophage clearance frominjured peripheral nerve. Neuron.20072007-03-01;53(5):649-62.
    [159] Satoh J, Onoue H, Arima K, Yamamura T. Nogo-A and nogo receptor expressionin demyelinating lesions of multiple sclerosis. J Neuropathol Exp Neurol.20052005-02-01;64(2):129-38.
    [160] David S, Fry EJ, Lopez-Vales R. Novel roles for Nogo receptor in inflammationand disease. Trends Neurosci.20082008-05-01;31(5):221-6.
    [161] Lu YZ, Lin CH, Cheng FC, Hsueh CM. Molecular mechanisms responsible formicroglia-derived protection of Sprague-Dawley rat brain cells during in vitro ischemia.Neurosci Lett.20052005-01-10;373(2):159-64.
    [162] Wiessner C, Gehrmann J, Lindholm D, Topper R, Kreutzberg GW, HossmannKA. Expression of transforming growth factor-beta1and interleukin-1beta mRNA in ratbrain following transient forebrain ischemia. Acta Neuropathol.19931993-01-19;86(5):439-46.
    [163] Mitrasinovic OM, Grattan A, Robinson CC, Lapustea NB, Poon C, Ryan H, et al.Microglia overexpressing the macrophage colony-stimulating factor receptor areneuroprotective in a microglial-hippocampal organotypic coculture system. J Neurosci.20052005-04-27;25(17):4442-51.
    [164] Lambert C, Desbarats J, Arbour N, Hall JA, Olivier A, Bar-Or A, et al. Dendriticcell differentiation signals induce anti-inflammatory properties in human adult microglia. JImmunol.20082008-12-15;181(12):8288-97.
    [165] Bouhy D, Malgrange B, Multon S, Poirrier AL, Scholtes F, Schoenen J, et al.Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery inparaplegic rats via an increased BDNF expression by endogenous macrophages. Faseb J.20062006-06-01;20(8):1239-41.
    [166] Ha Y, Kim YS, Cho JM, Yoon SH, Park SR, Yoon DH, et al. Role ofgranulocyte-macrophage colony-stimulating factor in preventing apoptosis andimproving functional outcome in experimental spinal cord contusion injury. J NeurosurgSpine.20052005-01-01;2(1):55-61.
    [167] Lazarov-Spiegler O, Solomon AS, Zeev-Brann AB, Hirschberg DL, Lavie V,Schwartz M. Transplantation of activated macrophages overcomes central nervous systemregrowth failure. Faseb J.19961996-09-01;10(11):1296-302.
    [168] Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, etal. Implantation of stimulated homologous macrophages results in partial recovery ofparaplegic rats. Nat Med.19981998-07-01;4(7):814-21.
    [169] Schwartz M, Lazarov-Spiegler O, Rapalino O, Agranov I, Velan G, Hadani M.Potential repair of rat spinal cord injuries using stimulated homologous macrophages.Neurosurgery.19991999-05-01;44(5):1041-5,1045-6.
    [170] Lazarov-Spiegler O, Solomon AS, Schwartz M. Peripheral nerve-stimulatedmacrophages simulate a peripheral nerve-like regenerative response in rat transected opticnerve. Glia.19981998-11-01;24(3):329-37.
    [171] Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI. Lens injury stimulates axonregeneration in the mature rat optic nerve. J Neurosci.20002000-06-15;20(12):4615-26.
    [172] Yin Y, Cui Q, Li Y, Irwin N, Fischer D, Harvey AR, et al. Macrophage-derivedfactors stimulate optic nerve regeneration. J Neurosci.20032003-03-15;23(6):2284-93.
    [173] Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, et al.Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglioncells. Nat Neurosci.20062006-06-01;9(6):843-52.
    [174] Standiford TJ, Strieter RM, Chensue SW, Westwick J, Kasahara K, Kunkel SL.IL-4inhibits the expression of IL-8from stimulated human monocytes. J Immunol.19901990-09-01;145(5):1435-9.
    [175] Paludan SR. Interleukin-4and interferon-gamma: the quintessence of a mutualantagonistic relationship. Scand J Immunol.19981998-11-01;48(5):459-68.
    [176] Tanaka T, Hu-Li J, Seder RA, Fazekas DSGB, Paul WE. Interleukin4suppressesinterleukin2and interferon gamma production by naive T cells stimulated by accessorycell-dependent receptor engagement. Proc Natl Acad Sci U S A.19931993-07-01;90(13):5914-8.
    [177] Wynn TA. IL-13effector functions. Annu Rev Immunol.20032003-01-20;21:425-56.
    [178] Wynn TA. Fibrotic disease and the T(H)1/T(H)2paradigm. Nat Rev Immunol.20042004-08-01;4(8):583-94.
    [179] Longbrake EE, Lai W, Ankeny DP, Popovich PG. Characterization and modelingof monocyte-derived macrophages after spinal cord injury. J Neurochem.20072007-08-01;102(4):1083-94.
    [180] Kerr BJ, Girolami EI, Ghasemlou N, Jeong SY, David S. The protective effectsof15-deoxy-delta-(12,14)-prostaglandin J2in spinal cord injury. Glia.20082008-03-01;56(4):436-48.
    [181] Lopez-Vales R, Redensek A, Skinner TA, Rathore KI, Ghasemlou N,Wojewodka G, et al. Fenretinide promotes functional recovery and tissue protection afterspinal cord contusion injury in mice. J Neurosci.20102010-03-03;30(9):3220-6.
    [182] Redensek A, Rathore KI, Berard JL, Lopez-Vales R, Swayne LA, Bennett SA, etal. Expression and detrimental role of hematopoietic prostaglandin D synthase in spinalcord contusion injury. Glia.20112011-04-01;59(4):603-14.
    [183] Nishio Y, Koda M, Hashimoto M, Kamada T, Koshizuka S, Yoshinaga K, et al.Deletion of macrophage migration inhibitory factor attenuates neuronal death andpromotes functional recovery after compression-induced spinal cord injury in mice. ActaNeuropathol.20092009-03-01;117(3):321-8.
    [184] Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, etal. Altered M1/M2activation patterns of monocytes in severe relapsing experimental ratmodel of multiple sclerosis. Amelioration of clinical status by M2activated monocyteadministration. Mult Scler.20112011-01-01;17(1):2-15.
    [185] Berard JL, Kerr BJ, Johnson HM, David S. Differential expression of SOCS1inmacrophages in relapsing-remitting and chronic EAE and its role in disease severity. Glia.20102010-11-15;58(15):1816-26.
    [186] Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of thehuman monocyte-to-macrophage differentiation and polarization: new molecules andpatterns of gene expression. J Immunol.20062006-11-15;177(10):7303-11.
    [187] Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al.Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature.20022002-04-11;416(6881):636-40.
    [188] Galtrey CM, Fawcett JW. The role of chondroitin sulfate proteoglycans inregeneration and plasticity in the central nervous system. Brain Res Rev.20072007-04-01;54(1):1-18.
    [189] Busch SA, Silver J. The role of extracellular matrix in CNS regeneration. CurrOpin Neurobiol.20072007-02-01;17(1):120-7.
    [190] Moon LD, Asher RA, Rhodes KE, Fawcett JW. Regeneration of CNS axons backto their target following treatment of adult rat brain with chondroitinase ABC. NatNeurosci.20012001-05-01;4(5):465-6.
    [191] Busch SA, Horn KP, Silver DJ, Silver J. Overcoming macrophage-mediatedaxonal dieback following CNS injury. J Neurosci.20092009-08-12;29(32):9967-76.
    [192] Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J. Another barrier toregeneration in the CNS: activated macrophages induce extensive retraction of dystrophicaxons through direct physical interactions. J Neurosci.20082008-09-17;28(38):9330-41.
    [193] Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, et al. Macrophagepolarization in tumour progression. Semin Cancer Biol.20082008-10-01;18(5):349-55.
    [194] Boven LA, Van Meurs M, Van Zwam M, Wierenga-Wolf A, Hintzen RQ, BootRG, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells inmultiple sclerosis. Brain.20062006-02-01;129(Pt2):517-26.
    [195] van Rossum D, Hilbert S, Strassenburg S, Hanisch UK, Bruck W.Myelin-phagocytosing macrophages in isolated sciatic and optic nerves reveal a uniquereactive phenotype. Glia.20082008-02-01;56(3):271-83.
    [196] Ponomarev ED, Maresz K, Tan Y, Dittel BN. CNS-derived interleukin-4isessential for the regulation of autoimmune inflammation and induces a state of alternativeactivation in microglial cells. J Neurosci.20072007-10-03;27(40):10714-21.
    [197] Pechkovsky DV, Prasse A, Kollert F, Engel KM, Dentler J, Luttmann W, et al.Alternatively activated alveolar macrophages in pulmonary fibrosis-mediator productionand intracellular signal transduction. Clin Immunol.20102010-10-01;137(1):89-101.
    [198] Misson P, van den Brule S, Barbarin V, Lison D, Huaux F. Markers ofmacrophage differentiation in experimental silicosis. J Leukoc Biol.20042004-11-01;76(5):926-32.
    [199] Ikezumi Y, Suzuki T, Karasawa T, Hasegawa H, Yamada T, Imai N, et al.Identification of alternatively activated macrophages in new-onset paediatric and adultimmunoglobulin A nephropathy: potential role in mesangial matrix expansion.Histopathology.20112011-01-01;58(2):198-210.
    [200] Bellon T, Martinez V, Lucendo B, Del PG, Castro MJ, Aroeira LS, et al.Alternative activation of macrophages in human peritoneum: implications for peritonealfibrosis. Nephrol Dial Transplant.20112011-09-01;26(9):2995-3005.
    [201] Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2mononuclear phagocytes.Trends Immunol.20022002-11-01;23(11):549-55.
    [202] Gratchev A, Kzhyshkowska J, Kannookadan S, Ochsenreiter M, Popova A, Yu X,et al. Activation of a TGF-beta-specific multistep gene expression program in maturemacrophages requires glucocorticoid-mediated surface expression of TGF-beta receptor II.J Immunol.20082008-05-15;180(10):6553-65.
    [203] Ganz T. Hepcidin--a peptide hormone at the interface of innate immunity andiron metabolism. Curr Top Microbiol Immunol.20062006-01-20;306:183-98.
    [204] Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, et al.Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing itsinternalization. Science.20042004-12-17;306(5704):2090-3.
    [205] Rathore KI, Kerr BJ, Redensek A, Lopez-Vales R, Jeong SY, Ponka P, et al.Ceruloplasmin protects injured spinal cord from iron-mediated oxidative damage. JNeurosci.20082008-11-26;28(48):12736-47.
    [206] Sindrilaru A, Peters T, Wieschalka S, Baican C, Baican A, Peter H, et al. Anunrestrained proinflammatory M1macrophage population induced by iron impairswound healing in humans and mice. J Clin Invest.20112011-03-01;121(3):985-97.
    [207] Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD-1, a novelmember of the immunoglobulin gene superfamily, upon programmed cell death. Embo J.19921992-11-01;11(11):3887-95.
    [208] Nishimura H, Honjo T, Minato N. Facilitation of beta selection and modificationof positive selection in the thymus of PD-1-deficient mice. J Exp Med.20002000-03-06;191(5):891-8.
    [209] Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7family,co-stimulates T-cell proliferation and interleukin-10secretion. Nat Med.19991999-12-01;5(12):1365-9.
    [210] Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al.Engagement of the PD-1immunoinhibitory receptor by a novel B7family member leadsto negative regulation of lymphocyte activation. J Exp Med.20002000-10-02;192(7):1027-34.
    [211] Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-DC, a newdendritic cell molecule with potent costimulatory properties for T cells. J Exp Med.20012001-04-02;193(7):839-46.
    [212] Nielsen C, Ohm-Laursen L, Barington T, Husby S, Lillevang ST. Alternativesplice variants of the human PD-1gene. Cell Immunol.20052005-06-01;235(2):109-16.
    [213] Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, et al.Association of the T-cell regulatory gene CTLA4with susceptibility to autoimmunedisease. Nature.20032003-05-29;423(6939):506-11.
    [214] Wan B, Nie H, Liu A, Feng G, He D, Xu R, et al. Aberrant regulation of synovialT cell activation by soluble costimulatory molecules in rheumatoid arthritis. J Immunol.20062006-12-15;177(12):8844-50.
    [215] He XH, Xu LH, Liu Y. Identification of a novel splice variant of human PD-L1mRNA encoding an isoform-lacking Igv-like domain. Acta Pharmacol Sin.20052005-04-01;26(4):462-8.
    [216] He XH, Liu Y, Xu LH, Zeng YY. Cloning and identification of two novel splicevariants of human PD-L2. Acta Biochim Biophys Sin (Shanghai).20042004-04-01;36(4):284-9.
    [217] Wang S, Bajorath J, Flies DB, Dong H, Honjo T, Chen L. Molecular modelingand functional mapping of B7-H1and B7-DC uncouple costimulatory function from PD-1interaction. J Exp Med.20032003-05-05;197(9):1083-91.
    [218] Nishimura H, Agata Y, Kawasaki A, Sato M, Imamura S, Minato N, et al.Developmentally regulated expression of the PD-1protein on the surface ofdouble-negative (CD4-CD8-) thymocytes. Int Immunol.19961996-05-01;8(5):773-80.
    [219] Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1and SHP-2associate with immunoreceptor tyrosine-based switch motif of programmed death1uponprimary human T cell stimulation, but only receptor ligation prevents T cell activation. JImmunol.20042004-07-15;173(2):945-54.
    [220] Dorfman DM, Brown JA, Shahsafaei A, Freeman GJ. Programmed death-1(PD-1)is a marker of germinal center-associated T cells and angioimmunoblastic T-celllymphoma. Am J Surg Pathol.20062006-07-01;30(7):802-10.
    [221] Raimondi G, Shufesky WJ, Tokita D, Morelli AE, Thomson AW. Regulatedcompartmentalization of programmed cell death-1discriminates CD4+CD25+restingregulatory T cells from activated T cells. J Immunol.20062006-03-01;176(5):2808-16.
    [222] Pentcheva-Hoang T, Chen L, Pardoll DM, Allison JP. Programmed death-1concentration at the immunological synapse is determined by ligand affinity andavailability. Proc Natl Acad Sci U S A.20072007-11-06;104(45):17765-70.
    [223] Petrovas C, Casazza JP, Brenchley JM, Price DA, Gostick E, Adams WC, et al.PD-1is a regulator of virus-specific CD8+T cell survival in HIV infection. J Exp Med.20062006-10-02;203(10):2281-92.
    [224] Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, et al. Expressionof programmed death1ligands by murine T cells and APC. J Immunol.20022002-11-15;169(10):5538-45.
    [225] Eppihimer MJ, Gunn J, Freeman GJ, Greenfield EA, Chernova T, Erickson J, etal. Expression and regulation of the PD-L1immunoinhibitory molecule on microvascularendothelial cells. Microcirculation.20022002-04-01;9(2):133-45.
    [226] Schreiner B, Mitsdoerffer M, Kieseier BC, Chen L, Hartung HP, Weller M, et al.Interferon-beta enhances monocyte and dendritic cell expression of B7-H1(PD-L1), astrong inhibitor of autologous T-cell activation: relevance for the immune modulatoryeffect in multiple sclerosis. J Neuroimmunol.20042004-10-01;155(1-2):172-82.
    [227] Liu J, Hamrouni A, Wolowiec D, Coiteux V, Kuliczkowski K, He tuin D, et al.Plasma cells from multiple myeloma patients express B7-H1(PD-L1) and increaseexpression after stimulation with IFN-{gamma} and TLR ligands via a MyD88-, TRAF6-,and MEK-dependent pathway. Blood.20072007-07-01;110(1):296-304.
    [228] Lee SJ, Jang BC, Lee SW, Yang YI, Suh SI, Park YM, et al. Interferon regulatoryfactor-1is prerequisite to the constitutive expression and IFN-gamma-inducedupregulation of B7-H1(CD274). Febs Lett.20062006-02-06;580(3):755-62.
    [229] Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL. PD-L2expression extendsbeyond dendritic cells/macrophages to B1cells enriched for V(H)11/V(H)12andphosphatidylcholine binding. Eur J Immunol.20072007-09-01;37(9):2405-10.
    [230] Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ,et al. Regulation of PD-1, PD-L1, and PD-L2expression during normal and autoimmuneresponses. Eur J Immunol.20032003-10-01;33(10):2706-16.
    [231] Loke P, Allison JP. PD-L1and PD-L2are differentially regulated by Th1andTh2cells. Proc Natl Acad Sci U S A.20032003-04-29;100(9):5336-41.
    [232] Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1:PD-Linhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2. EurJ Immunol.20022002-03-01;32(3):634-43.
    [233] Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja MK, et al.T-cell tolerance or function is determined by combinatorial costimulatory signals. Embo J.20062006-06-07;25(11):2623-33.
    [234] Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, et al. PD-1inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome anddownstream signaling to PKCtheta. Febs Lett.20042004-09-10;574(1-3):37-41.
    [235] Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1immunoreceptorinhibits B cell receptor-mediated signaling by recruiting src homology2-domain-containing tyrosine phosphatase2to phosphotyrosine. Proc Natl Acad Sci U SA.20012001-11-20;98(24):13866-71.
    [236] Bennett F, Luxenberg D, Ling V, Wang IM, Marquette K, Lowe D, et al.Program death-1engagement upon TCR activation has distinct effects on costimulationand cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28,IL-7, and IL-15responses. J Immunol.20032003-01-15;170(2):711-8.
    [237] Egen JG, Allison JP. Cytotoxic T lymphocyte antigen-4accumulation in theimmunological synapse is regulated by TCR signal strength. Immunity.20022002-01-01;16(1):23-35.
    [238] Saunders PA, Hendrycks VR, Lidinsky WA, Woods ML. PD-L2:PD-1involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion.Eur J Immunol.20052005-12-01;35(12):3561-9.
    [239] Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, KobayashiSV, et al. CTLA-4and PD-1receptors inhibit T-cell activation by distinct mechanisms.Mol Cell Biol.20052005-11-01;25(21):9543-53.
    [240] Shlapatska LM, Mikhalap SV, Berdova AG, Zelensky OM, Yun TJ, Nichols KE,et al. CD150association with either the SH2-containing inositol phosphatase or theSH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A.J Immunol.20012001-05-01;166(9):5480-7.
    [241] Arnaud M, Crouin C, Deon C, Loyaux D, Bertoglio J. Phosphorylation ofGrb2-associated binder2on serine623by ERK MAPK regulates its association with thephosphatase SHP-2and decreases STAT5activation. J Immunol.20042004-09-15;173(6):3962-71.
    [242] Van Parijs L, Refaeli Y, Lord JD, Nelson BH, Abbas AK, Baltimore D.Uncoupling IL-2signals that regulate T cell proliferation, survival, and Fas-mediatedactivation-induced cell death. Immunity.19991999-09-01;11(3):281-8.
    [243] Radhakrishnan S, Nguyen LT, Ciric B, Ure DR, Zhou B, Tamada K, et al.Naturally occurring human IgM antibody that binds B7-DC and potentiates T cellstimulation by dendritic cells. J Immunol.20032003-02-15;170(4):1830-8.
    [244] Radhakrishnan S, Nguyen LT, Ciric B, Flies D, Van Keulen VP, Tamada K, et al.Immunotherapeutic potential of B7-DC (PD-L2) cross-linking antibody in conferringantitumor immunity. Cancer Res.20042004-07-15;64(14):4965-72.
    [245] Heckman KL, Schenk EL, Radhakrishnan S, Pavelko KD, Hansen MJ, Pease LR.Fast-tracked CTL: rapid induction of potent anti-tumor killer T cells in situ. Eur JImmunol.20072007-07-01;37(7):1827-35.
    [246] Radhakrishnan S, Iijima K, Kobayashi T, Rodriguez M, Kita H, Pease LR.Blockade of allergic airway inflammation following systemic treatment with aB7-dendritic cell (PD-L2) cross-linking human antibody. J Immunol.20042004-07-15;173(2):1360-5.
    [247] Radhakrishnan S, Iijima K, Kobayashi T, Kita H, Pease LR. Dendritic cellsactivated by cross-linking B7-DC (PD-L2) block inflammatory airway disease. J AllergyClin Immunol.20052005-09-01;116(3):668-74.
    [248] Van Keulen VP, Ciric B, Radhakrishnan S, Heckman KL, Mitsunaga Y, Iijima K,et al. Immunomodulation using the recombinant monoclonal human B7-DC cross-linkingantibody rHIgM12. Clin Exp Immunol.20062006-02-01;143(2):314-21.
    [249] Kuipers H, Muskens F, Willart M, Hijdra D, van Assema F B, Coyle AJ, et al.Contribution of the PD-1ligands/PD-1signaling pathway to dendritic cell-mediated CD4+T cell activation. Eur J Immunol.20062006-09-01;36(9):2472-82.
    [250] Dong H, Strome SE, Matteson EL, Moder KG, Flies DB, Zhu G, et al.Costimulating aberrant T cell responses by B7-H1autoantibodies in rheumatoid arthritis. JClin Invest.20032003-02-01;111(3):363-70.
    [251] Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1ligand1interacts specifically with the B7-1costimulatory molecule to inhibit T cellresponses. Immunity.20072007-07-01;27(1):111-22.
    [252] Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, et al.PD-L1-deficient mice show that PD-L1on T cells, antigen-presenting cells, and hosttissues negatively regulates T cells. Proc Natl Acad Sci U S A.20042004-07-20;101(29):10691-6.
    [253] Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, et al.Autoimmune dilated cardiomyopathy in PD-1receptor-deficient mice. Science.20012001-01-12;291(5502):319-22.
    [254] Okazaki T, Tanaka Y, Nishio R, Mitsuiye T, Mizoguchi A, Wang J, et al.Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy inPD-1-deficient mice. Nat Med.20032003-12-01;9(12):1477-83.
    [255] Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, et al.Blockade of programmed death-1ligands on dendritic cells enhances T cell activation andcytokine production. J Immunol.20032003-02-01;170(3):1257-66.
    [256] Keir ME, Latchman YE, Freeman GJ, Sharpe AH. Programmed death-1(PD-1):PD-ligand1interactions inhibit TCR-mediated positive selection of thymocytes.J Immunol.20052005-12-01;175(11):7372-9.
    [257] Blank C, Brown I, Marks R, Nishimura H, Honjo T, Gajewski TF. Absence ofprogrammed death receptor1alters thymic development and enhances generation ofCD4/CD8double-negative TCR-transgenic T cells. J Immunol.20032003-11-01;171(9):4574-81.
    [258] Zucchelli S, Holler P, Yamagata T, Roy M, Benoist C, Mathis D. Defectivecentral tolerance induction in NOD mice: genomics and genetics. Immunity.20052005-03-01;22(3):385-96.
    [259] Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M. Resting dendriticcells induce peripheral CD8+T cell tolerance through PD-1and CTLA-4. Nat Immunol.20052005-03-01;6(3):280-6.
    [260] Ansari MJ, Salama AD, Chitnis T, Smith RN, Yagita H, Akiba H, et al. Theprogrammed death-1(PD-1) pathway regulates autoimmune diabetes in nonobese diabetic(NOD) mice. J Exp Med.20032003-07-07;198(1):63-9.
    [261] Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment ofNOD-Pdcd1-/-mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci US A.20052005-08-16;102(33):11823-8.
    [262] Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, et al. Tissueexpression of PD-L1mediates peripheral T cell tolerance. J Exp Med.20062006-04-17;203(4):883-95.
    [263] Fife BT, Guleria I, Gubbels BM, Eagar TN, Tang Q, Bour-Jordan H, et al.Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1pathway. J Exp Med.20062006-11-27;203(12):2737-47.
    [264] Grabie N, Gotsman I, DaCosta R, Pang H, Stavrakis G, Butte MJ, et al.Endothelial programmed death-1ligand1(PD-L1) regulates CD8+T-cell mediated injuryin the heart. Circulation.20072007-10-30;116(18):2062-71.
    [265] Keir ME, Freeman GJ, Sharpe AH. PD-1regulates self-reactive CD8+T cellresponses to antigen in lymph nodes and tissues. J Immunol.20072007-10-15;179(8):5064-70.
    [266] Cheng X, Zhao Z, Ventura E, Gran B, Shindler KS, Rostami A. The PD-1/PD-Lpathway is up-regulated during IL-12-induced suppression of EAE mediated byIFN-gamma. J Neuroimmunol.20072007-04-01;185(1-2):75-86.
    [267] Magnus T, Schreiner B, Korn T, Jack C, Guo H, Antel J, et al. Microglialexpression of the B7family member B7homolog1confers strong immune inhibition:implications for immune responses and autoimmunity in the CNS. J Neurosci.20052005-03-09;25(10):2537-46.
    [268] Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, et al. Cr iticalrole of the programmed death-1(PD-1) pathway in regulation of experimentalautoimmune encephalomyelitis. J Exp Med.20032003-07-07;198(1):71-8.
    [269] Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, Azuma M, et al.Differential role of programmed death-ligand1[corrected] and programmed death-ligand2[corrected] in regulating the susceptibility and chronic progression of experimentalautoimmune encephalomyelitis. J Immunol.20062006-03-15;176(6):3480-9.
    [270] Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, et al. PD-1/PD-L1,but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmuneencephalomyelitis. J Neuroimmunol.20072007-01-01;182(1-2):124-34.
    [271] Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25+regulatorycells from human peripheral blood express very high levels of CD25ex vivo. NovartisFound Symp.20032003-01-20;252:67-88,88-91,106-14.
    [272] Krupnick AS, Gelman AE, Barchet W, Richardson S, Kreisel FH, Turka LA, et al.Murine vascular endothelium activates and induces the generation of allogeneicCD4+25+Foxp3+regulatory T cells. J Immunol.20052005-11-15;175(10):6265-70.
    [273] Totsuka T, Kanai T, Makita S, Fujii R, Nemoto Y, Oshima S, et al. Regulation ofmurine chronic colitis by CD4+CD25-programmed death-1+T cells. Eur J Immunol.20052005-06-01;35(6):1773-85.
    [274] Okazaki T, Honjo T. PD-1and PD-1ligands: from discovery to clinicalapplication. Int Immunol.20072007-07-01;19(7):813-24.
    [275] Thorburn CM, Prokunina-Olsson L, Sterba KA, Lum RF, Seldin MF,Alarcon-Riquelme ME, et al. Association of PDCD1genetic variation with risk andclinical manifestations of systemic lupus erythematosus in a multiethnic cohort. GenesImmun.20072007-06-01;8(4):279-87.
    [276] Yadav D, Fine C, Azuma M, Sarvetnick N. B7-1mediated costimulationregulates pancreatic autoimmunity. Mol Immunol.20072007-04-01;44(10):2616-24.
    [277] Lenschow DJ, Ho SC, Sattar H, Rhee L, Gray G, Nabavi N, et al. Differentialeffects of anti-B7-1and anti-B7-2monoclonal antibody treatment on the development ofdiabetes in the nonobese diabetic mouse. J Exp Med.19951995-03-01;181(3):1145-55.
    [278] Hirata S, Senju S, Matsuyoshi H, Fukuma D, Uemura Y, Nishimura Y.Prevention of experimental autoimmune encephalomyelitis by transfer of embryonicstem cell-derived dendritic cells expressing myelin oligodendrocyte glycoprotein peptidealong with TRAIL or programmed death-1ligand. J Immunol.20052005-02-15;174(4):1888-97.
    [279] Ding H, Wu X, Wu J, Yagita H, He Y, Zhang J, et al. Delivering PD-1inhibitorysignal concomitant with blocking ICOS co-stimulation suppresses lupus-like syndrome inautoimmune BXSB mice. Clin Immunol.20062006-02-01;118(2-3):258-67.
    [280] Anderson CF, Mosser DM. Cutting edge: biasing immune responses by directingantigen to macrophage Fc gamma receptors. J Immunol.20022002-04-15;168(8):3697-701.
    [281] Underhill DM, Goodridge HS. Information processing during phagocytosis. NatRev Immunol.20122012-07-01;12(7):492-502.
    [282] Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. JClin Invest.20122012-03-01;122(3):787-95.
    [283] Zhu Y, Yao S, Chen L. Cell surface signaling molecules in the control of immuneresponses: a tide model. Immunity.20112011-04-22;34(4):466-78.
    [284] Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed celldeath1and its ligands in regulating autoimmunity and infection. Nat Immunol.20072007-03-01;8(3):239-45.
    [285] Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-likeautoimmune diseases by disruption of the PD-1gene encoding an ITIM motif-carryingimmunoreceptor. Immunity.19991999-08-01;11(2):141-51.
    [286] Wang J, Okazaki IM, Yoshida T, Chikuma S, Kato Y, Nakaki F, et al. PD-1deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol.20102010-06-01;22(6):443-52.
    [287] Cho HY, Choi EK, Lee SW, Jung KO, Seo SK, Choi IW, et al. Programmeddeath-1receptor negatively regulates LPS-mediated IL-12production and differentiationof murine macrophage RAW264.7cells. Immunol Lett.20092009-12-02;127(1):39-47.
    [288] Yao S, Wang S, Zhu Y, Luo L, Zhu G, Flies S, et al. PD-1on dendritic cellsimpedes innate immunity against bacterial infection. Blood.20092009-06-04;113(23):5811-8.
    [289] Lazar-Molnar E, Chen B, Sweeney KA, Wang EJ, Liu W, Lin J, et al.Programmed death-1(PD-1)-deficient mice are extraordinarily sensitive to tuberculosis.Proc Natl Acad Sci U S A.20102010-07-27;107(30):13402-7.
    [290] Zhang Y, Ma CJ, Ni L, Zhang CL, Wu XY, Kumaraguru U, et al. Cross-talkbetween programmed death-1and suppressor of cytokine signaling-1in inhibition ofIL-12production by monocytes/macrophages in hepatitis C virus infection. J Immunol.20112011-03-01;186(5):3093-103.
    [291] Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Developmentof monocytes, macrophages, and dendritic cells. Science.20102010-02-05;327(5966):656-61.
    [292] Shechter R, Schwartz M. Harnessing monocyte-derived macrophages to controlcentral nervous system pathologies: no longer 'if' but 'how'. J Pathol.20132013-01-01;229(2):332-46.
    [293] Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease.Nat Rev Immunol.20112011-11-01;11(11):775-87.
    [294] Darnell JJ, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activationin response to IFNs and other extracellular signaling proteins. Science.19941994-06-03;264(5164):1415-21.
    [295] Szanto A, Balint BL, Nagy ZS, Barta E, Dezso B, Pap A, et al. STAT6transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated geneexpression in macrophages and dendritic cells. Immunity.20102010-11-24;33(5):699-712.
    [296] Lehmann U, Schmitz J, Weissenbach M, Sobota RM, Hortner M, Friederichs K,et al. SHP2and SOCS3contribute to Tyr-759-dependent attenuation of interleukin-6signaling through gp130. J Biol Chem.20032003-01-03;278(1):661-71.
    [297] Cho HY, Lee SW, Seo SK, Choi IW, Choi I, Lee SW. Interferon-sensitiveresponse element (ISRE) is mainly responsible for IFN-alpha-induced upregulation ofprogrammed death-1(PD-1) in macrophages. Biochim Biophys Acta.20082008-12-01;1779(12):811-9.
    [298] An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, et al. Phosphatase SHP-1promotes TLR-and RIG-I-activated production of type I interferon by inhibiting thekinase IRAK1. Nat Immunol.20082008-05-01;9(5):542-50.
    [299] Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficialand detrimental consequences of microglial phagocytosis. Front Cell Neurosci.20132013-01-20;7:6.
    [300] Montaner LJ, Da SR, Sun J, Sutterwala S, Hollinshead M, Vaux D, et al. Type1and type2cytokine regulation of macrophage endocytosis: differential activation byIL-4/IL-13as opposed to IFN-gamma or IL-10. J Immunol.19991999-04-15;162(8):4606-13.
    [301] Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, et al. M2macrophages phagocytose rituximab-opsonized leukemic targets more efficiently thanm1cells in vitro. J Immunol.20092009-04-01;182(7):4415-22.
    [302] Elena R. Chernykh EYSL. The generation and properties of human M2-likemacrophages: potential candidates for CNS repair?2010:2010,2-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700