小鼠巨噬细胞ANA-1的诱导分化及其不同分型在叶酸性肾病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:近年来不同活化状态的巨噬细胞在肾间质纤维化发展过程中的不同作用受到愈来愈多的重视。各种因素引起肾脏损伤时,循环中的巨噬细胞浸润到肾脏,根据组织微环境的不同,活化为M1型的巨噬细胞促进肾脏炎症发展,M2型巨噬细胞释放IL-4、IL-13、IL-10等调节因子促进组织炎症向组织恢复方向发展。目前诱导巨噬细胞表型分化的分子较多,但共刺激分子特别是在免疫炎症反应中起重要作用的B7-H3分子以及不同表型巨噬细胞在肾小管间质纤维化中的作用研究较少。
     目的:本实验使用不同方法刺激小鼠巨噬细胞ANA-1诱导出不同表型巨噬细胞,比较不同条件刺激下各表型巨噬细胞表达蛋白及分泌因子的差异,建立起ANA-1的表型分化体系,同时研究B7-H3对ANA-1表型的影响,为B7-H3的临床应用提供理论依据。此外,应用脂多糖(LPS)或IL-4分别刺激的ANA-1输入到小鼠体内,观察不同条件刺激下的巨噬细胞对小鼠肾小管间质纤维化的影响。
     方法:1.在1640和FBS培养ANA-1巨噬细胞的过程中,分别加用LPS、IL-4、B7-H3单克隆抗体(简称B7-H3mAb)、B7-H3mAb+LPS、B7-H3mAb+IL-4,同时设立空白对照组、小鼠IgG对照组,培养24小时后收取细胞及上清液,流式细胞术检测诱导型一氧化氮合成酶(iNOS)、巨噬细胞甘露糖受体(CD206)的蛋白表达水平,酶联免疫吸附试验(ELISA)检测细胞上清液IL-10、TNF-α的表达。2.采用两次腹腔注射叶酸的方法建立肾小管间质纤维化模型,CD1小鼠随机分为正常对照组、叶酸组、LPS+叶酸组、IL-4+叶酸组,分别于第14天和21天处死小鼠,留取血标本测肌酐(Cr)、尿素(UN)、尿酸(UA)水平,摘取右肾行常规HE染色、MASSON染色及F4/80巨噬细胞、ɑ平滑肌肌动蛋白(ɑ-SMA)、胶原蛋白I(COLI)免疫组织化学染色。
     结果:第一部分:1.ANA-1经LPS刺激24h后B7-H3的表达升高,而IL-4刺激24h后的B7-H3的表达降低,差异均有统计学意义(P<0.05);2.与空白对照组相比,LPS组高表达iNOS,加入B7-H3mAb后iNOS的表达明显降低,差异有统计学意义(P<0.05);3.CD206在各组均高表达;4.与空白对照组相比,IL-4组及IL-4+B7-H3mAb组产生的IL-10明显增加(P<0.05),LPS组、B7-H3mAb组和LPS+B7-H3mAb组则无明显差别;TNF-α的水平与空白对照组相比IL-4+B7-H3mAb组虽有统计学意义,但变化不大,其他五组与空白对照组相比无明显差异。第二部分:1.HE染色和Masson染色显示正常对照组肾脏正常,叶酸组、LPS+叶酸组、IL-4+叶酸组小鼠UN、Cr、UA明显升高,肾小管间质纤维化,肾损伤严重程度LPS+叶酸组最重,叶酸组次之,IL-4+叶酸组最轻。2.免疫组织化学结果:两周时叶酸组、LPS+叶酸组、IL-4+叶酸组可见F4/80+巨噬细胞浸润,ɑ-SMA和COLI的表达量均明显高于正常对照组(P<0.05),模型组间无明显差别;三周时,ɑ-SMA的表达在IL-4+叶酸组明显低于LPS+叶酸组和叶酸组(P<0.05),COLI的表达,LPS+叶酸组最高,叶酸组次之,IL-4+叶酸组最低,差异有统计学意义(P<0.05)。结论:第一部分:1.1μg/mlLPS刺激ANA-1上调iNOS的水平,向M1型巨噬细胞极化并上调B7-H3的表达,B7-H3mAb下调LPS活化的ANA-1iNOS的表达。
     2.10ng/mlIL-4刺激ANA-1下调B7-H3的表达,并促进IL-10的分泌,向M2型巨噬细胞极化。第二部分:1.两次240mg/kg叶酸腹腔注射后,叶酸组小鼠肾脏肾小管间质明显纤维化,免疫组织化学示肾间质F4/80+巨噬细胞数量、COLⅠ及ɑ-SMA明显增加,该方法成功建立肾小管间质纤维化模型。2.LPS和IL-4分别诱导的巨噬细胞输入到叶酸性肾病小鼠体内,LPS刺激的巨噬细胞明显加重叶酸性肾病小鼠肾小管间质的损伤,具体表现为肾小管间质COLⅠ的产生和小管间质纤维化的面积明显增加;而IL-4活化的M2型巨噬细胞抑制叶酸性肾病小鼠肾小管间质纤维化,具体表现在肾小管间质COLⅠ及ɑ-SMA的产生以及小管间质纤维化的面积明显减少。
Background:The various roles of different state of macrophages in the process of renal interstitial fibrosis have been studied more in recent years. Macrophages infiltrate from circulation to the kidneys when kidney damage occurred due to various pathogens. Depending on the tissue microenvironment, classically activated macrophages(M1) promoted the development of kidney inflammation while the alternatively activated macrophages(M2) relieved tissue inflammation through releasing regulatory factors like IL-4,IL-13, IL-10. A lot of molecules induced the phenotype differentiation of macrophage, but less were reported about the roles of costimulatory molecules involved in the process, especially B7-H3which plays an important role in the inflammatory reaction. The actions of different phenotypes of macrophages in renal tubulointerstitial fibrosis were also less studied.
     Objective:In this study, different methods were used to stimulate murine macrophage (ANA-1) and induced different phenotypes of macrophages. By comparing different cytokine production with various stimulation, phenotypic differentiation methods of ANA-1were established. This will provide theoretical basis for the clinical application of B7-H3. In addition, macrophages stimulated by lipopolysaccharide(LPS) or IL-4were injected into mouse with folic acid nephropathy and followed effects on tubulointerstitial fibrosis were explored.
     Methods:1.When cultured by1640and fetal bovine serum(FBS), ANA-1with LPS, IL-4, B7-H3monoclonal antibody (B7-H3mAb), B7-H3mAb+LPS, B7-H3mAb+IL-4, blank and mice IgG control group were established. The cells and supernatant were collected after a24hours'culture. Inducible nitric oxide synthase (iNOS) and macrophage mannose receptor (CD206) were detected by flow cytometry. IL-10, tumor necrosis factor a(TNF-a) level were tested by enzyme-linked immunosorbent assay (ELISA).2.CD1mouse were randomly assigned to four groups:normal control group, folic acid group(FA group), LPS+FA group, IL-4+FA group. The model of interstitial fibrosis was induced with240mg/kg of folic acid (FA) by intraperitoneal injection. Five mouse in each group were sacrificed on the14th and21th day. Blood was collected to detect blood urea nitrogen(UN), creatinine(Cr), uric acid (UA) respectively. Samples of kidneys were processed for hematoxylineosin stain(HE), Masson trichrome stain and F4/80macrophages, α-smooth muscle actin (a-SMA), collagen I (COLI) detected by immunohistochemical stain(IHC).
     Results:The first part:1. The expression of B7-H3on ANA-1stimulated with LPS was up-regulated while decreased with IL-4(P<0.05);2. Compared with the blank control group, LPS group had a high protein expression of iNOS, and decreased significantly when cocultured with B7-H3mAb (P<0.05);3. The high expression of CD206was seen in each group without obvious change;4. Compared with the blank control group, the production of IL-10in IL-4group and IL-4+B7-H3mAb group significantly increased (P<0.05), while no significant was found in LPS group, B7-H3mAb group and LPS+B7-H3mAb group; Compared with the blank control group, although the level of TNF-a in the IL-4+B7-H3mAb group had statistical difference, the change was not obvious and the other five groups had no significant difference. The second part:1. After two times of240mg/kg FA administration by intraperitoneal injection, serum UN, Cr, UA level significantly increased in FA group. HE staining and Masson staining showed LPS+FA group and IL-4+FA group had different renal tubulointerstitial fibrosis. The severity of fibrosis in LPS+FA folic acid group was the worst, followed by FA group and last by IL-4+FA group.2. Immunohistochemistry results:the FA group, LPS+FA group, IL-4+FA group showed a high level of F4/80+macrophage infiltration at two weeks, the expression of a-SMA and COLI were significantly higher than the normal control group, there was no significant difference among three model groups. At the third week, the expression of a-SMA in IL-4+FA group was lower than which in FA group and LPS+FA group (P<0.05), the expression of COL I in LPS+FA group was dominant, followed by FA group and IL-4+FA group weakest (P<0.05).
     Conclusion:The first part:1.ANA-1stimulated by1μg/ml LPS up-regulated the level of iNOS, polarized to M1macrophages and up-regulated expression of B7-H3. B7-H3mAb down-regulated the increased iNOS induced by LPS.2. ANA-1with lOng/ml IL-4increased the secretion of IL-10, polarized macrophages to M2phenotypic with lower expression of B7-H3. The second part:1. After two times of240mg/kg FA administration by intraperitoneal injection, serum UN, Cr, UA level significantly increased. HE and Masson staining showed a large number of inflammatory cell infiltration in the tubulointerstitial fibrosis area. Immunohistochemistry showed a significant increase of the number of F4/80+macrophages and the expression of COL I and a-SMA. Tubulointerstitial fibrosis model was successfully established by FA.2. LPS stimulated macrophages exacerbated significantly the severity of tubulointerstitial fibrosis in folic acid nephropathy, manifested by the enlarged area of interstitial fibrosis and increased COLI expression; whereas macrophages activated by IL-4inhibited the development of tubulointerstitial fibrosis with the decreased COL I and a-SMA expression in the folic acid nephropathy.
引文
[1]徐跃华,共刺激分子B7.H3在肺癌中的表达及其临床意义[D].苏州:苏州大学,2011.
    [2]孙静,茆勇,顾文超,等.协同刺激分子B7-H3在非小细胞型肺癌中的表达及其临床意义[J].中国免疫学杂志,2011,29(7):594-596.
    [3]廖林虹,于晓红.卵巢上皮-间质肿瘤中B7-H3、B7-H4的表达及临床病理意义.临床与实验病理学杂志,2012,28(7):775-779.
    [4]刑涛,张利勇,王丽等.共刺激分子B7-H3和Ki-67在人脑胶质瘤中的表达及相关性[J].中华神经医学杂志,2011,10(6):557-559.
    [5]李琛,侯建全,何军等.肾移植患者血清中可溶性B7-H3水平的变化及其临床意义[J].中华实验外科杂志,2011,28(5):805-808.
    [6]相玉柱.B7-H3在肾透明细胞癌组织中的表达及其临床意义[J].泌尿外科杂志,2009,1(1):12-16.
    [7]Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci,2008,13:453-461.
    [8]Eardley KS,Cockwell P.Macrophages and progressive tubulointerstitial disease[J]. Kidney Int,2005,68:437-455.
    [9]Mosser DM. The many faces of macrophage activation[J]. J Leukoc Biol,2003,73:209-212.
    [10]Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al. Arginase-1-expressing macrophages suppress Th2cytokine-driven inflammation and fibrosis [J]. PLoS Pathog,2009,5:370-371.
    [11]Yonemoto S, Machiguchi T, Nomura K, Minakata T, Nanno M, Yoshida H. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus[J]. Clin Exp Nephrol,2006,10:186-192.
    [12]Eardley KS, Kubal C, Zehnder D, et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease[J]. Kidney Int,2008,74:495-504.
    [13]Henderson NC, Machinnon AC, Farnworth SL, et al. Galectin-3expression and secretion links macrophages to the promotion of renal fibrosis[J]. Am J Pathol,2008,172:288-298.
    [14]Dufield JS,Tiping PG, Kipari T, et al. Conditional ablation of macrophages halts progression of crescentic glomerulonephritis[J]. Am J Pathol,2005,167:1207-1219.
    [15]Tan TK, Zheng GP, Hsu TT, et al. Macrophage matrix metalloproreinase-9mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells[J]. Am J Patbol,2010,176:1256-1270.
    [16]Zheng D, Cao Q, Lee V W, et al. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease[J].Kidney Int,2012,81(9):892-902.
    [17]Wang Y, Wang YP, Zheng G, et al. Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease[J]. Kidney International,2007,72:290-299.
    [18]Wang Y, Wang YP, Cai Q,et al. By homing to the kidney, activated macrophages potently exacerbate renal injury[J].The American Journal of Pathology,2008,172(6):1491-1499.
    [19]Cao Q,Wang YP,Zheng D,et al.IL-10/TGF-β-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis[J].Journal of the American Society of Nephrology,2010,21(6):933-942.
    [20]Chapoval AI,Ni J,Lau JS,et al.B7-H3:a costimulatory molecule for T cell activation and IFN-gamma product on [J]. Nat Immunol,2001,2:269-274.
    [21]Masaaki H,Yuka I,Shoya N, et al.Human B7-H3binds to Triggering receptor expressed on myeloid cells-like transcript2(TLT-2) and enhances T cell responses[J].Open Journal of Immunology,2012,2(1):537-562.
    [22]Yan R H, Zhang G B, Sun J, et al. Expression of mouse B7-H3-Fc fusion protein and characterization of its bioactivity [J]. Chinese J Cellular Mol Immu,2010,26(11):1067-1069.
    [23]Zhao X, Zhang G B, Gan W J, et al. Silencing of B7-H3increases gemcitabine sensitivity by promoting apoptosis in pancreatic carcinoma[J]. Oncol Lett,2013,5(3):805-812.
    [24]Ueno T, Yeung MY, Mc Grath M, et al. Intact B7-H3signaling promotes allograft prolongation through preferential suppression of Thl effector responses[J]. Eur J Immunol,2012,42(9):2343-2353.
    [25]栾彦.可溶性共刺激分子B7-H3在HBV感染引起的肝炎及肝纤维化中的作用及机制研究[D].北京:中国科学院生物物理研究所,2009.
    [26]孙静,严茹红,顾文超等.小鼠B7-H3增强体外脂多糖介导的单核细胞活化[J].苏州大学学报(医学版),2011,31(4):134-137.
    [27]Vernon MA, Mylonas KJ, Hughes J. Macrophages and renal fibrosis[J].Seminars in Nephrology,2010,30:302-317.
    [28]Yang HC, Zuo YP, Fogo AB. Models of chronic kidney disease[J]. Drug Discov Today Dis Models,2010,7(1-2):13-19.
    [29]Chevalier RL. Obstructive nephropathy:towards biomarker discovery and gene therapy [J]. Nat Clin Pract Nephrol,2006,2:157-168.
    [30]戴继鸿,李晓忠,张学光,等.共刺激分子在小鼠叶酸性肾病组织中的表达及其免疫病理意义[J].现代免疫学,2005,25(1):15-18.
    [1]Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization[J]. Front Biosci,2008;13:453-461.
    [2]Blasi E, Pitzurra L, Bartoli A, et al. Tumor necrosis factor as an autocrine and paracrine signal controlling the macrophage secretory response to candida albicans[J]. Infect Immun,1994,62:1199-1206.
    [3]石榴,方怡,袁伟峰,等.脂多糖刺激RAW264.7和Ana-1形态改变及细胞因子表达的差异[J].国际呼吸杂志,2009,29(13):772-776.
    [4]Ozbek E, Llbey YO, Ozbek M, et al.Melatonin Attenuates Unilateral Ureteral Obstruction-Induced Renal Injury by Reducing Oxidative Stress, iNOS, MAPK, and NF-kB Expression[J]. Journal of Endourology[J].2009,23(7):1165-1173.
    [5]Odegaard JI, Ricardo-Gonzalez RR, Goforth MH,et al. Macrophage-specific PPAR controls alternative activation and improves insulin resistance[J]. Nature,2007,447:1116-1120.
    [6]Ling V, Wu PW, Spaulding V et al. Duplication of primate and rodent B7-H3immunoglobulin V-and C-like domains:divergent history of functional redundancy and exon loss[J]. Genomics,2003,82(3):365-377.
    [7]Yan R H, Zhang G B, Sun J, et al. Expression of mouse B7-H3-Fc fusion protein and characterization of its bioactivity [J]. Chinese J Cellular Mol Immu,2010,26(11):1067-1069.
    [8]Zhao X, Zhang G B, Gan W J, et al. Silencing of B7-H3increases gemcitabine sensitivity by promoting apoptosis in pancreatic carcinoma[J]. Oncol Lett,2013,5(3):805-812.
    [9]Ueno T, Yeung MY, Mc Grath M, et al. Intact B7-H3signaling promotes allograft prolongation through preferential suppression of Thl effector responses[J]. Eur J Immunol,2012,42(9):2343-2353.
    [10]相玉柱.B7-H3在肾透明细胞癌组织中的表达及其临床意义[J].泌尿外科杂志,2009,1(1):12-16.
    [11]Prieto CP,Krause BJ,Quezada C,et al.Hypoxia-reduced nitric oxide synthase activity is partially explained by higher arginase-2activity and cellular redistribution in human umbilical vein endothelium[J].Placenta.2011,32:932-940.
    [1]Yonemoto S, Machiguchi T, Nomura K, Minakata T, Nanno M, Yoshida H. Correlations of tissue macrophages and cytoskeletal protein expression with renal fibrosis in patients with diabetes mellitus[J]. Clin Exp Nephrol.2006,10:186-192.
    [2]Eardley KS, Kubal C, Zehnder D, et al. The role of capillary density, macrophage infiltration and interstitial scarring in the pathogenesis of human chronic kidney disease[J]. Kidney Int.2008,74495-504.
    [3]Tan TK, Zheng Y, Hsr TT.Macrophage matrix metalloproteinase-9mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells[J].Am J Pathol,2010,176:1256-1270.
    [4]Odegaard JI, Ricardo-Gonzalez RR, Goforth MH,et al. Macrophage-specific PPAR controls alternative activation and improves insulin resistance[J]. Nature,2007,447:1116-1120.
    [5]Park EK, Jung HS, Yang HI, et al.Optimized THP-1differentiation is required for the detection of responses to weak stimuli[J]. Inflammation Research.2007,56(1):45-50.
    [6]戴继鸿,李晓忠,张学光,等.共刺激分子在小鼠叶酸性肾病组织中的表达及其免疫病理意义[J].现代免疫学,2005,25(1):15-18.
    [7]Alpers CE, Hudkins KL, Floege J, et al. Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury [J]. J Am Soc Nephrol,1994,5:201-209.
    [8]Diamond JR.Macrophages and progressive renal disease in experimental hydronephrosis[J]. Am J Kidney Dis,1995,26:133-140.
    [9]Lange-Sperandio B,Trautmann A, Eickelberg O, et al. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice[J]. Am J Pathol,2007,171:861-871.
    [10]Duffild JS. Macrophages and immunologic inflammation of the kidney[J]. Semin Nephrol,2011,30:234-254.
    [11]Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-betal secretion and the resolution of in flammation[J]. Clin. Invest,2002,(109)41-50.
    [12]Zheng D, Cao Q, Lee V W, et al. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease.Kidney Int,2012,81(9):892-902.
    [13]Wang Y, Wang YP, Zheng G, et al. Harris DC:Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease[J]. Kidney Int,2007,72:290-299.
    [14]Metcalfe PD,Leslie JA, Campbell MT, et al. Testosterone exacerbates obstructive renal injury by stimulating TNF-alpha production and increasing proapoptotic and profibrotic signaling[J]. Am J Physiol Endoerinol Metab,2008,19(9):1741-1752.
    [15]Nakamaki S, Satoh H, Kudoh A, et al. Adiporectin reduced proteinuria in streptozotoctin-induced diabetic wistar rats[J]. Exp Biol Med,2011,236(5):677-687.
    [16]Lee S, Huen S, Nishio H, et al. Distinct macrophage phenotypes contribute to kidney injury and repair[J]. J Am Soc Nephrol,2011,22:317-326.
    [17]Wilson HM, Stewart KN, Brown PA, et al. DC:Bone-marrow-derived macrophages genetically modified to produce injury in experimental glomerulonephritis[J]. Mol Ther,2002,6:710-717.
    [18]Kluth DC, Ainslie CV, Pearce WP, et al. Macrophages transfected with adenovirus to express IL-4reduce inflammation in experimental glomerulonephritis[J]. J Immunol,2001,166:4728-4736.
    [19]Cao Q, Wang Y, Zheng D,et al. IL-10/TGF-β-Modified Macrophages Induce Regulatory T Cells and Protect against Adriamycin Nephrosis. J Am Soc Nephrol.2010[J],21(6):933-942.
    [20]Wang Y, Wang YP, Zheng G, et al. Harris DC:Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease[J]. Kidney Int,2007,72:290-299.
    [21]Wang YP, Harris DC. Macrophages in renal disease[J]. J Am Soc Nephrol,2011,22:21-27.
    [1]Ziegler-Heitbrock L, Ancuta P, Crowe S, et al. Nomenclature of monocytes and dendritic cells in blood[J]. Blood,2010;116:74-80.
    [2]Belge K.U, Dayyani F, Horelt A, et al. The proinflammatory CD14+CD16+DR++monocytes are a major source of TNF[J]. Immunol,2002,168:3536-3542.
    [3]Cros J, Cagnard N, Woollard K, et al. Human CD14dim monocytes patrol and sense nucleic acids and viruses via TLR7and TLR8receptors, Immunity,201033):375-386.
    [4]Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Immunol.2008,8:958-969.
    [5]Sica A, Mantovani A. Macrophage plasticity and polarization:in vivo veritas[J]. Clin. Invest,2012,122:787-795.
    [6]Ziegler-Heitbrock HW. Heterogeneity of human blood monocytes:the CD14+CD16+subpopulation[J]. Immunol Today,1996,17:424-428.
    [7]Geissmann F, Auffray C, Palframan R, Wirrig C, Ciocca A, Campisi L, et al. Blood monocytes:distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of T-cell responses[J]. Immunol Cell Biol2008,86:398-408.
    [8]Hume DA, Underhill DM, Sweet MJ, Ozinsky AO, Liew FY, Aderem A. Macrophages exposed continuously to lipopolysaccharide and other agonists that act via toll-like receptors exhibit a sustained and additive activation state[J]. BMC Immunol,2001:2-11.
    [9]Pesce JT, Ramalingam TR, Mentink-Kane MM, Wilson MS, El Kasmi KC, Smith AM, et al.Arginase-1-expressing macrophages suppress Th2cytokine-driven inflammation and fibrosis[J]. PLoS Pathog,2009,(5):370-371.
    [10]Wang Y, Wang YP, Zheng G, et al. Harris DC:Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease[J]. Kidney Int,2007,72:290-299.
    [11]K.L.Rock,J.J.LAI,H.Kono.Innate and adaptive immune responses to cell death[J]. Immunol Rev,2011,243:191-205.
    [12]R.Allam, CR Scherbaum,MN Darisipudi,et al. Histones from dying renal cells aggravate kidney injury via TLR2and TLR4[J]. J Am Soc Nephrol,2012,23:1375-1388.
    [13]Martinez FO, Sica A, Mantovani A, et al. Macrophage activation and polarization. Front Biosci,2008;13:453-461.
    [14]Ricardo SD, van Goor H, Eddy AA. Macrophage diversity in renal injury and repair[J].J Clin Invest,2008,118:3522-3539.
    [15]Jenkins SJ, Allen JE. Similarity and diversity in macrophage activation by nematodes, trematodes, and cestodes[J]. J Biomed Biotechnol,2010,112:262-269.
    [16]Lin SL, Duffield JS. Macrophages in kidney injury and repair[J]. Acta Nephrol,2012,26:45-57.
    [17]Duffield JS, Lupher ML. PRM-151(recombinant human serum amyloid P/pentraxin2) for the treatment of fibrosis[J]. Drug News Perspect,2010,235:305-315.
    [18]郭强,李康,徐林,等.4T1荷瘤小鼠肿瘤相关巨噬细胞(TAM)的表型及吞噬功能的研究[J].中国免疫学杂志.2009,25(3):225-228.
    [19]Macedo L, Pinhal-Enfield G, Alshits V, Elson G, Cronstein BN, Leibovich SJ. Wound healing is impaired in MyD88-deficient mice:a role for MyD88in the regulation of wound healing by adenosine A2A receptors[J]. Am J Pathol2007,171:1774-1788.
    [20]Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al.Macrophage Wnt7b is critical for kidney repair and regeneration[J]. Proc Natl Acad Sci USA,2010,107:4194-4199.
    [21]Rojas A, Chang FC, Lin SL, Duffield JS. The role played by perivascular cells in kidney interstitial injury [J]. Clin Nephrol,2012,77:400-408.
    [22]Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, et al. Pericyte TIMP3and ADAMTS1modulate vascular stability after kidney injury [J]. J Am Soc Nephrol,2012,23:868-883.
    [23]Schrimpf C, Duffield JS. Mechanisms of fibrosis:the role of the pericyte[J]. Curr Opin Nephrol Hypertens,2011,20:297-305.
    [24]Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases [J]. J Clin Invest.,2007,117:524-529.
    [25]Skalli O, Ropraz P, Trzeciak A, et al. A monoclonal antibody against alpha-smooth muscle actin:a new probe for smooth muscle differentiation[J]. J Cell Biol,1986,103:2787-2796.
    [26]Serini G, Gabbiani G. Mechanisms of myofibroblast activity and phenotypic modulation[J]. Exp Cell Res,1999,250:273-283.
    [27]Desmouliere A,Geinoz A, Gabbiani F.Transforming growth factor-beta1induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts[J].J Cell Biol,1993,122:103-111.
    [28]Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition[J]. J Clin Invest,2009;119:1420-1428.
    [29]Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz-Osterreicher M, Brenner DA. Hepatocytes do not undergo epithelial-mesenchymal transition in liver fibrosis in mice[J]. Hepatology,2010,51:1027-1036.
    [30]Scholten D, Osterreicher CH, Scholten A, et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice[J]. Gastroenterology,2010,139:987-998.
    [31]Duffield JS. Epithelial to mesenchymal transition in injury of solid organs:fact or artifact?[J].Gastroenterology,2010,139(4):1081-1083.
    [32]Wada T, Sakai N, Matsushima K, et al. Fibrocytes:a new insight into kidney fibrosis[J]. Kidney Int,2007,72:269-273.
    [33]Zeisberg EM, Potenta SE, Sugimoto H, et al. Fibroblasts in kidney fibrosis emerge via endothelial-tomesenchymal transition[J]. J Am Soc Nephrol,2008,19:2282-2287.
    [34]Moura IC, Benhanmou M, Launay P, et al. The glomerular response to IgA deposition in IgA nephropathy[J]. Semin Nephrol,2008,28:88-95.
    [35]陈腾锋.肾脏纤维化机制的研究进展[J].国际泌尿系统杂志,2011,31(3)404-408.
    [36]郎明建,闵新文,李健等.RNA干扰靶向抑制结缔组织生长因子拮抗肾脏纤维化的发展[J].中华急诊医学杂志,2010,19(6):615-620.
    [37]Tan TK, Zheng G, Hsu TT, et al. Macrophage matrix metalloproteinase-9mediates epithelial-mesenchymal transition in vitro in murine renal tubular cells[J]. Am J Pathol,2010,176(3):1256-1270.
    [38]Wang XH, Zhou Y, Tan RY, et al. Mice lacking the matrix metalloproteinase-9gene reduce renal interstitial fibrosis in obstructive nephropathy[J]. Am J Physiol Renal Physiol,2010,299(5):973-982.
    [39]Dun ZN, Zhang XL,An JY,et al. Specific shRNA targeting of FAK influenced collagen metabolism in rat hepatic stellate cells[J]. World J Gastroenterol,2010,16:4100-4106.
    [40]刘必成,伍敏.肾脏纤维化的与挑战[J].中华内科杂志,2011,50(7):547-549.
    [41]武贵群,高翔,梅长林TGF-B/Smads通路与肾脏纤维化研究进展[J].中国中西医结合肾病杂志,2012,13(5):456-458.
    [42]Strutz F, Zeisberg M, Ziyadeh FN,et al. Role of basic fibroblast growth factot-2in epithelial-mesenchymal transformation[J]. Kidney Int,2002,61:1714-1728.
    [43]Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis[J]. Am J Pathol,2001,159:1465-1475.
    [44]Hayashida T,Wu MH,Pierce A, et al. Molecular basis for the cell type specific induction of SnoN expression by hepatocyte growth factor[J]. J Am Soc Nephrol,2007,18:2340-2349.
    [45]Liu DX, Liu XM, Su Y, et al. Renal expression of proto-oncogene Ets-1on matrix remodeling in experimental diabetic nephropathy[J]. Acta Histochem,2010,113(5):527-533.
    [46]Mizui M,Isaka Y, Takabatake Y, et al. Transcription factor Ets-1is essential for mesangial matrix remodeling[J]. Kidney Int,2006,70(2):298-305.
    [47]Kumar D, Luan L, Pathak S, et al, Ang Ⅱ enhances tubular cell Ets-1expression and associated down stream signaling is mediated through AT1receptors[J]. Renal Failure,2010,32(8):986-991.
    [48]白永恒,陆红,周琴等Sonic hedgehog信号通路在单侧输尿管梗阻大鼠肾组织中的表达变化及意义[J].中国病理生理杂志,2012,,28(12):2227-2232.
    [49]Kisseleba T,Bhattacharya S,Braunstein J,et al.Signaling though the JAK/STAT pathway, recent advances and future challenges[J]. Gene,2002,282(1-2):1-24.
    [50]赵松,史永红,段惠军等JAK/STAT信号途径参与高糖诱导的肾小管上皮细胞转化[J].中国病理生理杂志,2008,24(2):325-329.
    [51]陈国纯,刘虹,王畅,等.nTOR通路调控肾间质成纤维细胞活化的机制[J].中华肾脏病杂志,2012,28(3):226-231.
    [52]李里,吴玉斌.Wnt信号传导通路与肾脏纤维化[J].国际儿科学杂志,2012,39(2):109-111.
    [53]Alpers CE, Hudkins KL, Floege J, et al. Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury [J]. J Am Soc Nephrol,1994,5:201-209.
    [54]Diamond JR.Macrophages and progressive renal disease in experimental hydronephrosis[J]. Am J Kidney Dis,1995,26:133-140.
    [55]Lange-Sperandio B,Trautmann A, Eickelberg O, et al. Leukocytes induce epithelial to mesenchymal transition after unilateral ureteral obstruction in neonatal mice[J]. Am J Pathol,2007,171:861-871.
    [56]Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-betal secretion and the resolution of in flammation[J],J. Clin. Invest,2002,(109)41-50.
    [57]Henderson NC, Mackinnon AC, Farnworth SL, Poirier F, Russo FP, Iredale JP, et al. Galectin-3regulates myofibroblast activation and hepatic fibrosis[J]. Proc Natl Acad Sci USA,2006,103:5060-5065.
    [58]Henderson NC, Mackinnon AC, Farnworth SL, et al. Galectin-3expression and secretion links macrophages to the promotion of renal fibrosis[J]. Am J Pathol.2008,172:288-298.
    [59]MacKinnon AC, Farnworth SL, Hodkinson PS, et al. Regulation of alternative macrophage activation by galectin-3[J]. J Immunol,2008,180:2650-2658.
    [60]Lee S,Huen S,Nishio H, et al.Distinct macrophage phenotypes contribute to kidney injury and repair[J]. J Am Soc Nephrol2011,22:317-326.
    [61]Ma FY, Liu J, Kitching AR,et al.Targeting renal macrophage accumulation via c-fms kinade reduces tubular apoptosis but fails to modify progressive fibrosis in the obstructed rat kidney[J]. Am J Physiol Renal Physiol,2009,296:177-185.
    [62]V Vielhauer, O Kulkami, CA Reichel, et al. Targeting the recruitment of monocytes and macrophages in renal disease[J].Semin Nephrol,2010,30:318-333.
    [63]T Lucas, A Waisman, R Ranian, et al. Differential roles of macrophages in diverse phases of skin repair [J]. Immunol,2010,184:3964-3977.
    [64]廖盼丽,唐小铁,曾锐,等.替米沙坦对UUO小鼠肾脏HIF-1α表达的影响及其与巨噬细胞的关系[J].中国组织化学与细胞化学杂志,2012,21(3):218-223.
    [65]Fumitaka Kinugasa, Takahisa Noto, Hideaki Matsuoka, Yasuharu Urano, Yuji Sudo,Shoji Takakura, Seitaro Mutoh. Prevention of renal interstitial fibrosis via histone deacetylase inhibition in rats with unilateral ureteral obstruction[J].Transplant Immunology2010,23:18-23.
    [66]Zheng D, Cao Q, Lee V W, et al. Lipopolysaccharide-pretreated plasmacytoid dendritic cells ameliorate experimental chronic kidney disease[J].Kidney Int,2012,81(9):892-902.
    [67]Cao Q, Wang Y, Zheng D,et al. IL-10/TGF-β-Modified Macrophages Induce Regulatory T Cells and Protect against Adriamycin Nephrosis[J]. J Am Soc Nephrol.2010,21(6):933-942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700