Notch信号途径对小鼠骨髓单核来源树突状细胞和巨噬细胞分化发育的调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞是机体先天性免疫和获得性免疫应答的重要组成部分,是单核吞噬系统的主要成员之一。大量研究表明骨髓单核细胞是树突状细胞和巨噬细胞的共同前体细胞,他们共同构成了外来微生物入侵时机体的有效防御系统,同时对于生理状态下清除机体内衰老和凋亡的细胞,维持机体的稳态发挥了不可替代的作用。树突状细胞是目前已知的功能最强大的抗原呈递细胞,是体内激发T细胞免疫应答的首要环节。而巨噬细胞能够吞噬细菌、病毒、凋亡的细胞及抗原抗体复合物等,并通过胞内溶酶体等将其消化清除,同时巨噬细胞还具有较强的抗原处理和递呈能力,能够通过分泌多种细胞因子发挥免疫调节和介导炎症反应。单核细胞,树突状细胞以及巨噬细胞的异常发育必然导致机体免疫系统功能和机体内环境的紊乱,最终引发机体的各种疾病。
     细胞的分化是一个复杂的生命过程,其中涉及多种信号途径的协同和调控。Notch信号途径在进化中高度保守,从线虫到人,从胚胎发育到成年个体的多种系统中都发挥着重要作用。Notch受体和配体家族均是单次跨膜蛋白,通过细胞间的相互作用,Notch受体胞内段发生水解入核,同时募集并结合多种蛋白分子形成转录共激活物,去除RBP-J的转录抑制作用,调控下游靶基因的表达。Notch信号途径对多细胞生物的很多不同组织中的细胞命运起着决定性作用,例如神经系统,血管系统,造血系统等等。在免疫系统的发育过程中,Notch信号途径在多个环节参与了免疫细胞发育命运的选择,如T/B细胞的分化、脾脏中边缘带B细胞和滤泡B细胞的分化等等。同时,Notch信号途径也是Th1和Th2免疫反应选择的调控因素之一。但Notch信号途径在其他免疫类型细胞诸如DC、巨噬细胞以及NK细胞发育的调控作用尚不十分清楚。虽然有报道显示阻断Notch信号途径可以抑制DC的发育,然而对于调控过程中的分子机制却是知之甚少。
     为了更加全面阐明Notch信号途径在免疫系统发育过程的调控作用,本课题利用条件性基因剔除技术,在小鼠造血干细胞中诱导剔除Notch信号途径的关键性转录因子RBP-J,在造血系细胞中彻底阻断Notch信号途径。通过RBP-J剔除后对单核细胞,DC和巨噬细胞发育及功能变化的深入探讨,进一步明确了Notch信号途径调控单核细胞命运选择中的作用,以及对DC和巨噬细胞功能的影响,并分析了相关的分子机制。
     主要研究成果如下:
     1.通过交配Mx-Cre转基因小鼠和RBP-Jflox/flox条件基因剔除小鼠,最终得到了同时携带Mx-Cre×RBP-Jflox/flox的双转基因条件剔除小鼠。经poly I-C诱导8-12周后得到RBP-J基因剔除小鼠。经Southern blot鉴定,骨髓中RBP-J剔除效率约接近100%。通过骨髓移植实验表明,剔除RBP-J使单核细胞在体内向DC方向的分化受到明显抑制,而向巨噬细胞方向的分化得到加强。体外的细胞诱导分化实验也印证了体内的实验结果。分子生物学检测表明RBP-J-/-巨噬细胞表达M-CSFR水平明显升高,提示Notch信号途径可能是通过直接或间接调控M-CSFR的表达调控单核细胞的分化方向。
     2.在DC中剔除RBP-J后,用LPS将不能有效刺激DC的发育成熟,DC发育停留在突起较少、MHCII表达较低的不成熟阶段,同时其迁移和抗原呈递功能受到损伤。进一步研究表明,趋化因子受体CXCR4是Notch信号途径下游的间接靶分子,在DC的发育过程中可以促进DC突起的长出和MHCII分子的表达。用慢病毒在RBP-J-/-DC中过表达CXCR4可以挽救由阻断Notch信号途径所引起的缺陷表型。我们的研究结果首次揭示了Notch信号可以通过调控CXCR4促进DC发育成熟。
     3.剔除RBP-J后,巨噬细胞在LPS刺激后不能向M1型巨噬细胞极化,而是被极化为M2型巨噬细胞,其迁移、吞噬、抗原加工以及呈递能力减退,失去了维持机体稳态的功能。在肿瘤中,RBP-J-/-巨噬细胞肿瘤杀伤功能减弱,肿瘤重量和体积没有因为巨噬细胞的存在受到抑制。免疫组化结果显示,RBP-J-/-巨噬细胞可以促进肿瘤中新生血管的生成,表明其具有肿瘤相关性巨噬细胞(TAM)的特性。同时,激活巨噬细胞中的Notch信号途径可以增强细胞的抗原呈递能力,并激发较强的Th1型免疫应答。这些结果表明Notch信号途径是巨噬细胞M1/M2极化的关键调控信号。
     综上所述,我们首次通过RBP-J条件性基因剔除小鼠,观察了Notch/RBP-J信号对于小鼠单核细胞来源DC和巨噬细胞发育和功能的调控作用。我们的结果表明,Notch信号参与调控单核细胞发育命运的方向;通过调控CXCR4的表达促进DC的成熟;同时对于巨噬细胞向M1方向极化是必须的。以上研究阐明了Notch信号途径在天然免疫系统发育中的重要作用,并充分解释了其作用机制,因此具有重要的理论和实际意义。
Monocytes are the key components of innate and adaptive immunity, and are important in the mononuclear phagocytic system. Many studies have shown that bone marrow monocytes are common precursors for dendritic cells and macrophages, with build up the defense system effectively against the invasion of foreign micro-organisms. Meanwhile, these cells play an indispensable role in the removal of seniscent and apoptosis cells to maintain the homeostasis of bodies under physiological conditions. Dendritic cells are known to be the most powerful antigen -presenting cells and can activate T cells to initiate the immune responses in vivo. Macrophages, on the orther hand, can take up virus, bacteria, dead cells for apoptosis and antigen-antibody complex by phagocytosis and endocytosis, and remove them after degradation lysosomes. They also have strong antigen processing and presenting capacity and can play a variety of immune regulation roles and mediate inflammatory responses through secretion of cytokines. Abnormal development of monocytes, dendritic cells or macrophages will inevitably lead to disorders in the immune system and the internal environment, ultimately inducing various diseases of the body.
     Cell differetiation is a complex process, which requires a broad range of the crosstalk among signal transduction pathways. The Notch signaling pathway is highly conserved in evolution, and plays an important role in a variety of organisms from nematodes to humans, from embryonic development to adulthood. Notch receptor and ligand families belong to type I transmembrane proteins. When Notch receptor is triggered by direct interaction with its ligands, the intracellular domain of the Notch receptor (NICD) is released from the membrane after receptor cleavage executed by aγ-secretase-like protease. NICD translocates to nucleus and associates with RBP-J through its N-terminal RAM (RBP-J association molecule) domain, and transactivates promoters harboring RBP-J-binding sites, leading to the expression of genes associated cell differentiation. The Notch signaling pathway plays a decisive role in cell fate differentiation in many different systems, such as the nervous system, vascular system, hematopoietic system, etc. During the development of the immune system, the Notch signaling pathway is involved in various aspects of the differentiation of immune cells, including T versus B cell fate commitment and the marginal zone B versus follicular B cell fate commitment. Meanwhile, Notch signaling pathway can influence the differetiation of T cells in Th1 versus Th2 immune responses. However, the role of Notch signaling pathway in other types of cells such as DC, macrophages and NK cells is still not clear. Although there are reports that blocking Notch signaling can inhibit the development of DC, the molecular mechanism of the process has been poorly understood.
     In order to clarify the role of Notch signaling during the development of the immune system more clearly, using gene conditional knockout technology, we disrupted the key transcription factor RBP-J of Notch signaling pathway in mouse hematopoietic stem cells. In this study, we investigaed the changes of development and function of monocytes, DCs and macrophages after the deletion of RBP-J. The related molecular mechanisms are also analyzed using cellular and molecular technologies.
     The main finds are as follows:
     1. RBP-Jflox mice were crossed with Mx-Cre transgenic mice and to get Mx-Cre×RBP-Jflox/flox mice. We got RBP-J knockout mice after induction for 8-12 injecion of poly:I-C. Southern blot analysis of DNA isolated from bone marrow cells indicated about nearly 100% deletion efficiency.
     Bone marrow transplantation experiments showed that the differentiation of monocytes to DC was inhibited, but the differentiation to macrophages are strengthened upon RBP-J deletion. Cell differentiation by induction in vitro confirmed the experimental results in vivo. The expression of M-CSFR detected by molecular biology methods was significantly increased in RBP-J-/- macrophages, which indicated that the Notch signaling pathway might regulate the differentiation of monocytes through directly or indirectly controlling M-CSFR expression.
     2. We analyzed the changes of function and differentiation of DC after that RBP-J was removed. The results showed that LPS failed to stimulate DCs maturation, and DC development remained at an immature stage with low dendrites and low MHCII expression. At the same time their migration and antigen-presenting function were damaged. Further studies have shown that the chemokine receptor CXCR4 was an indirect downstream target of the Notch signaling pathway, which could promote out-growth of dendrites and the expression of MHCII during the development of DC phenotypic defects RBP-J-/- DC could be rescued by the over-expression of CXCR4 using lenti-virus. Our results showed that there was a signaling pathway that CXCR4 regulated by Notch could promote DC maturation.
     3. RBP-J-/- macrophages could not be polarized to the M1-type macrophages after LPS stimulation, but underwent for the M2-type differetiation. Their migration, phagocytosis, antigen processing and presentation abilities were all decreased. In tumors, RBP-J-/- macrophages had lower anti-tumor function, as shown by that tumor weight and size were suppressed by the existence of macrophages. Immunohistochemistry results showed that RBP-J-/- macrophages could promote tumor angiogenesis, indicating that it had certain characteristics of TAM. Meanwhile, activation of the Notch signaling pathway in macrophages could enhance their capacity of antigen-presenting and stimulate a strong Th1-type immune response. These results suggested that Notch signaling pathway should be activated in macrophages when these cells were used in treatment.
     In summary, we first provide the evidence that the development regulation of bone marrow monocyte-derived DC and macrophages was required by Notch/RBP-J signaling. Our results show that, Notch signals involved in regulating the fate decision of monocyte development, could promote the maturation of DC by regulating the expression of CXCR4, and was also necessary for the M1 macrophage polarization. Our results reveal understanding of the function and mechanisms of the Notch signaling pathway in the development of immune system.
引文
1. Kidd S, Young MW. Transposon-dependent mutant phenotypes at the Notch locus of Drosophila. Nature. 1986;323:89-91.
    2. Kidd S, Kelley MR, Young MW. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol. 1986;6:3094-3108.
    3. Wharton KA, Yedvobnick B, Finnerty VG, Artavanis-Tsakonas S. opa: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell. 1985;40:55-62.
    4. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 1985;43:567-581.
    5. Kidd S, Lockett TJ, Young MW. The Notch locus of Drosophila melanogaster. Cell. 1983;34:421-433.
    6. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science. 1999;284:770-776.
    7.Greenwald I. Structure/function studies of lin-12/Notch proteins. Curr Opin Genet Dev. 1994;4:556-562.
    8. Robbins J, Blondel BJ, Gallahan D, Callahan R. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol. 1992;66:2594-2599.
    9. Kidd S, Baylies MK, Gasic GP, Young MW. Structure and distribution of the Notch protein in developing Drosophila. Genes Dev. 1989;3:1113-1129.
    10. Ramos RG, Grimwade BG, Wharton KA, Scottgale TN, Artavanis-Tsakonas S. Physical and functional definition of the Drosophila Notch locus by P element transformation. Genetics. 1989;123:337-348.
    11. Ye Q, Shieh JH, Morrone G, Moore MA. Expression of constitutively active Notch4 (Int-3) modulates myeloid proliferation and differentiation and promotes expansion of hematopoietic progenitors. Leukemia. 2004;18:777-787.
    12. Soriano JV, Irminger-Finger I, Uyttendaele H, et al. Repression of the putative tumor suppressor gene Bard1 or expression of Notch4(int-3) oncogene subvert the morphogenetic properties of mammary epithelial cells. Adv Exp Med Biol. 2000;480:175-184.
    13. Soriano JV, Uyttendaele H, Kitajewski J, Montesano R. Expression of an activated Notch4(int-3) oncoprotein disrupts morphogenesis and induces an invasive phenotype in mammary epithelial cells in vitro. Int J Cancer. 2000;86:652-659.
    14. Bush G, diSibio G, Miyamoto A, Denault JB, Leduc R, Weinmaster G. Ligand-induced signaling in the absence of furin processing of Notch1. Dev Biol. 2001;229:494-502.
    15. Redmond L, Oh SR, Hicks C, Weinmaster G, Ghosh A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat Neurosci. 2000;3:30-40.
    16. Schroeder T, Lange C, Strehl J, Just U. Generation of functionally mature dendritic cells from the multipotential stem cell line FDCP-mix. Br J Haematol. 2000;111:890-897.
    17. Mumm JS, Schroeter EH, Saxena MT, et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell. 2000;5:197-206.
    18. Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228:151-165.
    19. Schroeder T, Just U. mNotch1 signaling reduces proliferation of myeloid progenitor cells by altering cell-cycle kinetics. Exp Hematol. 2000;28:1206-1213.
    20. Milner LA, Bigas A, Kopan R, Brashem-Stein C, Bernstein ID, Martin DI. Inhibition of granulocytic differentiation by mNotch1. Proc Natl Acad Sci U S A. 1996;93:13014-13019.
    21. Panin VM, Shao L, Lei L, Moloney DJ, Irvine KD, Haltiwanger RS. Notch ligands aresubstrates for protein O-fucosyltransferase-1 and Fringe. J Biol Chem. 2002;277:29945-29952.
    22. Singh N, Phillips RA, Iscove NN, Egan SE. Expression of notch receptors, notch ligands, and fringe genes in hematopoiesis. Exp Hematol. 2000;28:527-534.
    23. Fleming RJ, Purcell K, Artavanis-Tsakonas S. The NOTCH receptor and its ligands. Trends Cell Biol. 1997;7:437-441.
    24. Brou C, Logeat F, Gupta N, et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell. 2000;5:207-216.
    25. Struhl G, Greenwald I. Presenilin-mediated transmembrane cleavage is required for Notch signal transduction in Drosophila. Proc Natl Acad Sci U S A. 2001;98:229-234.
    26. Mattson MP. Neurobiology: Ballads of a protein quartet. Nature. 2003;422:385, 387.
    27. Wu L, Sun T, Kobayashi K, Gao P, Griffin JD. Identification of a family of mastermind-like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol. 2002;22:7688-7700.
    28. Matsuno K, Eastman D, Mitsiades T, et al. Human deltex is a conserved regulator of Notch signalling. Nat Genet. 1998;19:74-78.
    29. Berechid BE, Kitzmann M, Foltz DR, et al. Identification and characterization of presenilin-independent Notch signaling. J Biol Chem. 2002;277:8154-8165.
    30. Martinez AA, Zecchini V, Brennan K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development?. Curr Opin Genet Dev. 2002;12:524-533.
    31. Artavanis-Tsakonas S, Matsuno K, Fortini ME. Notch signaling. Science. 1995;268:225-232.
    32. Small D, Kovalenko D, Kacer D, et al. Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J Biol Chem. 2001;276:32022-32030.
    33. Jacobsen TL, Brennan K, Arias AM, Muskavitch MA. Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila. Development. 1998;125:4531-4540.
    34. Moloney DJ, Panin VM, Johnston SH, et al. Fringe is a glycosyltransferase that modifies Notch. Nature. 2000;406:369-375.
    35. Correia T, Papayannopoulos V, Panin V, et al. Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Proc Natl Acad Sci U S A. 2003;100:6404-6409.
    36. Fleming RJ, Gu Y, Hukriede NA. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development. 1997;124:2973-2981.
    37. Wesley CS, Saez L. Notch responds differently to Delta and Wingless in cultured Drosophila cells. J Biol Chem. 2000;275:9099-9101.
    38. Axelrod JD, Matsuno K, Artavanis-Tsakonas S, Perrimon N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science. 1996;271:1826-1832.
    39. Lee EC, Yu SY, Baker NE. The scabrous protein can act as an extracellular antagonist of notch signaling in the Drosophila wing. Curr Biol. 2000;10:931-934.
    40. Powell PA, Wesley C, Spencer S, Cagan RL. Scabrous complexes with Notch to mediate boundary formation. Nature. 2001;409:626-630.
    41. Li Y, Lei L, Irvine KD, Baker NE. Notch activity in neural cells triggered by a mutant allele with altered glycosylation. Development. 2003;130:2829-2840.
    42. Li Y, Fetchko M, Lai ZC, Baker NE. Scabrous and Gp150 are endosomal proteins that regulate Notch activity. Development. 2003;130:2819-2827.
    43. Qi H, Rand MD, Wu X, et al. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science. 1999;283:91-94.
    44. Logeat F, Bessia C, Brou C, et al. The Notch1 receptor is cleaved constitutively by afurin-like convertase. Proc Natl Acad Sci U S A. 1998;95:8108-8112.
    45. Taniguchi Y, Karlstrom H, Lundkvist J, et al. Notch receptor cleavage depends on but is not directly executed by presenilins. Proc Natl Acad Sci U S A. 2002;99:4014-4019.
    46. Hu Y, Ye Y, Fortini ME. Nicastrin is required for gamma-secretase cleavage of the Drosophila Notch receptor. Dev Cell. 2002;2:69-78.
    47. Matsuno K, Diederich RJ, Go MJ, Blaumueller CM, Artavanis-Tsakonas S. Deltex acts as a positive regulator of Notch signaling through interactions with the Notch ankyrin repeats. Development. 1995;121:2633-2644.
    48. Santolini E, Puri C, Salcini AE, et al. Numb is an endocytic protein. J Cell Biol. 2000;151:1345-1352.
    49. French MB, Koch U, Shaye RE, et al. Transgenic expression of numb inhibits notch signaling in immature thymocytes but does not alter T cell fate specification. J Immunol. 2002;168:3173-3180.
    50. Wu L, Aster JC, Blacklow SC, Lake R, Artavanis-Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat Genet. 2000;26:484-489.
    51. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767-811.
    52. Iyoda T, Shimoyama S, Liu K, et al. The CD8+ dendritic cell subset selectively endocytoses dying cells in culture and in vivo. J Exp Med. 2002;195:1289-1302.
    53. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142-1162.
    54. Inaba K, Steinman RM, Pack MW, et al. Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med. 1992;175:1157-1167.
    55. Geissmann F. The origin of dendritic cells. Nat Immunol. 2007;8:558-560.
    56. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD. Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol. 1999;29:2769-2778.
    57. Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 2000;96:3029-3039.
    58. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 1999;11:753-761.
    59. Kabashima K, Banks TA, Ansel KM, Lu TT, Ware CF, Cyster JG. Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity. 2005;22:439-450.
    60. Liu K, Waskow C, Liu X, Yao K, Hoh J, Nussenzweig M. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol. 2007;8:578-583.
    61. Fogg DK, Sibon C, Miled C, et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science. 2006;311:83-87.
    62. Waskow C, Liu K, Darrasse-Jeze G, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol. 2008;9:676-683.
    63. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992;360:258-261.
    64. Reid CD, Stackpoole A, Meager A, Tikerpae J. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow. J Immunol. 1992;149:2681-2688.
    65. Romani N, Reider D, Heuer M, et al. Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods. 1996;196:137-151.
    66. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods. 1996;196:121-135.
    67. Markowicz S, Engleman EG. Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J Clin Invest. 1990;85:955-961.
    68. Caux C, Favre C, Saeland S, et al. Potentiation of early hematopoiesis by tumor necrosis factor-alpha is followed by inhibition of granulopoietic differentiation and proliferation. Blood. 1991;78:635-644.
    69. Young JW, Szabolcs P, Moore MA. Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit-ligand and yield pure dendritic cell colonies in the presence of granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med. 1995;182:1111-1119.
    70. Bykovskaja SN, Buffo MJ, Bunker M, et al. Interleukin-2-induces development of denditric cells from cord blood CD34+ cells. J Leukoc Biol. 1998;63:620-630.
    71. Civallero M, Barni S, Nano R, Capelli E. Dendritic cells and interleukin-2: cytochemical and ultrastructural study. Histol Histopathol. 2000;15:1077-1085.
    72. Koide SL, Inaba K, Steinman RM. Interleukin 1 enhances T-dependent immune responses by amplifying the function of dendritic cells. J Exp Med. 1987;165:515-530.
    73. Kradin RL, Xia W, Pike M, Byers HR, Pinto C. Interleukin-2 promotes the motility of dendritic cells and their accumulation in lung and skin. Pathobiology. 1996;64:180-186.
    74. Fukao T, Koyasu S. Expression of functional IL-2 receptors on mature splenic dendritic cells. Eur J Immunol. 2000;30:1453-1457.
    75. Caux C, Vanbervliet B, Massacrier C, Durand I, Banchereau J. Interleukin-3 cooperates with tumor necrosis factor alpha for the development of humandendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells. Blood. 1996;87:2376-2385.
    76. Blom B, Ho S, Antonenko S, Liu YJ. Generation of interferon alpha-producing predendritic cell (Pre-DC)2 from human CD34(+) hematopoietic stem cells. J Exp Med. 2000;192:1785-1796.
    77. Storozynsky E, Woodward JG, Frelinger JG, Lord EM. Interleukin-3 and granulocyte-macrophage colony-stimulating factor enhance the generation and function of dendritic cells. Immunology. 1999;97:138-149.
    78. Mitani H, Katayama N, Araki H, et al. Activity of interleukin 6 in the differentiation of monocytes to macrophages and dendritic cells. Br J Haematol. 2000;109:288-295.
    79. Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol. 2000;1:510-514.
    80. Menetrier-Caux C, Thomachot MC, Alberti L, Montmain G, Blay JY. IL-4 prevents the blockade of dendritic cell differentiation induced by tumor cells. Cancer Res. 2001;61:3096-3104.
    81. Allavena P, Piemonti L, Longoni D, et al. IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophages. Eur J Immunol. 1998;28:359-369.
    82. Xia CQ, Peng R, Beato F, Clare-Salzler MJ. Dexamethasone induces IL-10-producing monocyte-derived dendritic cells with durable immaturity. Scand J Immunol. 2005;62:45-54.
    83. He Q, Moore TT, Eko FO, et al. Molecular basis for the potency of IL-10-deficient dendritic cells as a highly efficient APC system for activating Th1 response. J Immunol. 2005;174:4860-4869.
    84. Piemonti L, Bernasconi S, Luini W, et al. IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur Cytokine Netw.1995;6:245-252.
    85. Lopez M, Amorim L, Gane P, et al. IL-13 induces CD34+ cells isolated from G-CSF mobilized blood to differentiate in vitro into potent antigen presenting cells. J Immunol Methods. 1997;208:117-129.
    86. Brandt K, Bulfone-Paus S, Foster DC, Ruckert R. Interleukin-21 inhibits dendritic cell activation and maturation. Blood. 2003;102:4090-4098.
    87. Brossart P, Grunebach F, Stuhler G, et al. Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood. 1998;92:4238-4247.
    88. Flores-Romo L, Bjorck P, Duvert V, van Kooten C, Saeland S, Banchereau J. CD40 ligation on human cord blood CD34+ hematopoietic progenitors induces their proliferation and differentiation into functional dendritic cells. J Exp Med. 1997;185:341-349.
    89. Bachmann MF, Wong BR, Josien R, Steinman RM, Oxenius A, Choi Y. TRANCE, a tumor necrosis factor family member critical for CD40 ligand-independent T helper cell activation. J Exp Med. 1999;189:1025-1031.
    90. Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med. 1997;186:2075-2080.
    91. Josien R, Li HL, Ingulli E, et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med. 2000;191:495-502.
    92. Maraskovsky E, Brasel K, Teepe M, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med. 1996;184:1953-1962.
    93. Strobl H, Bello-Fernandez C, Riedl E, et al. flt3 ligand in cooperation with transforming growth factor-beta1 potentiates in vitro development of Langerhans-typedendritic cells and allows single-cell dendritic cell cluster formation under serum-free conditions. Blood. 1997;90:1425-1434.
    94. Brasel K, De Smedt T, Smith JL, Maliszewski CR. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood. 2000;96:3029-3039.
    95. Parajuli P, Mosley RL, Pisarev V, et al. Flt3 ligand and granulocyte-macrophage colony-stimulating factor preferentially expand and stimulate different dendritic and T-cell subsets. Exp Hematol. 2001;29:1185-1193.
    96. Kohara H, Omatsu Y, Sugiyama T, Noda M, Fujii N, Nagasawa T. Development of plasmacytoid dendritic cells in bone marrow stromal cell niches requires CXCL12-CXCR4 chemokine signaling. Blood. 2007;110:4153-4160.
    97. Kabashima K, Sugita K, Shiraishi N, Tamamura H, Fujii N, Tokura Y. CXCR4 engagement promotes dendritic cell survival and maturation. Biochem Biophys Res Commun. 2007;361:1012-1016.
    98. Kabashima K, Shiraishi N, Sugita K, et al. CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. Am J Pathol. 2007;171:1249-1257.
    99. Zhang M, Tang H, Guo Z, et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat Immunol. 2004;5:1124-1133.
    100. Tang H, Guo Z, Zhang M, Wang J, Chen G, Cao X. Endothelial stroma programs hematopoietic stem cells to differentiate into regulatory dendritic cells through IL-10. Blood. 2006;108:1189-1197.
    101. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science. 1998;282:480-483.
    102. Moldenhauer A, Shieh JH, Pruss A, Salama A, Moore MA. Tumor necrosis factor alpha enhances the adenoviral transduction of CD34+ hematopoietic progenitor cells. Stem Cells. 2004;22:283-291.
    103. Ramasamy R, Fazekasova H, Lam EW, Soeiro I, Lombardi G, Dazzi F. Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation. 2007;83:71-76.
    104. Jiang XX, Zhang Y, Liu B, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105:4120-4126.
    105. Briard D, Azzarone B, Brouty-Boye D. Importance of stromal determinants in the generation of dendritic and natural killer cells in the human spleen. Clin Exp Immunol. 2005;140:265-273.
    106. Brouty-Boye D, Pottin-Clemenceau C, Doucet C, Jasmin C, Azzarone B. Chemokines and CD40 expression in human fibroblasts. Eur J Immunol. 2000;30:914-919.
    107. Bedford PA, Todorovic V, Westcott ED, et al. Adipose tissue of human omentum is a major source of dendritic cells, which lose MHC Class II and stimulatory function in Crohn's disease. J Leukoc Biol. 2006;80:546-554.
    108. Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol. 2007;7:19-30.
    109. Liu YJ. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol. 2005;23:275-306.
    110. Romani N, Holzmann S, Tripp CH, Koch F, Stoitzner P. Langerhans cells - dendritic cells of the epidermis. APMIS. 2003;111:725-740.
    111. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med. 1985;161:526-546.
    112. Vremec D, Pooley J, Hochrein H, Wu L, Shortman K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol. 2000;164:2978-2986.
    113. Vremec D, Zorbas M, Scollay R, et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by asubpopulation of dendritic cells. J Exp Med. 1992;176:47-58.
    114. Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 2003;19:59-70.
    115. O'Keeffe M, Hochrein H, Vremec D, et al. Mouse plasmacytoid cells: long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8(+) dendritic cells only after microbial stimulus. J Exp Med. 2002;196:1307-1319.
    116. Cheng P, Zlobin A, Volgina V, et al. Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol. 2001;167:4458-4467.
    117. Cheng P, Nefedova Y, Miele L, Osborne BA, Gabrilovich D. Notch signaling is necessary but not sufficient for differentiation of dendritic cells. Blood. 2003;102:3980-3988.
    118. Petrasch S, Reinacher-Schick A, Busemann B, et al. Neoadjuvant, hyperfractionated irradiation induces apoptosis and decreases proliferation in squamous cell cancer of the oral cavity. Int J Oral Maxillofac Surg. 2000;29:285-289.
    119. Caton ML, Smith-Raska MR, Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med. 2007;204:1653-1664.
    120. Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different Notch ligands. Blood. 2007;109:507-515.
    121. Ohishi K, Varnum-Finney B, Serda RE, Anasetti C, Bernstein ID. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood. 2001;98:1402-1407.
    122. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell. 2004;117:515-526.
    123. Olivier A, Lauret E, Gonin P, Galy A. The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood. 2006;107:2694-2701.
    124. Dontje W, Schotte R, Cupedo T, et al. Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood. 2006;107:2446-2452.
    125. Radtke F, Ferrero I, Wilson A, Lees R, Aguet M, MacDonald HR. Notch1 deficiency dissociates the intrathymic development of dendritic cells and T cells. J Exp Med. 2000;191:1085-1094.
    126. Ferrero I, Held W, Wilson A, Tacchini-Cottier F, Radtke F, MacDonald HR. Mouse CD11c(+) B220(+) Gr1(+) plasmacytoid dendritic cells develop independently of the T-cell lineage. Blood. 2002;100:2852-2857.
    127. Cheng P, Gabrilovich D. Notch signaling in differentiation and function of dendritic cells. Immunol Res. 2008;41:1-14.
    128. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225-260.
    129. Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity. 2002;16:257-270.
    130. Chen HD, Chen CL, Huang SW, Kung HF, Chen HC. Characterization of latex allergenic components by capillary zone electrophoresis and N-terminal sequence analysis. J Biomed Sci. 1998;5:421-427.
    131. Cheng P, Zlobin A, Volgina V, et al. Notch-1 regulates NF-kappaB activity in hemopoietic progenitor cells. J Immunol. 2001;167:4458-4467.
    132. Oswald F, Liptay S, Adler G, Schmid RM. NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol. 1998;18:2077-2088.
    133. Nickoloff BJ, Qin JZ, Chaturvedi V, Denning MF, Bonish B, Miele L. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytesthrough NF-kappaB and PPARgamma. Cell Death Differ. 2002;9:842-855.
    134. Guan E, Wang J, Laborda J, Norcross M, Baeuerle PA, Hoffman T. T cell leukemia-associated human Notch/translocation-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells. J Exp Med. 1996;183:2025-2032.
    135. Moran ST, Cariappa A, Liu H, et al. Synergism between NF-kappa B1/p50 and Notch2 during the development of marginal zone B lymphocytes. J Immunol. 2007;179:195-200.
    136. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3:984-993.
    137. Amsen D, Antov A, Jankovic D, et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity. 2007;27:89-99.
    138. Maekawa Y, Tsukumo S, Chiba S, et al. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity. 2003;19:549-559.
    139. Minter LM, Turley DM, Das P, et al. Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol. 2005;6:680-688.
    140. Tanigaki K, Tsuji M, Yamamoto N, et al. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity. 2004;20:611-622.
    141. Kaisho T, Hoshino K, Iwabe T, Takeuchi O, Yasui T, Akira S. Endotoxin can induce MyD88-deficient dendritic cells to support T(h)2 cell differentiation. Int Immunol. 2002;14:695-700.
    142. Eisenbarth SC, Piggott DA, Huleatt JW, Visintin I, Herrick CA, Bottomly K. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J Exp Med. 2002;196:1645-1651.
    143. Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R. Toll-likereceptors control activation of adaptive immune responses. Nat Immunol. 2001;2:947-950.
    144. Skokos D, Nussenzweig MC. CD8- DCs induce IL-12-independent Th1 differentiation through Delta 4 Notch-like ligand in response to bacterial LPS. J Exp Med. 2007;204:1525-1531.
    145. Stallwood Y, Briend E, Ray KM, et al. Small interfering RNA-mediated knockdown of notch ligands in primary CD4+ T cells and dendritic cells enhances cytokine production. J Immunol. 2006;177:885-895.
    146. Wakui M, Nakano K, Matsushita S. Notch ligand mRNA levels of human APCs predict Th1/Th2-promoting activities. Biochem Biophys Res Commun. 2007;358:596-601.
    147. Maekawa Y, Tsukumo S, Chiba S, et al. Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity. 2003;19:549-559.
    148. Tu L, Fang TC, Artis D, et al. Notch signaling is an important regulator of type 2 immunity. J Exp Med. 2005;202:1037-1042.
    149. Moser M, Murphy KM. Dendritic cell regulation of TH1-TH2 development. Nat Immunol. 2000;1:199-205.
    150. Jankovic D, Kullberg MC, Hieny S, Caspar P, Collazo CM, Sher A. In the absence of IL-12, CD4(+) T cell responses to intracellular pathogens fail to default to a Th2 pattern and are host protective in an IL-10(-/-) setting. Immunity. 2002;16:429-439.
    151. Weijzen S, Velders MP, Elmishad AG, et al. The Notch ligand Jagged-1 is able to induce maturation of monocyte-derived human dendritic cells. J Immunol. 2002;169:4273-4278.
    152. Androutsellis-Theotokis A, Leker RR, Soldner F, et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature. 2006;442:823-826.
    153. Kamakura S, Oishi K, Yoshimatsu T, Nakafuku M, Masuyama N, Gotoh Y. Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol. 2004;6:547-554.
    154. Adler SH, Chiffoleau E, Xu L, et al. Notch signaling augments T cell responsiveness by enhancing CD25 expression. J Immunol. 2003;171:2896-2903.
    155. Palaga T, Miele L, Golde TE, Osborne BA. TCR-mediated Notch signaling regulates proliferation and IFN-gamma production in peripheral T cells. J Immunol. 2003;171:3019-3024.
    156. Hoyne GF, Le RI, Corsin-Jimenez M, et al. Serrate1-induced notch signalling regulates the decision between immunity and tolerance made by peripheral CD4(+) T cells. Int Immunol. 2000;12:177-185.
    157. Yvon ES, Vigouroux S, Rousseau RF, et al. Overexpression of the Notch ligand, Jagged-1, induces alloantigen-specific human regulatory T cells. Blood. 2003;102:3815-3821.
    158. Wong KK, Carpenter MJ, Young LL, et al. Notch ligation by Delta1 inhibits peripheral immune responses to transplantation antigens by a CD8+ cell-dependent mechanism. J Clin Invest. 2003;112:1741-1750.
    159. Rutz S, Mordmuller B, Sakano S, Scheffold A. Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur J Immunol. 2005;35:2443-2451.
    160. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ. 1972;46:845-852.
    161. van Furth R, Cohn ZA, Hirsch JG, Humphrey JH, Spector WG, Langevoort HL. [Mononuclear phagocytic system: new classification of macrophages, monocytes and of their cell line]. Bull World Health Organ. 1972;47:651-658.
    162. Volkman A, Chang NC, Strausbauch PH, Morahan PS. Differential effects of chronic monocyte depletion on macrophage populations. Lab Invest. 1983;49:291-298.
    163. Yamada M, Naito M, Takahashi K. Kupffer cell proliferation and glucan-inducedgranuloma formation in mice depleted of blood monocytes by strontium-89. J Leukoc Biol. 1990;47:195-205.
    164. Galatiuc C, Ciobanu M, Panaitescu D, Sulica A. Identification of IgG-binding site on E.-histolytica cell membrane. Dev Comp Immunol. 1981;5:205-215.
    165. Deimann W, Fahimi HD. Peroxidase cytochemistry and ultrastructure of resident macrophages in fetal rat liver. A developmental study. Dev Biol. 1978;66:43-56.
    166. Kelemen E, Janossa M. Macrophages are the first differentiated blood cells formed in human embryonic liver. Exp Hematol. 1980;8:996-1000.
    167. Hsiao L, Takahashi K, Takeya M, Arao T. Differentiation and maturation of macrophages into interdigitating cells and their multicellular complex formation in the fetal and postnatal rat thymus. Thymus. 199l;l7:2l9-235.
    168. Mizoguchi S, Takahashi K ,Takeya M, Naito M, Morioka T. Development, differentiation, and proliferation of epidermal Langerhans cells in rat ontogeny studied by a novel monoclonal antibody against epidermal Langerhans cells, RED-1. J Leukoc Biol. 1992; 52:52-61.
    169. Morris L, Graham C F, Gordon S. Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development. 1991;112:517-526.
    170. Sorokin S P, McNelly N A, Jr Hoyt R F. Macrophage development: IV. Effects of blood factors on macrophages from prenatal rat lung cultures. Anat Rec. 1992;233:415-428.
    171. van Furth R, Nibbering P H, van Dissel J T, Diesselhoff-den Dulk MM. The characterization, origin, and kinetics of skin macrophages during inflammation. J Invest Dermatol. 1985;85:398-402.
    172. van Furth R, van't Wout JW, Wertheimer P A, Zwartendijk J. Ciprofloxacin for treatment of malakoplakia. Lancet. 1992;339:148-149.
    173. Melnicoff M J, Horan P K, Breslin E W, Morahan P S. Maintenance of peritonealmacrophages in the steady state. J Leukoc Biol. 1988;44:367-375.
    174. Steinhoff G, Wonigeit K, Schafers H J, Haverich A. Sequential analysis of monomorphic and polymorphic major histocompatibility complex antigen expression in human heart allograft biopsy specimens. J Heart Transplant. 1989;8:360-370.
    175. Mosmann T R, Cherwinski H, Bond M W, Giedlin M A, Coffman R L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348-2357.
    176. Mosser DM. The many faces ofmacrophage activation J Leukoc Biol, 2003;73 : 209 - 212.
    177. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23-35.
    178. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42:717-727.
    179. Namangala B, Brys L, Magez S, De Baetselier P, Beschin A. Trypanosoma brucei brucei infection impairs MHC class II antigen presentation capacity of macrophages. Parasite Immunol. 2000;22:361-370.
    180. Welch J S, Escoubet-Lozach L, Sykes D B, Liddiard K, Greaves D R, Glass C K. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J. Biol. Chem. 2002;277: 42821-42829.
    181. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677-686.
    182. Milas L, Wike J, Hunter N, Volpe J, Basic I. Basic, macrophage content of murine sarcomas and carcinomas: associations with tumor growth parameters and tumor radiocurability. Cancer Res. 1987, 47: 1069-1075.
    183. Elgert KD, Alleva DG, Mullins DW. Tumor2induced immune dysfunction: themacrophage connection. J Leukoc Biol. 1998, 64 : 275-290.
    184. Pollard JW. Tumour2educated macrophages p romote tumour progression and metastasis. Nat Rev Cancer. 2004, 4 :71-78.
    185. Hagemann T, Robinson S C, Schulz M, Trumper L, Balkwill F R, Binder C. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases. Carcinogenesis. 2004;25:1543-1549.
    186. Christina H S, Stacey DCB, Praveen RA. Breast cancer cells induce stromal fibroblasts to exp ressMMP29 via secretion of TNF2αand TGF2β. J Cell Sci. 2005; 118: 2143 - 2153.
    187. Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Caucig C, Kriehuber E, Nagy K, Alitalo K, Kerjaschki D. Tumor2associated macrophages exp ress lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol, 2002;161 : 947 - 956.
    188. Bjorndahl M A, Cao R, Burton J B, Brakenhielm E, Religa P, Galter D, Wu L, Cao Y. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res. 2005;65:9261-9268.
    189. Skobe M, Hamberg L M, Hawighorst T, Schirner M, Wolf G L, Alitalo K, Detmar M. Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor2C in melanoma. Am J Pathol. 2001;159:893-903.
    190. Monsalve E, Perez M A, Rubio A, Ruiz-Hidalgo M J, Baladron V, Garcia-Ramirez J J, Gomez J C, Laborda J, Diaz-Guerra M J. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J Immunol. 2006;176;5362-5373.
    191. Bai S, Kopan R, Zou W, Hilton M J, Ong C T, Long F, Ross F P, Teitelbaum S L. NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem. 2008;238:6509-6518.
    192. Palaga T, Buranaruk C, Rengpipat S, Fauq A H, Golde T E, Kaufmann S H, Osborne B A. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur J Immunol. 2008;38:174-183.
    193. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71-82.
    194. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med.1994;179:1109-18.
    195. Diao J, Winter E, Chen W, Cantin C, Cattral MS. Characterization of distinct conventional and plasmacytoid dendritic cell-committed precursors in murine bone marrow. J Immunol. 2004; 173:1826-1833.
    196. Williams CK, Segarra M, Sierra Mde L, Sainson RC, Tosato G, Harris AL. Regulation of CXCR4 by the Notch Ligand Delta-like 4 in Endothelial Cells. Cancer Res. 2008;68:1889-1895.
    197. Stockmann C, Doedens A, Weidemann A, Zhang N, Takeda N, Greenberg JI, Cheresh DA, Johnson RS. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature. 2008;11:814-818.
    198. Hu XB, Feng F, Wang YC, Wang L, He F, Dou GR, Liang L, Zhang HW, Liang YM, Han H. Blockake of Notch Signaling in Tumor-Bearing Mice May Lead to Tumor Regression, Progression, or Metastasis, Depeding on Tumor Cell Types. Neoplasia. 2009;11:32-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700