金属镍和钯表面氢吸附动力学的Monte Carlo模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在异相催化过程中气体在过渡族金属表面的吸附是一个重要步骤,所以一直是表面科学领域的热点,无论是实验还是理论方面人们都作了大量的工作。而理论也越来越多的被证实是一个有效的研究手段。在解释吸附的微观机理,说明实验现象,以及去除实验结论的不确定性方面发挥着越来越重要的作用。吸附动力学是研究化学吸附和脱附速率以及其他各种因素对吸附的影响。对于吸附动力学的研究,有助于我们了解哪些因素影响吸附或脱附速度,以便得出机理性的反应速率方程;可以从吸附和脱附速率的基本方程出发,使我们对等温式有进一步的了解;将过渡态理论用于研究化学吸附和脱附速率,可以从分子的性质和一些基本常数来估计速率的大小,从而使我们对动力学吸附的机理有较为本质的了解。
     本文根据实验和理论关于氢在金属表面吸附的热力学性质的结果为基础,应用蒙特卡罗(Monte Carlo)方法,分别模拟巨正则系综中氢在金属镍、钯(111)和(100)表面的动力学吸附过程。根据氢在这两种金属的不同表面的吸附特性的不同,我们建立了不同的吸附动力学模型。模型中关于氢在金属表面的动力学吸附主要包括以下三个过程:氢分子的解离吸附,氢原子在金属表面的扩散以及氢分子的在结合脱附。并对模型建立过程中的一些细节对于模型计算结果的影响进行了比较和分析。应用我们提出的模型,我们分别对吸附氢原子在表面的吸附形貌、吸附等温线、附着系数、吸附速度等动力学吸附特性进行了计算和分析。
     模型对于氢原子表面吸附形貌的计算结果表明,在Ni, Pd(111)表面,氢原子主要吸附在Fcc洞位上,而在(100)表面氢原子主要吸附在四重洞位上。氢原子在Pd(111)表面吸附时具有一定的规则结构,而在其他三个表面上吸附时,均表现出无规则结构。按照理论的分析,氢在(111)和(100)表面的饱和覆盖率分别为2ML和3ML,我们的计算结果:氢在Ni(111)和(100)表面的饱和覆盖率约为0.93ML,在Pd(111)和(100)表面的饱和覆盖率分别约为0.92ML和1.40ML,这都与实验符合的较好,同时也验证的模型的正确性。对于吸附等温线的计算结果表明,压强的增大导致覆盖率的升高,而温度的升高使覆盖率降低。附着系数会随覆盖率的升高而降低,同时也引起吸附速度的降低。统计结果表明当体系达到平衡时,氢-金属系统处在动态平衡,吸附速度和脱附速度相等。
The adsorption of gas on transitional metal surfaces is an elementary step in the process of heterogeneous catalysis. Nowadays it has been one of the most important subjects in the field of surface science and numerous studies have been carried out in experiments as well as in theories. Theoretical calculation has been playing an essential role in the aspects of helping us to understand the adsorption mechanisms and explain the experimental phenomenon. Adsorption kinetics can be used to study the effect on adsorption caused by chemisorption, desorption rate and other factors.
     The research of adsorption kinetics facilitates us to find out the factors which can affect the rate of adsorption and desorption, educe the equation of reaction rate. Also it is helpful for us to have a further understanding of adsorption isotherm formula, based on the elementary function of adsorption rate and desorption rate. Furthermore, with the characters of the molecules and some fundamental constants, it can help us to well understand the essence of the mechanism of adsorption kinetics by applying the transition state theory to the research of the adsorption rate and desorption rate. According to the thermodynamic properties which given by experiments and theories, the Grand canonical Monte Carlo method is applied to simulate the adsorption kinetics of hydrogen molecule on the surface of nickel and palladium in this thesis. For the different properties of adsorption when hydrogen molecules are adsorbed on the surfaces of Pd, Ni (111) and (100), different models are presented to simulate the process of adsorption. Three processes are considered when hydrogen molecules adsorb on the surfaces of metal: dissociative adsorption of hydrogen molecules, the diffusion of hydrogen atoms, the desorption of hydrogen molecules. Surface structure of hydrogen/metal systems, equilibrium adsorption isotherms, sticking coefficient and the rates of adsorption and desorption are calculated with our models.
     The present calculations suggest that hydrogen atoms are mainly adsorbed at Fcc hollow sites on the surfaces of Ni (111) and Pd (111). However, on the surfaces of (100), hydrogen atoms are mainly adsorbed at 4-fold hollow site. Hydrogen atoms have an ordered structure when they are adsorbed on surface of Pd (111); while on other three kinds of surface, hydrogen atoms form a disordered structure. The maximum coverage of hydrogen given by our model are H/Ni (111) and H/Ni (111) 0.93ML, H/Pd (111) 0.92ML, H/Pd (111) 1.4ML, respectively. All these results agree well with experimental results, which prove that the models we propose are reasonable. The results of equilibrium adsorption isotherms suggest that the higher the temperature, the lower the coverage will be; and the higher the pressure, the higher the coverage will be. The sticking coefficient will reduce when coverage increases, reducing the adsorption rate. Statistics show that H-Metal system reaches equilibrium when the adsorption rate equals to the desorption rate.
引文
[1] Hu C H, Zhang R J, Shi L Q, Chen D M, Wang Y M, Yang K. First principles study of the alloying effect on chemical bonding characteristics of helium in La–Ni–M tritides. Materials Science and Engineering B 2005, 123: 13–19
    [2] Wu Y X, Yang R, Zheng H, Wang Y M. First-principles study of alloying effect of transition metals on He in titanium ditritide. Journal of Nuclear Materials 2006, 354: 36–48
    [3] 张晓梅,杨一昆,卢军,避光育,朱鹰. 石油化学工业中的贵金属催化剂. 贵金属,1998,19(2): 54-58
    [4] 吴越著. 催化化学.第二版, 北京:科学出版社,1998,788-1023
    [5] 汪贻水,王志雄,沈建中编著. 六十四种有色金属.第一版,长沙:中南大学出版社,1998,20-50
    [6] Xie Jianjun,Jiang Ping and Zhang Kaiming. The dissociative adsorption of H2 on Cu(100): orientation dependence and impurity effects. Journal of Physics-Condensed Matter., 1994,6(36): 7217-7226.
    [7] N?rskov J K. Effective medium potential for molecule-surface interactions: H2 on Cu and Ni surfaces. Journal of Chemical Physics, 1989, 90(12): 7461-7471
    [8] Klinke II D J, Broadbelt L J. A theoretical study of hydrogen chemisorption on Ni(111) and Co(0001) surfaces. Surface Science, 1999, 429(1-3): 169-177
    [9] Xie Jianjun, PingJiang,and Kaiming Zhang. Dynamics of H2 dissociation on Cu(100): Effecs of surface defecs. Journal of Chemical Physics, 1996, 104(24): 9994-10000.
    [10] Dino W A, Kasaiji H, Okiji A. orientational effects in dissociative/associative desorption dynamics of H2(D2) on Cu and Pd. Prog. Surface Science,2000, 63(3-5): 63-134.
    [11] Gross A and Scheffler. Steering and ro-vibrational effects on dissociative adsorption and associative desorption of H2/Pd(100). Progress in Surface Science, 1996, 53(2-4): 187-196.
    [12] Mowrey R C. Dissociative adsorption of H2 using the close-coupling wave packet method. Journal of Chemical Physics, 1993, 99(9): 7049-7055.
    [13] 许振嘉. 近代导体材料的表面科学基础. 第一版,北京:北京大学出版社,2002,45-85
    [14] 张辉, 刘士阳, 张国英. 化学吸附的量子力学绘景. 第一版. 北京:科学出版社, 2004, 152-224
    [15] Mitsui T, Rose M K, Fomin E, Ogletree D F, et al. Hydrogen adsorption and diffusion on Pd(111). Surface Science, 2003, 540(1): 5-11
    [16] Felter T E, Foiles S M, Daw M S, Stulen R H. Order-disorder transitions and subsurface occupation for hydrogen on Pd(111). Surface Science Letter, 1986, 171(1): L379-L386
    [17] Felter T E, Erik C Sowa, Van Hove M A. Location of hydrogen adsorption on Palladium (111) studied by low-energy electrotion diffraction. Physical Review B, 1989, 40(2): 891-899.
    [18] Christmann K, Ertl G, Schober O. LEED intensities from clean and hydrogen covered Ni(100) and Pd(111) surfaces. Surface Science, 1973, 40(1): 61-70
    [19] Conrad H, Ertl G, Latta E E. Adsorption of Hydrogen on Palladium Single Crystal Surfaces. Surface Science, 1974, 41(2): 435-446
    [20] Behm R J, Christmann K, Ertl G, Van Hove M A. Adsorption of CO on Pd(100). Journal of Chemical Physics, 1980, 73(6): 2984-2995
    [21] Behm R J, Christmann K, Ertl G. Adsorption of Hydrogen on Pd(100). Surface Science, 1980, 99(2): 320-340
    [22] Richter L J, Ho. W. Vibrational modes of hydrogen adsorption on Rh(100) and their relevance to desorption kinetics. Journal of Vacuum Science & Technology A-Vacuum Surfaces and Films, 1987, 5(4): 453-454
    [23] Richter L J, Ho. W Vibrational spectroscopy of H on Pt(111): Evidence for universally soft parallel modes. Physical Review B, 1987, 36(18): 9797-9800
    [24] Richter L J, Thomas Germer A, James P. Sethna, Ho. W. Electron-energy-loss spectroscopy of H adsorption on Rh(100): interpretation of overtone spectra as two-phonon bound states. Physical Review B, 1988, 38(15):10403-10420.
    [25] Moritz W, Imbihl R, Behm R J, Ertl G, et al. Adsorption geometry of hydrogen on Fe (110). Journal of Chemical Physics, 1985, 83(4): 1959-1968
    [26] Hammer L, Landskron H, Nichtl–Pecher W, Fricke A, Heinz K, Müller K. Hydrogen-induced restructuring of close-packed metal surfaces: H/Ni(111) and H/Fe(110). Physical Review B, 1993, 47(23): 15969–15972
    [27] Yang H, Whitten J L, Cremaschi P, Ab initio chemisorption studies of H on Fe(110). Surface Science, 1995, 330(3): 255-264
    [28] Rendulic K D. Sticking and desorption: a review. Surface Science, 1992, 272(1-3): 34-44
    [29] Resch Ch, Berger H F, Rendulic K D, Bertel E. Adsorption dynamics for the system hydrogen/palladium and its relation to the surface electronic structure. Surface Science Letter, 1994 316: L1105-L1109
    [30] Rendulic K D, Anger G, Winkler A. Wide range nozzle beam adsorption data for the systems H2/Nickel and H2/Pd(100). Surface Science, 1989, 208(3): 404-424
    [31] Petrova N V, Yakovkin I N, Ptushinskii Y G. Monte-Carlo simulations of hydrogen on W(110) and Mo(110) surfaces. European Physical Journal B, 2004, 38: 525-531
    [32] Sergey P. Baranov, Ludmila A. Abramova, Andrew V. Zeigarnik. Evgeny Shustorovich. Monte Carlo modeling of O2 adsorption kinetics on unreconstructed Fcc(100) surfaces of metals using UBI–QEPcoverage-dependent energetics. Surface Science, 2004, 555(1-3) 20–42
    [33] N?rskov J K. Calculated Binding Properties of Hydrogen on Nickel Surfaces. Physical Review Letter 1982, 48(23): 1620-1624
    [34] 周鲁,孙本繁, 滕礼坚, 唐向阳, 吕日昌. 氢分子在 Fe、W、Pd 和 Ni 单晶(110)表面吸附的位能面研究. 自然科学展望-国家重点实验室通讯. 1995, 5(4): 455-460.
    [35] 孙本繁,周鲁,唐向阳,滕礼坚,吕日昌.氢在钯单晶表面的解离和在体相中的扩散.催化学报 ,1995, 16(1): 81-83.
    [36] 周鲁,孙本繁,吕日昌,唐向阳,滕礼坚.镍和钯单晶面(111)上氢解离的比较研究. 催化学报 ,1994, 15(4): 321-323.
    [37] 王泽新,赫策,张积树. 氢原子在 Ni(100),Ni(111)和 Ni(110)面上吸附扩散势能面的结构. 化学学报,1993, 51(5): 417-423
    [38]张积树,张文霞,王泽新. 氢在钯低指数表面上的吸附和扩散.物理化学学报, 1996, 12(9): 773-779
    [39] Daw M S, Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Physical Review Letter, 1983, 50(17): 1285-1288.
    [40] 孙强, 谢建军, 张涛.H2 在 Ni, Pd 与 Cu 表面的解离吸附. 物理学报., 1995, 44(11): 1805-1812.
    [41] Sun Q, Xie J J, Zhang T. Chemisorption of hydrogen on stepped(410) surfaces if Ni and Cu. Surface Science, 1995, 338 (1-3):11-18
    [42] Paul J –F, Sautet P. Comparison of the nature o the hydrogen-metal bond on Pd(111) and Ni(111) by a periodic density functional method. Surface Science Letter, 1996, 356(1-2): L403-L409.
    [43] Tomanek D, Sun Z, Steven G. Louie. Ab initio calculation of chemisorption systems: H on Pd(001) and Pd(110). Physical Review B, 1991, 43(4): 4699-4713
    [44] Tomanek D, Steven G. Louie, Che-Ting chan. Ab initio calculation of coverage-dependent adsorption properties of H on Pd(001). Physical Review Letter, 1986, 57(20): 2594-2597.
    [45] Wilke S, Henning D and Lober R. Ab iniotion calculations of hydrogen adsorption on (100) surfaces of palladium and rhodium. Physical Review B, 1994, 50(4): 2548-2560
    [46] Paul J –F and Saulet P. Density-function periodic study of the adsorption of hydrogen on a Palladium(111) surface. Physical Review B, 1996, 53(12): 8015-8027.
    [47] Ledentu V, Dong W, and Aautet P, et al. H-induced reconstructions on Pd(110). Physical Review B, 1998, 57(19): 12482-12491.
    [48] Donminguez-Ariza D, Sausa C, Harrison N M, et al. Effect of the surface model on the theoretical description of the chemisorption of atomic hydrogen on Cu(001). Surface Science, 2003, 522(1-3): 185-197.
    [49] Dong W, Kresse G, Furthmüller J, Hafner J. Chemisorption of H on Pd(111): An ab initio approach with ultrasoft pseudopotentials. Physical Review B, 1996, 54(3): 2157-2166
    [50] Dong W, Hafner J. H2 dissociative adsorption on Pd(111). Physical Review B, 1997, 56(23): 15396-15403
    [51] Kresse G, Hafner J. First-principles study of the adsorption of atomic H on Ni(111), (100) and (110). Surface Science, 2000, 459(1-2): 287-302
    [52] Ledentu V, Dong W, Sautet P. Ab initio study of the dissociative adsorption of H2 on the Pd(110) surface. Surface Science, 1998, 412/413: 518-526
    [53] Feibelman P J. First-principles calculations of adatom binding and interaction on Rh(001). Physical Review B, 1991, 43(12): 9452-9458.
    [54] Feibelman P J. Orientation dependence of the hydrogen molecule’s interaction with Ph(001). Physical Review Lett, 1991, 67(4): 461-464.
    [55] Wilke S and Scheffler M. Potential-energy surface for H2 dissociation over Pd(100). Physical Review B, 1996, 53(8): 4926-4932.
    [56] Eichler A, Kresse G, and Hafner J. Quantum streeing effects in the dissociative adsorption of H2 on Rh(100). Physical Review Letter, 1996, 77(6): 1119-1122.
    [57] 格涅坚科 B B著,丁寿田译,概率论教程,人民出版社,1956
    [58] MetroPolis W, Ulam S. Monte Carlo Method. Journal of American StatisticalAssociatio, 1949, 44: 335-341
    [59] Householder A S. Monte Carlo method(Symposium). NBS, Applied Mathematic Series, 1951, 6-23
    [60] Meyer M A (Ed.). Symposium on Monte Carlo method. Wiley, 1956, 17-49
    [61] 许振嘉. 近代导体材料的表面科学基础. 第一版. 北京:北京大学出版社, 2002, 15-770
    [62] 邓景发. 催化作用原理导论. 第一版. 吉林: 吉林人民出版社,1984,98-110
    [63] Ward C A. The Rate of Gas Absorption at a Liquid Interface. Journal of Chemical Physics, 1977, 67(1): 229-235.
    [64] Ward C A, Findlay R D and Rizk M. Statistical rate theory of interfacial transport. I. Theoretical development. Journal of Chemical Physics, 1982, 76(11): 5599-5605
    [65] Panczyk T. Sticking coefficient and pressure dependence of desorption rate in the statistical rate theory approach to the kinetics of gas adsorption. Carbon monoxide adsorption/desorption rates on the polycrystalline rhodium Surface. Physical Chemistry Chemical Physics, 2006, 8(32): 3782-3795
    [66] Panczyk T. Application of the statistical rate theory to the computer simulations of adsorption kinetics. Applied Surface Science. 2004, 222 (1-4): 307–321
    [67] Paul J –F, Sautet P. Comparison of the nature of the hydrogen-metal bond on Pd(111) and Ni(111) by a periodic density functional method. Surface Science Letters, 1996, 356(1-3): L403-L409
    [68] Yang H and Jerry L. Whitten. Dissociative adsorption of H2 on Ni(111). Journal of Chemical Physics, 1992, 98(6): 5039-5049
    [69] Christmann K, Schober O, Ertl G, and Neumann M. Adsorption of hydrogen on nickel single crystal surfaces. Journal of Chemical Physics, 1974, 60(11): 4528-4540
    [70] Kresse G. Dissociation and sticking of H-2 On the Ni(111), (100), and (110) substrate. Physical Review B, 2000, 62(12):8295-8305
    [71] Panczyk T, Szabelski P, Rudzinski W. Hydrogen adsorption on nickel (100) single-crystal face. A Monte Carlo study of the equilibrium and kinetics. Journal of Physical Chemistry B, 2005, 109(21): 10986-10994
    [72] Panczyk T, Rudzinski W. A statistical rate theory approach to kinetics of dissociative gas adsorption on solids. Journal of Physical Chemistry B, 2004, 108(9): 2898-2909
    [73] Christmann K, Behm R J, Ertl G, et al. Chemisorption geometry of hydrogen onni(111) - order and disorder. Journal of Chemical Physics 1979, 70(9): 4168-4184
    [74] Nordlander P, Holloway S, N?rskov J K. Hydrogen adsorption on metal-surfaces. Surface Science, 1984, 136(1): 59-81
    [75] Angelo James E, Moody N R, Baskes M I. Trapping of hydrogen to lattice defects in nickel. Modelling and Simulation in Materials Science and Engineering, 1995, 3(3): 287-307
    [76] Baskes M I, Sha Xianwei, Angelo James E, Moody N R, Trapping of hydrogen to lattice defects in nickel. defects in nickel. Modelling and Simulation in Materials Science and Engineering, 1997, 5(6): 651-652
    [77] Lapujoulade J, Neil K S. Hydrogen adsorption on Ni (100). Surface Science, 1973, 35:288-301
    [78] Francesco F aglioni, William A. Goddard III. Energetics of hydrogen coverage on group VIII transition metal surfaces and a kinetic model for adsorption/desorption. Journal of Chemical Physics, 2005, 122: 014704-014721
    [79] Rendulic K D, Winkler A. Adsorption-isotherms obtained from thermal-desorption data for the system h2/ni(111). Journal of Chemical Physics, 1983, 79(10): 5151-5155
    [80] Christmann K. Interaction of hydrogen with solid-surfaces. Surface Science Reports, 1988, 9(1-3): 1-163
    [81] Graeme W. Watsom, Richard P K Wells, David J Willock, Graham J Hutchings. A Comparison of the Adsorption and Diffusion of Hydrogen on the (111) Surfaces of Ni, Pd, and Pt from Denstiy Functional Theory Calculations. Journal of Physical Chemistry B, 2001, 105: 4889-4894
    [82] Rieder K H, Wilsch H. Helium diffraction from Ni(100)-a study of the clean surface and of hydrogen and carbon adsorption phases. Surface Science, 1983, 131(2-3): 245-257
    [83] Guvenc Z B, Guvenc D. Hydrogen recombination on a mixed adsorption layer at saturation on a metal surface: H ->(D+H)(sat)+Ni(100). Surface Science, 2003, 529 (1-2): 11-22
    [84] Kammler T, Wehner S, Kuppers J. Interaction of thermalh-atoms with Ni(100)-H surface-through surface penetration and adsorbed hydrogen abstraction. Surface Science, 1995, 339 (1-2): 125-134
    [85] Kammler T, Lee J, Kuppers J. A kinetic study of the interaction of gaseous H(D) atoms with D(H) adsorbed on Ni(100) surfaces. Journal of Chemical Physics, 1997, 106(17): 7362-7371
    [86] Eilmsteiner G, Walkner W, Winkler A. Reaction kinetics of atomic hydrogen with deuterium on Ni(110). Surface Science, 1996, 352: 263-267
    [87] Winkler A. Interaction of atomic hydrogen with metal surfaces. Applied Physics A-Meterials Science & Processing, 1998, 67 (6): 637-644
    [88] Premm H, Polzl H, Winkler A. Dynamics and kinetics of subsurface absorption and desorption for the system hydrogen (deuterium)-Ni(111). Surface Science, 1998, 401 (3): L444-L451
    [89] Nobuhara K, Kasai H, Nakanishi H, Okiji A. Coverage dependence of hydrogen absorption into Pd(111). Journal of Applied Physics, 2002, 92(10): 5704-5706
    [90] L?vvik O M, Olsen R A. Adsorption energies and ordered structures of hydrogen on Pd.111. from density-functional periodic calculations. Phys. Rev. B, 1998, 58(16): 10890-10898
    [91] Wen M, Xu XJ, Fukuyama S, Yokogawa K. Embedded-atom-method functions for the body-centered-cubic iron and hydrogen. J. Mater. Res., 2001, 16(12):3496-3502
    [92] Reuter K, and Scheffler M. First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: Application to the CO oxidation at RuO2(110). Physical Review B, 2006, 73(4):045433
    [93] Greeley J and Mavrikakis M. Surface and subsurface hydrogen: Adsorption properties on transition metals and near-surface alloys. J. Phys. Chem. B, 2005, 09(8):3460-3471
    [94] Wilke S, Scheffler M. Poisoning of Pd(100) for the dissociation of H2: a theoretical study of co-adsorption of hydrogen and sulphur. Surf. Sci. Lett. 1995, 329(1-2): L605-L610
    [95] Papai I, Sslahub D R, Mijoule C. An LCGTO-MCP-LSD study of the (2×1) H-covered Pd(110) surface. Surf. Sci. 1990, 236(3): 241-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700