吉布斯系综模拟氮气—水和氧气—水的气液相平衡
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Monte Carlo 模拟(MC)是化工热力学中的一种现代研究方法。近年来随着
    实验成本的增加,采用计算机来模拟实际体系越来越受到工业界和学术界相关领
    域研究人员的关注。本论文先对 MC 模拟的起源、原理及发展作了简要讨论,对
    现有的用来预测流体相平衡的 MC 模拟方法及涉及的不同系综作了较全面的论
    述并对它们的优缺点、适用范围作了比较。结果表明,Gibbs 系综的 MC(GEMC)
    方法为化工过程设计和开发中必不可少的流体相平衡的直接模拟提供了方便的
    研究手段。本文利用 GEMC 模拟技术,对 Lennard-Jones(LJ)模型流体、用简
    单 LJ 位能描述的真实气体 N2、O2、水及气体与水的混合物的平衡性质进行了研
    究。主要包括以下几个方面:
    对Lennard-Jones流体的汽液平衡性质进行了NVT-GEMC模拟并探讨了模拟
    所用的初始条件对结果的影响:初始条件对平衡性质结果的影响在统计不确定误
    差范围以内但对体系达到平衡的时间有一定的影响。只要体系中的粒子数足以描
    述各相的性质,模拟应该尽量选取较少的粒子数。
    对真实气体 N2、O2从接近三相点到临界点附近的汽液相平衡模拟得到了与
    实验数据非常吻合的结果。而对用 MSPC/E 模型描述的水的模拟可知,仅当温度
    升高到 550K 以上时,模拟结果才显示出与实验数据较大的偏差。
    本论文用 NPT-GEMC 模拟了高度非理想性的含有氢键的混合物:N2-H2O 和
    O2-H2O 体系。N2-H2O 体系的模拟在固定压力、不同温度下进行而 O2-H2O 体系
    的模拟在固定温度、不同压力下进行。模拟中运用了精确描述纯组分汽液平衡性
    质的位能模型,对于在混合物中具有重要作用的水采用了 MSPC/E 模型而气体则
    用最简单的 LJ 势能模型。气体分子与水分子之间的相互作用使用不带任何可调
    二元参数的 Lorentz-Berthelot 组合规则。模拟得到了混合物的结构性质和平衡性
    质。通过与已有实验数据的比较发现:模拟得到的气体在液相中的溶解度虽然仅
    在数量级上是可靠的但是却有与实验数据一致的趋势;对于 N2-H2O 体系的气相
    性质,模拟结果与实验值吻合很好;对于氧气中的水含量,模拟值大于用模型计
    算的结果是由于 O2-H2O 体系模拟的温度为 560.93K,已经接近 MSPC/E 水的临
     I
    
    
    摘 要
    界温度。所以,只有精确预测相同温度和压力下混合物中各纯组分的汽液平衡性
    质,用 GEMC 模拟混合物的平衡性质才可以得到较好的结果,达到定量的标准。
    通过分析混合物体系的径向分布函数可知:高压下,温度对于流体结构性质的影
    响较明显;而在高温下,压力的作用可以忽略。
Monte Carlo simulation technique is a modern method in chemical
    thermodynamics. Recently, with the increase of the cost of experiments, more and
    more researchers focus their interests on the technology of computer simulation. On
    the brief review of the origin, principle and development of Monte Carlo techniques,
    we discussed the advantages and disadvantages, scopes of application of different MC
    methods for determination of phase equilibrium and the involved ensemble. Gibbs
    ensemble Monte Carlo method based on simultaneous calculations in two regions
    representing equilibrium phases is now commonly used for obtaining phase
    equilibrium of fluids because of its simplicity and speed. The vapor-liquid equilibrium
    of Lennard-Jones model fluid, real gas represented by simple LJ model such as
    oxygen and nitrogen and water were investigated by NVT-GEMC; while coexistence
    properties of highly non-ideal hydrogen bonding mixtures: nitrogen-water and
    oxygen-water were calculated by NPT-GEMC. The main contents of this dissertation
    are as follow:
    Vapor-liquid phase equilibrium of the Lennard-Jones model fluid was simulated
    by NVT-GEMC. Meantime, we discussed the effect of the initial conditions on the
    coexistence property. The results showed that the coexistence property itself was not
    influenced by these initial conditions. However, in view of the computational time,
    less number of molecules but should be enough to represent each phase were much
    better.
    The method was also applied to the calculation of the coexistence envelope for
    non-polar nitrogen and oxygen from the vicinity of the triple point to close to the
    critical point. Good overall agreement with experimental data and previously
    available literature results was obtained.
    From the research for MSPC/E water, the deviation between simulated results
    and experimental data increased obviously when temperature was higher than 550K.
    NPT-GEMC simulations were used to calculate gas-liquid equilibrium of highly
    non-ideal hydrogen bonding mixtures: nitrogen-water and oxygen-water.
    Nitrogen-water simulations were performed from 323K to 503K at a fixed pressure;
    oxygen-water simulations were performed from 105bar to 173bar at a fixed
    temperature. The effective intermolecular potential models that describe accurately
     i
    
    
    ABSTRACT
    the pure component (for water: MSPC/E; for nitrogen and oxygen; LJ) phase
    equilibrium were applied. The interactions between gas and water were estimated
    with the standard Lorentz-Berthelot combining rules without any adjustable binary
    parameter. Simulated results were compared to experimental data. Predicted
    properties in gas phase of nitrogen-water agreed well with experimental data.
    Simulated liquid composition of coexisting phases showed the same trend as the
    experimental data. For water content in gas phase for oxygen-water, the simulated
    results were larger than the calculated value from a semi-empirical method because the
    simulation was done at 560.93K which was in the vicinity of MSPC/E water critical point
    602K. It showed that only the vapor-liquid equilibrium of pure components at the same
    temperature and pressure was predicted accurately, good results could be got in the simulation
    for mixture. Meanwhile, from the radial distribution functions of mixtures, the effect of
    temperature on the structure of liquids was obvious while the effect of pressure could
    be negligible in the investigated range of state.
    GEMC method was a good tool to predict the phase behaviour of fluid and their mixtures
    not only in quality but also in quantity.
引文
1 A. Z. Panagiotopoulos. Direct determination of phase coexistence properties of
    fluids by Monte Carlo simulation in a new ensemble. Mol Phys. 1987,61(4):
    813-826
    2 施云海. 高压相平衡热力学和格子模型分子热力学的研究:【博士论文】. 中
    国: 华东理工大学, 1994
    3 M. Rogalski, S. Malanowski. Ebulliometers modified for the accurate
    determination of vapor-liquid equilibrium. Fluid Phase Equilib. 1980,5(1-2):
    97-112
    4 S. Malanowski. Experimental methods for vapor-liquid equilibria. Part I.
    circulation methods. Fluid Phase Equilib. 1982,8(2): 197-219
    5 M. Rogalski, K. Rybakiewicz, S. Malanowski. Rapid and accurate method for
    determination of vapor-liquid equilibrium. Ber Bunsen Phys Chem. 1977,81(10):
    1070-1073
    6 R. E. Fornari, P. Alessi, I. KiKic. High pressure fluid phase equilibria:
    experimental methods and systems investigated (1978–1987). Fluid Phase
    Equilib. 1990,57(1-2): 1-33
    7 韩世钧等译, 斯坦利 M. 瓦拉斯著. 化工相平衡. 中国: 中国石化出版社,
    1991
    8 J. O. Hirschfelder, C. F. Curtis, R. B. Bird. Molecular thoery of gases and liquids.
    New York: John Wiley &Sons, 1954
    9 S. J. Han, H. M. Lin, K. C. Chao. Vapor-liquid equilibrium of molecular fluid
    mixtures by equation of state. Chem Eng Sci. 1988,43(9): 2327-2367
    10 J. J. Martin, Y. C. Hou. Development of an equation of state for gases. AICHE J.
    1955,1(2): 142-151
    11 黄畇等译, L.E.雷克著. 统计物理现代教程. 中国: 北京大学出版社, 1985
    12 B. Widom. Some topics in theory of fluids. J Chem Phys. 1963,39(11):
    2808-2812
    13 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al. Equation of state
    calculations by fast computing machines. J Chem Phys. 1953,21(6): 1087-1092
    14 N. Metropolis. The beginning of the Monte Carlo method. Los Alamos Science.
    1987,12: 125-130
    15 K. Binder. Monte Carlo Method in Statistical Physics. Berlin: Springer-Verlag,
    1984
    16 M. Creutz. Microcanonical Monte Carlo simulation. Phys Rev Lett. 1983,19(50):
    1411-1414
    17 W. W. Wood. Monte Carlo calculations for hard disks in the isothermal-isobaric
     51
    
    
    参考文献
    ensemble. J Chem Phys. 1968,48(1): 415-434
    18 I. R. McDonald. NpT-ensemble Monte Carlo calculations for binary liquid
    mixtures. Mol Phys. 1972,23(1): 41-58
    19 M. Parrinello, A. Rahman. Crystal structure and pair potentials: A
    molecular-dynamics study. Phys Rev Lett. 1980,45(14): 1196-1199
    20 M. Parrinello, A. Rahman. Polymorphic transitions in single crystals: A new
    molecular dynamics method. J Appl Phys. 1981,52(12): 7182-7190
    21 G. E. Norman, V. S. Filinov. Investigation of phase transitions by a Monte-Carlo
    method. High Temp (USSR). 1969,7(2): 216-222
    22 D. J. Adams. Chemical potential of hard-sphere fluids by Monte-Carlo methods.
    Mol Phys. 1974,28(5): 1241-1252
    23 D. J. Adams. Grand canonical ensemble Monte-Carlo for a Lennard-Jones fluid.
    Mol Phys. 1975,29(1): 307-311
    24 D. J. Adams. Calculating low-temperature vapor line by Monte-Carlo. Mol Phys.
    1976,32(3): 647-657
    25 D. J. Adams. Calculating the high-temperature vapor line by Monte-Carlo. Mol
    Phys. 1979,37(1): 211-221
    26 L. A. Rowley, D. Nicholson, N. G. Parsonage. Monte-Carlo grand canonical
    ensemble calculation in a gas-liquid transition region for 12-6 argon. J Comput
    Phys. 1975,17(4): 401-414
    27 J. Yao, R. A. Greenkorn, K. C. Chao. Monte-Carlo simulation of the grand
    canonical ensemble. Mol Phys. 1982,46(3): 587-594
    28 M. Mezei. A cavity-biased (T, V, μ) Monte-Carlo method for the computer
    simulation of fluids. Mol Phys. 1980,40(4): 901-906
    29 J. P. Valleau, L. K. Cohen. Primitive model electrolytes. I. Grand canonical
    Monte Carlo computations. J Chem Phys. 1980,72(11): 5935-5941
    30 W. van Megen, I. K. Snook. The grand canonical ensemble Monte Carlo method
    applied to the electrical double layer. J Chem Phys. 1980,73(9): 4656-4662
    31 D. C. Wallace. Thermodynamic theory of stressed crystals and higher-order
    elastic constants. In: H. Ehrenreich, F. Seitz, D. Turnbull. Solid State Physics:
    advances in research and applications. Academic Press, New York, 1970.
    301-404
    32 J. S. Rowlinson, B. Widom. Molecular theory of capillarity, Ch. 6 , Oxford:
    Clarendon Press, 1982
    33 K. E. Gubbins, A. Z. Panagiotopoulos. Molecular simulation. Chem Eng Prog.
    1989,85(2): 23-27
    34 Q. L. Yan, H. L. Liu, Y. Hu. Simulation of phase equilibria for lattice polymers.
    Macromolecules. 1996,29(11): 4066-4071
    35 W. G. Madden, A. I. Pesci, K. F. Freed. Phase equilibria of lattice polymer and
    solvent: tests of theories against simulations. Macromolecules. 1990,23(4):
    1181-1191
     52
    
    
    南京工业大学硕士学位论文
    36 A. D. Mackie, A. Z. Panagiotopoulos. Monte Carlo simulations of phase
    equilibria for a lattice homopolymer model. J Chem Phys. 1995,102(2):
    1014-1023
    37 A. D. Mackie, K. Onur, A. Z. Panagiotopoulos. Phase equilibria of a lattice
    model for an oil–water–amphiphile mixture. J Chem Phys. 1996,104(10):
    3718-3725
    38 A. Z. Panagiotopoulos, N. Quirke, M. Stapleton, et al. Phase equilibria by
    simulation in the Gibbs ensemble: alternative derivation, generalization and
    application to mixture and membrane equilibria. Mol Phys. 1988,63(4): 527-545
    39 W. J. Gibbs. Transactions of the connecticut academy. Vol. 3, 1875; Reprinted in
    1961, The Scientific Papers of J. Willard Gibbs(Dover).65
    40 A. Z. Panagiotopoulos. Adsorption and capillary condensation of fluids in
    cylindrical pores by Monte-Carlo simulation in the Gibbs ensemble. Mol Phys.
    1987,62(3): 701-719
    41 J. N. C. Lopes, D. J. Tildesley. Multiphase equilibria using the Gibbs ensemble
    Monte Carlo method. Mol Phys. 1997,92(2): 187-195
    42 T. Kristof, J. Liszi. Application of a new Gibbs ensemble Monte Carlo method
    to site-site interaction model fluids. Mol Phys. 1997,90(6): 1031-1034
    43 T. Kristof, J. Liszi. Alternative Gibbs ensemble Monte Carlo implementations:
    application in mixtures. Mol Phys. 1998,94(3): 519-525
    44 B. Smit, P. de Smedt, D. Frenkel. Computer simulations in the Gibbs ensemble.
    Mol Phys. 1989, 68 (4): 931-950
    45 J. S. Rowlinson, F. L. Swinton. Liquids and Liquid Mixtures. 3rd edn. London:
    Butterworth, 1982
    46 D. A. Kofke, E. D. Glandt. Monte-Carlo simulation of multicomponent
    equilibira in a semigrand canonical ensemble. Mol Phys. 1988,64(6): 1105-1131
    47 J. K. Johnson, A. Z. Panagiotopoulos, K. E. Gubbins. Reactive canonical Monte
    Carlo- A new simulation technique for reacting of associating fluids. Mol Phys.
    1994,81(3): 717-733
    48 W. R. Smith, B. Triska. The reaction ensemble method for the computer
    simulation of chemical and phase equilibria. 1. Theory and basic examples. J
    Chem Phys. 1994,100(4): 3019-3027
    49 D. Moller, J. Fischer. Vapor-liquid-equilibrium of a pure fluid from test particle
    method in combination with NPT molecular-dynamics simulations. Mol Phys.
    1990,69(3): 463-473
    50 A. Lotfi, J. Vrabec, J. Fischer. Vapor-liquid-equilibria of the Lennard-Jones fluid
    from the NPT plus test particle method. Mol Phys. 1992,76(6): 1319-1333
    51 P. M. Agrawal, B. M. Rice, D. C. Sorescu, et al. A model for predicting the
    solubility of 1,3,5-trinitro-1,3,5-s-triazine (RDX) in supercritical CO2 :
    isothermal–isobaric Monte Carlo simulations. Fluid Phase Equilib. 1999,155(2):
    177–191
    52 P. M. Agrawal, B. M. Rice, D. C. Sorescu, et al. Models for predicting
     53
    
    
    参考文献
    solubilities of 2,4,6-trinitrotoluene (TNT) and 1,3,5-trinitro-1,3,5-s-triazine
    (RDX) in supercritical CO2: isothermal–isobaric Monte Carlo simulations. Fluid
    Phase Equilib. 2001,187–188: 139–153
    53 P. M. Agrawal, B. M. Rice, D. C. Sorescu, et al. NPT-MC simulations of
    enhanced solubility of RDX in polar-modified supercritical CO2. Fluid Phase
    Equilib. 1999,166(1): 1–19
    54 R. P. Bonifacio, A. A. H. Padua, M. F. C. Gomes. Perfluoroalkanes in water:
    experimental henry’s law coefficients for hexafluoroethane and computer
    simulations for tetrafluoromethane and hexafluoroethane. J Phys Chem B. 2001,
    105(35): 8403-8409
    55 D. Boda, J. Liszi, I. Szalai. An extension of the NpT plus test particle method for
    the determination of the vapour-liquid equilibria of pure fluids. Chem Phys Lett.
    1995, 235(1-2): 140-145
    56 J. Vrabec, J. Fischer. Vapor-liquid-equilibria of mixtures from the NPT plus test
    particle method. Mol Phys. 1995,85(4): 781-792
    57 J. Vrabec, A. Lofti, J. Fischer. Vapor-liquid-equilibria of lennard-jones model
    mixtures from the NpT plus test particle method. Fluid Phase Equilib. 1995,
    112(2): 173-197
    58 D. A. Kofke. Gibbs-Duhem integration-A new method for direct evaluation of
    phase coexistence by molecular simulation. Mol Phys. 1993,78(6): 1331-1336
    59 D. A. Kofke. Direct evaluation of phase coexistence by molecular simulation via
    integration along the saturation line. J Chem Phys. 1993,98(5): 4149-4162
    60 A. R. Agrawal, D. A. Kofke. Solid-fluid coexistence for inverse power potentials.
    Phys Rev Lett. 1995,74(1): 122-125
    61 R. Agrawal, M. Mehta, D. A. Kofke. Efficient evaluation of 3-phase coexistence
    lines. Int J Thermophys. 1994,15(6): 1073-1083
    62 M. Mehta, D. A. Kofke. Coexistence diagrams of mixtures by molecular
    simulation. Chem Eng Sci. 1994,49(16): 2633-2645
    63 E. J. Meijer, F. El Azhar. Novel procedure to determine coexistence lines by
    computer simulation. Application to hard-core Yukawa model for
    charge-stabilized colloids. J Chem Phys. 1997,106(11): 4678-4683
    64 M. Mehta, D. A. Kofke. Molecular simulation in a pseudo grand-canonical
    ensemble. Mol Phys. 1995,86(1): 139-147
    65 S. K. Kumar, I. Szleifer, A. Z. Panagiotopoulos. Determination of the
    chemical-potentials of polymeric systems from Monte-Carlo simulations. Phys
    Rev Lett. 1991,66(22): 2935-2938
    66 T. Spyriouni, I. G. Economou, D. N. Theodorou. Phase equilibria of mixtures
    containing chain molecules predicted through a novel simulation scheme. Phys
    Rev Lett. 1998,80(20): 4466-4469
    67 P. J. Camp, M. P. Allen. Phase coexistence in a pseudo Gibbs ensemble. Mol
    Phys. 1996,88(6): 1459-1469
    68 F. A. Escobedo, J. J. de Pablo. Pseudo-ensemble simulations and Gibbs-Duhem
     54
    
    
    南京工业大学硕士学位论文
    integrations for polymers. J Chem Phys. 1997,106(7): 2911-2923
    69 F. A. Escobedo. Novel pseudoensembles for simulation of multicomponent
    phase equilibria. J Chem Phys. 1998,108(21): 8761-8772
    70 F. A. Escobedo. Tracing coexistence lines in multicomponent fluid mixtures by
    molecular simulation. J Chem Phys. 1999,110(24): 11999-12010
    71 M. N. Rosenbluth, A. W. Rosenbluth. Monte-Carlo calculation of the average
    extension of molecular chains. J Chem Phys. 1955,23(2): 356-359
    72 J. Batoulis, K. Kremer. Statistical properties of biased sampling methods for
    long polymer chains. J Phys A-Math Gen. 1988,21(1): 127-146
    73 W. W. Wood, F. R. Parker. Monte Carlo Equation of State of Molecular
    Interactions with Lennard-Jones potential. 1. Supercritical isotherm at about
    twice the critical temperature. J Chem Phys. 1957,27(3): 720-733
    74 L. Verlet. Computer “experiments” on classic fluids. I. Thermodynamical
    properties of Lennard-Jones molecules. Phys Rev. 1967,159(1): 98-103
    75 J. P. Hansen, L. Verlet. Phase Transitions of the Lennard-Jones System. Phys
    Rev. 1969,184(1): 151-161
    76 M. P. Allen, D. J. Tildesley. Computer simulation of liquids. Oxford: Clarendon
    Press, 1987
    77 IUPAC, volume 6, table 4, 230-232
    78 P. Baranello, U. Cornell. Personal communication, 1997
    79 N. B. Vargaftik. Handbook of physical properties of liquids and gases. second
    edition, chapter 6. Washington: Hemishphere Publishing Corp, 1975
    80 J. R. Errington, G. C. Boulougouris, I. G. Economou, et al. Molecular simulation
    of phase equilibria for water-methane and water-ethane mixtures. J Phys Chem
    B. 1998,102(22): 8865-8873
    81 J. Vorholz, V. I. Harismiadis, B. Rumpf, et al. Vapor plus liquid equilibrium of
    water, carbon dioxide, and the binary system, water plus carbon dioxide, from
    molecular simulation. Fluid Phase Equilib. 2000,170(2): 203-234
    82 R.W. Hyland, A. Wexler. Formulations for the thermodynamic properties of dry
    air from 173.15 K to 473.15 K, and of saturated moist air from 173.15K to
    372.15K, at pressures to 5MPa. ASHRAE Trans. 1983,89: 520-525
    83 R. W. Hyland, A. Wexler. Enhancement of water vapor in carbon dioxide – free
    air at 30, 40, and 50 °C. J Res NBS A Phys Ch A. 1973,77(1): 115-131
    84 K. D. Luks, P. D. Fitzgibbon, J. T. Banchero. Correlation of the equilibrium
    moisture content of air and of the mixture of oxygen and nitrogen for
    temperatures in the range of 230 to 600 K at pressures up to 200 atm. Ind Eng
    Chem Proc DD. 1976,15(2): 326-332
    85 N. Agren. Advanced gas turbine cycles with water-air mixtures as working fluid:
    【 dissertation 】 . Stockholm: Department of Chemical Engineering and
    Technology, Energy Processes, Royal Institute of Technology, 2000
     55
    
    
    参考文献
    86 X. Y. Ji, X. H. Lu, J. Y. Yan. Survey of experimental data and assessment of
    calculation methods of properties for the air–water mixture. Appl Therm Eng.
    2003,23(17): 2213-2228
    87 J. B. Goodman, N. W. Krase. Solubility of nitrogen in water at high pressures
    and temperatures. Ind Eng Chem. 1931,23(4): 401-404
    88 T. J. Webster. The effect on water vapor pressure of superimposed air pressure.
    Chem Ind-London. 1950(16): 303-309
    89 E. Douglas. Solubilities of oxygen, argon and nitrogen in distilled water. J Phys
    Chem. 1964,68(1): 169-174
    90 M. Rigby, J. M. Prausnitz. Solubility of water in compressed nitrogen, argon and
    Methane. J Phys Chem. 1968,72(1): 330-334
    91 C. N. Murray, T. R. S. Wilson. Solubility of gases in distilled water and sea
    water. I. Nitrogen. Deep-Sea Res. 1969,16(3): 297-310
    92 T. D. Osulliva, N. O. Smith. Solubility and partial molar volume of nitrogen and
    methane in water and in aqueous sodium chloride from 50 to 125 °C and 100 to
    600 atm. J Phys Chem. 1970,74(7): 1460-1466
    93 P. Richards, C. J. Wormald, T. K. Yerlett. The excess enthalpy of (water +
    nitrogen) vapor and (water + n-heptane) vapor. J Chem Thermodyn. 1981,13(7):
    623-628
    94 N. B. Vargaftik. Handbook of physical properties of liquid and gases – pure
    substances and mixtures. Washington: Hemisphere Publishing Corp, 1983
    95 M. L. Japas, E. U. Franck. High-pressure phase-equilibria and PVT-data of the
    water-nitrogen system to 673 K and 250 MPa. Ber Bunsen Phys Chem.
    1985,89(7): 793-800
    96 J. Alvarez, R. Crovetto, R. Fernandezprini. The dissolution of N2 and of H2 in
    water from room temperature to 640 K. Ber Bunsen Phys Chem. 1988,92(8):
    935-940
    97 A. W. Saddington, N. W. Krase. Vapor-liquid equilibria in the system
    nitrogen-water. J Am Chem Soc. 1934,56(2): 353-361
    98 I. M. Abdulagatov, A. R. Bazaev, A. E. Ramazanova. PVTx measurements of
    aqueous mixtures at supercritical conditions. Int J Thermophys. 1993,14(2):
    231-250
    99 E. F. Stephan, N. S. Hatfield, R. S. Peoples, et al. The solubility of gases in
    water and in aqueous uranyl solutions at elevated temperature and pressure.
    Columbus : Battelle Mem. Inst. OH, 1067
    100 H. A. Pray, C. E. Schweickert, B. H. Minnich. Solubility of hydrogen, oxygen,
    nitrogen, and helium in water at elevated temperature. Ind Eng Chem.
    1952,44(5): 1146-1151
    101 C. E. Klots, B. B. Benson. Isotope effect in solution of oxygen and nitrogen in
    distilled water. J Chem Phys. 1963,38(4): 890-892
    102 C. E. Klots, B. B Benson. Solubilities of nitrogen, oxygen, and argon in distilled
    water. J Mar Res. 1963b,21(1): 48-57
     56
    
    
    南京工业大学硕士学位论文
    103 H. A. C. Montgomery, N. S. Thom, A. Cockburn. Determination of dissolved
    oxygen by winkler method and solubility of oxygen in pure water and sea water.
    J Appl Chem-USSR. 1964,14(7): 280-296
    104 C. N. Murray, J. P. Riley. Solubility of gas in distilled water and sea water. 2.
    Oxygen. Deep-Sea Res. 1969,16(3): 311-320
    105 B. B. Benson, D. Krause, M. A. Peterson. Solubility and isotopic fractionation
    of gases in dilute aqueous solution. 1. Oxygen. J Solution Chem. 1979,8(9):
    655-690
    106 S. D. Cramer. Solubility of oxygen in brines from 0 to 300 °C. Ind Eng Chem
    Proc DD. 1980,19(2): 300-305
    107 M. L. Japas, E. U. Franck. High-pressure phase-equilibria and PVT-data of the
    water-oxygen system including water-air to 673 K and 250 MPa. Ber Bunsen
    Phys Chem. 1985,89(12): 1268-1275
    108 R. G. Wylie, R. S. Fisher. Molecular Interaction of water vapor and air. J Chem
    Eng Data. 1996,41(1): 133-142
    109 T. R. Rettich, R. Battino, E. Wilhelm. Solubility of gases in liquids. 22.
    High-precision determination of Henry’s law constants of oxygen in liquid water
    from T=274 K to T=328 K. J Chem Thermodyn. 2000,32(9): 1145-1156
    110 R. Battino. Nitrogen and air. IUPAC Solubility Data Series 10. Oxford:
    Pergamon press, 1982
    111 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al. Intermolecular
    Forces. Dordrecht: Reidel, 1981. 331–342
    112 H. J. C. Berendsen, J. R. Grigera, T. P. Straatsma. The missing term in effective
    pair potentials. J Phys Chem. 1987,91(24): 6269-6271
    113 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al. Comparison of simple
    potential functions for simulating liquid water. J Chem Phys.1983,79(2):
    926-935
    114 W. L. Jorgensen, J. D. Madura. Temperature and size dependence for
    Monte-Carlo simulations of TIP4P watar. Mol Phys. 1985,56(6): 1381-1392
    115 M. W. Mahoney, W. L. Jorgensen. A five-site model for liquid water and the
    reproduction of the density anomaly by rigid, nonpolarizable potential functions.
    J Chem Phys. 2000,112(20): 8910-8922
    116 O. Matsuoka, E. Clementi, M. Yoshimine. CL study of water dimer potential
    surface. J Chem Phys. 1976,64(4): 1351-1361
    117 D. van der Spoel, P. J. van Maaren, H. J. C. Berendsen. A systematic study of
    water models for molecular simulation: Derivation of water models optimized
    for use with a reaction field. J Chem Phys. 1998,108(24): 10220-10230
    118 金文正, 汪文川. Monte Carlo NPT系综法模拟考察几种水模型. 物理化学学
    报. 1999,15(9): 799-804
    119 T. I. Mizan, P. E. Savage, R. M. Ziff. Molecular-dynamics of supercritical water
    using a flexible SPC model. J Phys Chem. 1994,98(49): 13067-13076
     57
    
    
    参考文献
    120 G. C. Boulougouris, I. G. Economou, D. N. Theodorou. Engineering a molecular
    model for water phase equilibrium over a wide temperature range. J Phys Chem
    B. 1998,102(6): 1029-1035
    121 M. G. Martin, J. I. Siepmann. Transferable potentials for phase equilibria. 1.
    United-atom description of n-alkanes. J Phys Chem. 1998,102(14): 2569-2577
    122 ASME Steam Tables, 5th ed. New York : American Society of Mechanical
    Engineers, 1983
    123 A. Danneil, K. Toedheide, E. U. Franck. Vaporisation equilibra and critical
    curves for systems ethane/water and n-butane/water at high pressures.
    Chem-Ing-Tech. 1967,39 (13): 816-831
    124 丁皓, 吉晓燕, 秦建华等人. 高温高压下饱和湿空气焓与湿度的预测.化工
    学报. 2002,53(8): 879-882
    125 P. Ahlstrom, A. Wallqvist, S. Engstrom, et al. A molecular-dynamics study of
    polarizable water. Mol Phys. 1989,68(3): 563-581
    126 J. Caldwell, L. X. Dang, P. A. Kollman. Implementation of nonadditive
    intermolecular potentials by use of molecular-dynamics: development of a
    water-water potential and water-ion cluster interactions. J Am Chem Soc.
    1990,112(25): 9144-9147
    127 R. E. Kozack, P. C. Jordan. Polarizability effects in a four-charge model for
    water. J Chem Phys. 1992,96(4): 3120-3130
    128 A. Wallqvist, B. J. Berne. Effective potentials for liquid water using polarizable
    and nonpolarizable models. J Phys Chem. 1993,97(51): 13841-13851
    129 M. Medeiros, M. E. Costas. Gibbs ensemble Monte Carlo simulation of the
    properties of water with a fluctuating charges model. J Chem Phys. 1997,107(6):
    2012-2019
    130 K. Kiyohara, K. E. Gubbins, A. Z. Panagiotopoulos. Phase coexistence
    properties of polarizable water models. Mol Phys. 1998,94(5): 803-808

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700