高耸建筑物爆破拆除中失稳断裂因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定向爆破拆除砌体高耸建筑物时,中上部结构的过早断裂问题严重影响到定向爆破的安全可靠。过早断裂出现与否取决于爆破切口瞬间形成的情况。但此方面的理论分析目前尚处于初级探索阶段,实践中仍然依靠经验。为此,本文借助大型有限元分析研究软件ANSYS,建立大量不同参数的烟囱三维实体模型,通过数值模拟与理论分析对切口参数、爆破荷载,风荷载等因素对切口瞬间形成及结构中上部的影响进行研究。针对高耸建筑物爆破拆除的设计原则,本文的研究结果提出了改进建议,为实际的爆破施工提供依据。取得了如下主要成果:
     爆破切口参数方面,爆破切口高度按壁厚的1.5~3.0倍作为爆破设计的取值时,下限值范围偏大,系数应取2.0~3.0;爆破切口长度按烟囱底部周长的60%~66%取值时,切口长度偏大固然不可取,而过于保守同样是不可取的,范围在62%~64%是比较合理的;在常用的正梯形、倒梯形、矩形爆破切口形状中,以正梯形效果最好。
     将ANSYS5.7瞬态动力学分析引入爆破动力计算中,定量分析研究了在切口形成时的爆破振动荷载下,整体结构受力过程及应力分布规律。爆破切口形成产生爆破荷载对上部结构的断裂有相当影响,是简体反向倾转及过早断裂的主要原因。爆破荷载作用下,烟囱筒体高度58%~75%范围内是危险区。对风化严重等强度低的砖烟囱进行爆破拆除时,尤其要控制单响起爆药量与起爆的间隔时间。在同样条件下,烟囱强度低也是造成倾倒过程过早断裂的又一个原因。
     探讨爆破拆除高耸建筑物中风荷载的特点与计算方法,通过数值模拟对风荷载在拆除爆破中影响高耸结构倾转进行定量分析,确定风荷载的影响程度。
     数值模拟结果客观的再现了不同切口参数条件下的实体模型的受力情况,爆破振动荷载的数值分析与实际结果相吻合,也证明了数值模拟方法在高耸建筑物爆破拆除中的适用性和科学性。
During the directional blasting demolition of a brick towering building, security of the directional blasting was influenced seriously by the premature rupture near the middle part of the towering building. Whether the premature rupture appears or not depends on the status of blasting cut shaped instantly. However, for the lack of research on problems such as the premature rupture, most blasting projects still rely on experiential theories. By means of commercial FEA software ANSYS, FEA three-dimensional chimney models are established. And various factors that affect the forming of blasting cut and damage in the middle part of the chimney, including parameters of blasting cut, load of blasting vibration and wind, are deeply analyzed by theoretical methodology and numerical simulation. According to the result of this paper, the design principle of demolition blasting in towering buildings can be proposed and applied to practical blasting projects. And main conclusions can be shown as follows:
    First, the optimum parameters of blasting cut are presented. In choosing the height of blasting cut, 2 .0 to 3.0 times of the wall widths of a towering building are used instead of from 1.5 to 3.0. And the lengths of blasting cut that range from 62% to 64% of the bottom perimeter of a towering building should be more reasonable than from 60% to 64%. No doubt adopting the upper limit is not suggested, but the conservative percent should not be adopted neither. In addition, echelon is the best shape of blasting cut among echelon, inverse echelon and rectangle.
    Transient dynamical FEA of ANSYS 5.7 is applied in calculation of demolition blasting. In quantitatively analysis including process of loading and stress distribution along the body of a chimney, load of blasting vibration induced by the forming of blasting cut was analyzed and the premature rupture of upper chimney was certainly affected by it. And it is also the main reason that induces the premature rupture and the reverse collapse of a chimney. Under blasting vibration load, the dangerous zones
    
    
    range from 58% to 75% of the chimney body. Considering the situation that the chimney was weathered seriously and the strength was so lower that single charge and blasting delay interval should be well-chosen especially. On the same condition, it is another reason that the premature rupture induced by the low strength of a chimney.
    Characteristics and calculational methods of wind load are discussed in this paper. The extent of impact of wind load is analyzed quantitatively by means of numerical simulation, especially when the towering building rotates after blasting.
    The process of stress change near the blasting cut was displayed objectively by the numerical simulation in different solid FEA models. Moreover, results of numerical analysis in blasting vibration load agree with the practical results, which show that ANSYS can be helpful to design and optimize the parameters of demolition blasting.
引文
[1] 张相庭.高层建筑抗风抗震设计计算.上海,同济大学出版社,1997
    [2] 李会民,李华明.砖烟囱震害破坏特征及抗震防灾系统研究.特种结构,1996(3):60-62
    [3] 黄惠嘉.钢筋混凝土高烟囱动力特性测试和第Ⅱ振型横向共振.特忡结构,1998.15(3):33~38
    [4] 贾金河,于亚伦.国外拆除爆破的现状.爆破,1998.15(2):37~41
    [5] 刘清荣.控制爆破.武汉:武汉工业大学出版社,1986.
    [6] 赵福兴.控制爆破工程学.西安,西安交通大学出版社,1988
    [7] 汪旭光,于亚伦.21世纪的拆除爆破技术.工程爆破,2000.6(1):32~35
    [8] 刘石义.高耸筒形建构筑物失稳倾倒受力分析及防患处理.山东建材学院学报.1994.8(1):40~50
    [9] 刘殿中.工程爆破实用手册[M].北京:冶金工业出版社,1999.
    [10] 叶国庄,朱爱华等.烟囱倒塌过程的计算机模拟.爆破,1998.15(2):28~32
    [11] 程康,肖林等.倾斜烟囱控爆设计中应注意的几个问题.爆破,2001.18(2):16~18
    [12] 马建敏,吕景林等.用ANSYS对复杂结构进行动态响应计算.机械科学与技术,1998(6):959~961
    [13] 王国强.实用工程数值模拟技术及其在ANSYS上的实践.兰州:西北工业大学出版社,1999年
    [14] 王世山,王德林.大型有限元软件ANSYS在电磁领域的使用.高压电器,2002.38(3),27~32
    [15] 李皓月等.ANSYS工程计算应用教程.北京:中国铁道出版社,2003.
    [16] 孙波.烟囱在地震力作用下的动应力反应分析:[硕士学位论文].大连:大连理工大学,2002
    [17] ANSYS Transient Analysis Guide, Release 5.7.Second Edition. SAS IP, Inc, 1999
    [18] 孙钧,汪炳鉴.地下结构有限元解析.上海:同济大学出版社,1988
    [19] 许次达,华伯浩,等.固体力学有限元理论.北京:水利水电出版社,1983
    [20] 朱伯芳.有限单元法原理与应用.北京:水利水电出版社,1979:276~316
    [21] 张汝清,董明.结构计算程序设计.北京:科学出版社,1988
    [22] Bull.John W. Finite element applications to thin-walled stuctures. London: Elsevier applied Science, 1990.
    [23] 刘涛,杨凤鹏.精通ANSYS.清华大学出版社,2002年9月.
    [24] 关于砂浆强度和砌体强度的几个问题.周九仪.建筑技术,1998.29(5):325~327
    
    
    [25] 王达诠,武建华.砌体RVE均质过程的有限元分析.重庆建筑大学学报,2002.24(4),35~40.
    [26] 砌体结构设计规范修订组.砌体结构研究论文集.湖南大学出版社,1984
    [27] 毛毳.砖砌体建筑温度应力的有限元分析.天津城市建设学院学报,2001.7(1):28~32
    [28] 赵以贤,王良国.爆炸载荷作用下地下圆形结构动态分析.应用力学学报,1997.14(1):94~100
    [29] 喻胜春.爆破振动作用下影响中隔墩动态响应的因素分析.[硕士学位论文].武汉:武汉大学水电学院,2001
    [30] P.D.Smith,G.P.Whalen,L.J.Feng and T.A.Rose. Blast loading on buildings from explosions in city streets[J]. Structures& Building, 2001, 146 (1): 47~55
    [31] 建筑结构设计手册编写组.烟囱设计手册.北京:中国建筑工业出版社,1989:136
    [32] 池恩安.100m钢筋砼烟囱和80m砖烟囱定向爆破拆除.工程爆破,2002.8(1):27~31
    [33] 花奕兵.40m高砖砼姻囱控爆拆除.爆破,2001.18(4):64~66
    [34] 傅志峰,李红杰,70m砖烟囱定向爆破拆除及结果分析.工程爆破,2001.7(4):40~42
    [35] 王玉杰,曹跃.苛刻条件下50m高砖混烟囱的控制爆破.爆破,2000.17(2):11~14
    [36] 赵根.三座砖烟囱定向爆破拆除.爆破,1998.15(4):8~12
    [37] 张伟.危旧烟囱定向拆除爆破.山西煤炭,2000.20(2):35~36
    [38] 赵诲彬.消除烟囱“后坐”现象的尝试.爆破,1998.15(4):38~41
    [39] 王松涛,曹资.现代抗震设计方法.北京:中国建筑工业出版社,1997
    [40] 刘大海,杨翠如,等.高层建筑抗震设计.北京:中国建筑工业出版社,1993
    [41] Trifumac M D.Long. Period Fourier Amplitude Spectra of Strong Motion Acceleration. Soil Dynamics and earthquake Engineering, 1993.12:363~382
    [42] 丁志娟,甘明.应用静力非线性算法研究单层网壳的水平地震反应.第九届空间结构学术会议论文集.2000
    [43] Vojko Kilar. Simple Push-Over Analysis of Asymmetric Buildings. Earthquake Engineering and Structural Dynamics, 1997.26:233~249
    [44] 钱培风.结构抗震分析.北京:地震出版社,1983:3008~319
    [45] 周晓峰.巨型钢框架结构的静力、抗震和抗风分析.[硕士学位论文].杭州:浙江大学结构工程,2001.
    [46] 朱彦鹏,邹银生.特种结构.武汉:武汉工业大学出版社,2000:120~145
    
    
    [47] 张宪堂,陈士海等.烟囱对爆破地震的竖向反应行波分析计算方法.工程爆破,1999.(5)1:67~70
    [48] Lin Dachao. Characterization Method of Explosion Seismic Wave. Journal of Beijing Institute of Technology, 2001. 9(3): 249~254
    [49] 张志呈.爆破地震参量与振动持续时间.四川冶金,2002.3:1~4
    [50] 黄永祥,黄浩雄,等.建筑物下爆破地震效应的研究——“爆破安全规程”的应用与修正.地震研究,2002.(25)3:287~294
    [51] Nelson,I. Numerical solution of problems involving explosive loading, Proc. DMSR, Karlsruhe, FRG(2), 1977,239~297
    [52] 王迪安.一维应力波理论在爆破地震效应研究中的应用.矿业研究与开发.1997.7(1):59~64
    [53] 杨人光.建筑物爆破拆除.北京:中国建筑工业出版社,1985
    [54] 张建华.球形偏心不偶合装药爆炸扩腔机理及规律的研究.[博士论文].北京:北京理工大学,2000
    [55] Langefors U & Kinlshom B. The Modern Technique of Rock Blasting. John Wiley & Sons Inc. New York. 1963
    [56] 孙训方.材料力学.下册.北京:高等教育出版社,1986:51~67.
    [57] 梁开水,王斌.65m烟囱爆破倒塌过程与断裂分析.湖北省爆破学会第六届学术会议论文集.爆破,2001年.18(专辑):47~50
    [58] 黄本才.结构抗风分析原理及应用.上海:同济大学出版社,2001
    [59] J.Q.Fang,Q.S.Li,D.K. Liu,A.P. Jeary, and C.K. Wong. Wind effects on a very tall building and wavelet analysis. Proc. Instn Civ. Engrs Structs & Bldgs, 2000, 140, May, 151~159.
    [60] 赫桐生.理论力学.北京:高等教育出版社,1982.9
    [61] Giovanni solari,Gust Buffeting:Dynamic Alongwind Response,Journal of Structural Engineering. ASCE, 1993,119(2):383~398
    [62] Carlj.Costantino,A.M.ASCE, Finite Element Approach to Stress Wave Problems, Journal of the Engineering Mechanics Division, 153~176
    [63] 朱伯龙.工程结构抗震设计原理.上海:上海科学技术出版社,1982
    [64] 嘉木工作室.ANSYS5.7有限元实例分析教程.北京:机械工业出版社,2002.
    [65] ANSYS 5.5: Guide to Interfacing with ANSYS. ANSYS inc, 1999
    [66] 张奇.工程爆破动力学分析及应用.北京:煤炭工业出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700