基于分子模拟的油纸绝缘老化机理及气体扩散行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变压器油纸绝缘的老化是一个非常复杂的物理和化学变化过程,它不仅涉及电场应力的作用,而且还涉及热应力、机械应力等其它环境应力的作用。近年来,国内外学者开始选择老化过程中的物理化学变化作为重点研究对象,并试图从微观角度揭示油纸绝缘材料的结构与性质的关系,解释油纸绝缘微观结构和宏观性质的联系。九十年代初,随着高科技学科的飞速进步,分子模拟作为一种完全独立而新颖的研究手段,在材料科学领域的应用进入一个新的阶段。分子模拟技术是用计算机基于原子水平的分子模型来模拟分子的结构与行为,它除了能获得准确的物性数据外,还可以对各种复杂现象的机理有更深刻的了解,分子模拟被认为是实现这一目标的关键技术之一。
     本文以分子动力学为主,结合计算量子化学,对分子模拟在变压器油纸绝缘老化机理和气体扩散行为方面的应用进行了相关研究。
     首先,建立了绝缘纸纤维素分子模型,模拟计算了绝缘纸纤维素分子LUMO-HOMO能隙随直流电场强度的变化,得出了纤维素分子可能发生绝缘击穿的场强;利用分子动力学方法,分析了在一定外界环境下(温度、电场)纤维素分子断链过程,发现纤维素分子最先在薄弱的苷键位置上进行断链。将动力学模拟结果与绝缘纸老化前后原子力显微镜观测结果比较,证明了实际中纤维素的电热老化会破坏其葡萄糖单体的环状结构,并产生一些活性基团;对比分析绝缘纸纤维素红外光谱的分子模拟结果与实测值,确定了纤维素分子振动特征基团部位,提出了可以利用特征基团来分析纤维素的降解机理。
     然后,通过分子模拟石蜡基油裂解可能性分析,确定了石蜡基油裂解温度,并分析了温度对石蜡基油热裂解反应速率的影响,拟合计算了裂解反应的活化能。研究表明,石蜡基油热裂解反应速率随温度的升高而加快,具有一级反应的明显特征。此外,从分子动力学出发分析了油中溶解气体产生机理及过程。结果显示,高温加速分子运动是造成分子裂解的主要原因,而电场力会沿电场作用方向对分子链起到巨大的拉伸作用,促进分子的裂解。在油裂解过程中都有甲基、次甲基、含氧基、烃类等自由基产生,并含有大量的碳正离子和氢负离子。这些极不稳定的中间体经过重排、键的断裂、氢的转移等步骤形成稳定的小分子烃类气体。
     最后,利用分子动力学法,采用COMPASS力场,计算了7种小分子在石蜡基油、纸体系中的自扩散系数,并模拟了温度对油、纸绝缘中二氧化碳分子自扩散性的影响。提出了利用自由体积理论来描述油中气体扩散传质现象,自由体积理论对于理解小分子气体在油绝缘中的扩散行为具有重要意义。
     通过本论文的研究,增进了对油纸绝缘微观老化机理和气体扩散现象本质的了解,同时也进一步丰富了分子动力学的研究手段,拓宽了其应用领域,为将来分子动力学方法在高电压绝缘材料领域的广泛使用提供了有力的支持。
The transformer oil-paper insulation is a complicated physical and chemical change process. It not only involves the action of electric field stress, but also the action of other environmental stresses such as hot stress and mechanical stress. In recent years, the domestic and international scholars have begun to regard physical and chemical changes in the aging course as the key research object. They attempt to expose the relationship between structure and property of the oil-paper insulating materials from microcosmic perspective to explain the connection between micro-structure and macro-properties of oil-paper. At the beginning of the 1990s, with the quick development of Hi-Tech, as a kind of totally independent and novel research means, the application of molecular simulation in material science enters a new stage. Molecular simulation is a kind of technology using computer to imitate the molecular structure and behavior based on molecular model of atom level, besides being able to get the accurate property data, it is can also used to get a deeper understanding to the mechanism of various complicated phenomena. Molecular simulation is considered one of the most promising solutions to realize this goal.
     The molecular dynamics and computational quantum chemistry are used to research the aging mechanism of transformer oil-paper insulation and the application of gas diffusion behavior in this paper.
     Firstly, the model of cellulose molecule is built up, the LUMO-HOMO energy gap changing with the direct electric fields is calculated simultaneity. The possible breakdown field of cellulose molecule is educed. The chain scission process of cellulose molecule under certain external environment such as temperature and electric field is analyzed. And we found that chain fracture of cellulose molecule occurs in the weakest glycosidic linkage. The comparison of the dynamics simulated result and atomic force microscopy observation before and after ageing proves that the electrical-heating aging can destroy the cyclic structure of glucose actually and it can produce some active groups. Through comparing and analyzing the molecular simulation result and surveying value of the infrared spectroscopy of cellulose, the vibration characteristic group's position can be confirmed. The degradation mechanism which can be analyzed by active groups is put forward.
     Then, the crack probability analysis of paraffin base oil is given by molecular simulation. The cracked temperature of paraffin base oil is established and the impact of temperature on hot cracked reaction rate of paraffin oil is analyzed. Besides, the activation energy of cracking reaction is calculated. The result indicates that the hot cracked reaction rate of paraffin base oil quickens with the increasing of temperature. In addition, the generation mechanism of gas dissolve in oil and its course are analyzed from molecular dynamics. The result reveals that high temperature quickening molecular motion speed is the reason of molecular splitting. And electric field stress plays a enormous tension effect on molecular chain along electric field function, which promote the cleavage of the molecule. There are a lot of free radicals such as carbonyl, methane and Hydrocarbons engendered in the progress of oil cracking. These unstable intermediates form the steady light molecule hydrocarbon gases through a sequence of steps such as gas reset, cleavage, as well as hydrogen transformation.
     Finally, the self-diffusion coefficients of paraffin base oil and paper system are calculated by molecular dynamics under COMPASS force field. The effect of temperature on carbon dioxide in oil insulation and paper insulation is simulated. Using free volume theory to describe the diffuse phenomenon of gas in the oil is proposed. The free volume theory has a significant sense to understand the diffusion behavior of small molecule gas in the oil.
     Our understanding of micro aging mechanism of oil-paper insulation and the essential of gas diffusion phenomenon are enhanced through the research of this thesis, and the research means of molecular dynamics and its application are widened at the same time. And it has offered a strong support for mass use of molecular dynamics method in the field of high voltage insulating material.
引文
[1] 杨永江. 从我国经济发展阶段看电力需求[N]. 中国电力报, 2005-07-12(005)
    [2] 王梦云. 2000~2001 年全国超高压变压器、电流互感器事故和障碍统计分析[J]. 电力设备, 2002, Vol.3, No.4: 1-6.
    [3] 徐文. 电力变压器故障诊断技术研究[D]. 南京, 东南大学, 1997.
    [4] 朱德恒, 谈克雄. 电绝缘诊断技术[M]. 北京, 中国电力出版社, 1999.4
    [5] 速水敏幸. 电力设备的绝缘诊断[M]. 北京, 科学出版社, 2003.6.
    [6] J.Aubin, R.baehr. 杜晓晶摘译. 变压器寿命评估[J]. 电力建设, 1996, No.5: 55-58.
    [7] M.C.Lessard, L.Van Nifterik, M.Masse, J.F.Penneau and Robert Grob. Thermal Aging Study of Insulating Papers Used in Power Transformers[R]. 1996 IEEE Annual Report-Conference on Electrical Insulation and Dielectric Phenomena, San Francisco, October 20-23, 1996.
    [8] L.Simoni, G.Mazzanti, G.C.Montanari, L.Lefebre. A General Multi-stress Life Model for Insulating Materials with or without Evidence for Thresholds[J]. IEEE Transactions on Electrical Insulation, 1993.6, Vol.28, No.3: 349-364.
    [9] P.Cygan, J.R.Laghari. Models for Insulation Aging under Electrical and Thermal Multistress[J]. IEEE Transactions on Electrical Insulation, 1990.10, Vol.25, No.5: 923-934.
    [10] L.dissado, G.Mazzanti and G.C.Montanari. A New Thermo-Electrical Life Model Based on Space-Charge Trapping[R]. Conference Record of the 1996 IEEE International Symposium on Electrical Insulation. Montreal, Quebec, Canada. June 16-19, 1996: pp642-645.
    [11] Gian Carlo Montanari. A New Thermal Life Model Derived by the Aging Compensation Effect[J]. IEEE Transactions on Electrical Insulation, 1990.4, Vol.25, No.2: 309-318.
    [12] P.Cygan, J.R.Laghari. A Review of Electrical and Thermal Multistress Aging Models[R]. Conference Record of the 1990 IEEE International Symposium on Electrical Insulation, Toronto, Canada, June 3-6. 1990: pp15-20.
    [13] Gian Carlo Montanari, Mariao Cacciari. A Probability Life Model for Insulating Materials Showing Electrical Thresholds[J]. IEEE Transactions on Electrical Insulation, 1989.10, Vol.24, No.1: 127-134.
    [14] Lundgaard Lars E., Hansen Walter, Linhjell Dag. Aging of Oil-Impregnated Paper in Power Transformers[J]. IEEE Transactions on Power Delivery. 2004, 19(1): 230.
    [15] Garcia Belen, Burgos Juan Carlos, Alonso Angel Matias. A moisture-in-oil model for power transformer monitoring - Part I: Theoretical foundation[J]. IEEE Transactions on Power Delivery.2005, 20(2 II): 1417.
    [16] Garcia Belen, Burgos Juan Carlos, Alonso Angel Matias. A moisture-in-oil model for power transformer monitoring - Part II: Experimental verification[J]. IEEE Transactions on Power Delivery. 2005, 20(2 II): 1423.
    [17] 宋伟, A.J.Kachler. 变压器老化评估的极化去极化电流分析法[J]. 变压器. 2005, (07).
    [18] Hohlein I., Kachler A. J. Aging of cellulose at transformer service temperatures. Part 2. Influence of moisture and temperature on degree of polymerization and formation of furanic compounds in free-breathing systems[J]. IEEE Electrical Insulation Magazine. 2005, 21(5): 20.
    [19] 毕鹏翔, 张文元, 秦少臻等. 变压器固体绝缘状况的监测方法[J]. 高电压技术. 2000, (03).
    [20] Allan D., Jones C., Sharp B. Studies of the condition of insulation in aged power transformers, part 1: Insulation condition and remnant life assessments for in-service units. In; 1991; Tokyo, Jpn: Publ by IEEE, Piscataway, NJ, USA; 1991. p. 1116.
    [21] Arveniza M., Hill D., Le Tri. Studies of the condition of insulation in aged power transformers, part 2: Fundamental electrical and chemical considerations. In; 1991; Tokyo, Jpn: Publ by IEEE, Piscataway, NJ, USA; 1991. p. 1120.
    [22] Leach A R. Molecular Modelling-Pri and Applications[M]. Pearson Education Limited: Harlow, England, 2001.
    [23] 杨小震. 分子模拟与高分子材料[M]. 北京: 科学出版社, 2004.
    [24] Frenkel D., Smit B.. Understanding Molecular Physics一from Algorithm to Application[M]. Chemical Industry Press, Beijing, 2002
    [25] Koga K., Tanaka H, Zeng X C. Nature, 2000, 408(6812): 564-567
    [26] Koga K., Gao G. T., Tanaka H. Nature, 2000, 412(6849): 802-805
    [27] 陈丰. 二十一世纪的矿物学[J]. 矿物学报, 2001, 21(1): 1-13
    [28] 刘志平, 黄世萍, 汪文川. 分子计算科学—化学工程新的生长点[J]. 化工学报, 2003, 54(4): 464-476
    [29] Rainwater J C, Friend D G, Hanley H J M. Report on Forum 2000: Fluid Properties for New Technologies一Connecting Virtual Design with Physical Reality[Z]. NIST Special Publication 975, 2001, 5-17
    [30] 朱伟平. 分子模拟技术在高分子领域的应用[J]. 塑料科技, 2002, 151(5): 23-33
    [31] 冯玉军. 分子模拟技术在油田化学及相关领域中的应用[J]. 油田化学, 1998,15(1): 70-75
    [32] Quirke N. Modeling in Exploration and Production[Z]. The Scientific Seminar Tour Cosponsored by BIOSYM Technologies and Silicon Graphics, 1993
    [33] 胡英, 刘洪来. 分子工程和化学工程. 化学进展, 1995, 7(3):235-250
    [34] Deem M W. Recent Contributions of Statistucal Mechanics in Chmical Engineering.AIChEJ.,1998,44(12) : 2569-2596
    [35] 李以圭, 刘金晨. 分子模拟与化学工程. 现代化工, 2001, 21(7):10-13
    [36] 刘志平, 黄世萍, 汪文川. 分子计算科学:化学工程新的生长点. 化工学报, 2003, 54(4): 464-476.
    [37] American Chemical Society, American Institute of Chemical Engineers, Chemical Manufacturers Association,Council for Chemical Research and Synthetic Organic Chemical Manufacturers Association. ACS, Technology Vision 2020: The U.S. Chemical Industry. Washington D C: American Chemical Society, 1996
    [38] Gao J,Luedtke W D,Landman U. J.Phys.Chem.B.1997,101:4013.
    [39] Balasubramanian S,Klein M L. J.Phys.Chem.1996,100:11960.
    [40] Lin R J,Song K,Hase W L. J.Phys.Chem.B.2000,104:2692.
    [41] Alder B.J.,Wainwright T. E. Phase transition for a hard sphere system.J.Chem.Phys.1957, 27:1208-1209
    [42] Rahman A. Correlations in the motion of atoms in liquid argon.Phys.Rev.1964, 136: 405-411
    [43] Verlet L. Computer‘experiments’on classical fluids I. thermodynamical properties of Lennard-Jones molecules. Phys.Rev.1967,165:201-214
    [44] Gear C.W.Numerical initial value problems in ordinary differential equations.Englewood Cliffs:Prentice-Hall.1971
    [45] Harp G .D .,B erneB .J. Linear and angular momentum autocorrelation functions in diatomicli quids.J. Chem. Phys.1968, 49: 1249-1254
    [46] Singer K,TaylorA., SingerJ. V .L .Thermodynamic and structural properties of liquids modeled by `two-Lennard-Jonesce ntres' pair potentials.Mol.Phys.1977,33 : 1757-1795
    [47] Cheung P .S .Y , Powles J .G .The properties of liquid nitrogen.IV . A computer simulation. Mol. Phys. 1975, 30 : 921-949
    [48] Evans D .J,Murad S .Singularity mechanics of nonequilibrium liquids.San Diego: Academic Press, 1977
    [49] Ciccotti G Ferrario M ., Ryckaert J. P. Molecular dynamics of rigid systems in Cartesian coordinates: A general formulation. Mol. Phys.1982,47 : 1253-1264
    [50] Nose S., Klein M. L. Constant pressure molecular dynamics for molecular systems . Mol. Phys.1983, 50 : 1055-1076
    [51] Barker J. A., Watts R. O. Structure of water: a Monte Carlo calculation. Chem. Phys. Lett.1969,3 :144-145
    [52] Eastwood J. W., Hockney R. W., Lawrence D. P3M3DP-the three dimensional periodic particle-particle/particle-mesh program. Comp. Phys. Commun. 1968, 19 : 215-261
    [53] Andersen H. C. Molecular dynamics simulations at constant pressure and/or temperature. J. Chem.Phys. 1980, 72 : 2384-2393
    [54] Andersen H. C. Rattle: A "velocity" version of the Shake algorithm for molecular dynamics. J. Comp. Phys.1983, 52 : 24-34
    [55] Nose S. A molecular dynamics method for simulations in the canonical ensemble.Mol. Phys. 1984, 52 : 255-268
    [56] Nose S .A unified formulation of the constant temperature molecular dynamics methods .J . Chem. Phys.1984, 81: 511-519
    [57] Hoover W. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A . 1985 , 31: 1695-1697
    [58] Berendsen H .J. C.,PostmaJ .P. M .,van Gunsteren W. F. , DiNola A., HaakJ . R .Molecular dynamics with coupling to an external bath.J. Chem. Phys.1984,81 :3684-3690
    [59] Parrinello M., Rahman A. Polymorphic transitions in single crystals: A new Molecular dynamics method. J. Appl. Phys.1981,52 : 7182-7190
    [60] Metropolis N,Rosenbluth A. W., Rosenbluth M. N., Teller A., N., Teller E.Equation of state calculations by fast computing machines.J. Chem.Phys.1953, 21 : 1087-1092
    [61] Panagiotopoulos A. Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble.Mol.Phys.1987,61: 813-826
    [62] Widom B. Some topics in the theory of fluids. J. Chem. Phys. 1963, 39: 2802-2812
    [63] 杨频,高飞,《生物无机化学原理》,科学出版社,2002.
    [64] 陈凯先,蒋华良,秘汝运,《计算机辅助药物设计:原理、方法及应用》, 上海科学技术出版社,2000.
    [65] 徐光宪,黎乐民,王德民,《量子化学基本原理和从头计算法》(中册),科学出版社,1985.
    [66] 王树森. 变压器绝缘材料(6)[J]. 变压器, 2003, 40(4): 42-46
    [67] 王财胜. 周志芳电力变压器油纸绝缘总体状态现场检测的新方法[J]. 高电压技术, 2000, 26(3): 72-73, 76
    [68] 杨莉, 尚勇, 严璋. 电力变压器状态检测的国外动态[J]. 高电压技术, 1999, 25(3): 37-39
    [69] 俞源海, 张飚. 变压器油中糠醛含量与绝缘纸老化关系的研究[J]. 华东电力, 2002, 30(11): 16-18
    [70] Stokke B.T., Christensen B.E. and Smidsrod O.. Degradation of multistranded polymers: effects of interstrand stabilization in xanthan and scleroglucan studied by a Monte Carlo method[J]. Macromolecules, 1992, 25: 2209-2214.
    [71] Guaita M., Chiantore O., Luda M.P.. Monte Carlo simulations of polymer degradations. 1. Degradations without volatilization[J]. Macromolecules, 1990, 23, 2087-2092
    [72] Guaita M., Chiantore O., Luda M.P.. Monte Carlo simulations of polymer degradations. 2. Degradations involving random chain scissions and volatilization of low molecular weight products[J]. Macromolecules, 1991, 24: 2198-2202
    [73] Tobita H.. Random degradation of branched polymers. 1. Star polymers[J]. Macromole-cules, 1996, 29(8), 3000-3009
    [74] Tobita H.. Random degradation of branched polymers. 1. Multiple branches[J]. Macromol-ecules, 1996, 29(8): 3010-3021
    [75] Nyden M.R., Noid D.W.. Molecular dynamics of initial events in the thermal degradation of polymers[J]. J. Phys. Chem, 1991, 95: 940-945.
    [76] 谢小军, 成永红, 崔浩等. 基于分子模拟的二氧化硅介电常数温度特性规律的研究[J]. 四川大学学报, 2005, 42(10): 94-98
    [77] 张朝阳, 舒远杰, 王新锋等. 呋咱及其自由基结构和性质的理论研究[J]. 含能材料, 2004, 12(4): 222-226
    [78] 张燕慧, 佘远斌, 钟儒刚. 钴卟啉催化剂的前线轨道能级与其催化活性的相关性研究[J]. 化学学报, 2004, 62(22): 2228-2232
    [79] 王瑾玲, 孙命, 苏庆华等. 咪唑啉酮类化合物的量子化学研究[J]. 计算机与应用化学, 1999, 16(4): 272-279
    [80] Scheirs J, Camino G, Avidano M, Tumiatti W. Origin of furanic compounds in thermal degradation of cellulosic insulating paper[J]. Journal of Applied Polymer Science. 1998, 69(13): 2541 – 2547
    [81] 高金森, 王鹏, 董坤等. 氯化烷基咪唑离子液体分子结构和红外光谱的模拟计算[J]. 石油学报, 2006, 22(1): 72-76
    [82] 张冠军, 钱政, 严璋. DGA 技术在电力变压器绝缘诊断中的应用与进展[J]. 变压器, 1999, 1(5): 30-34
    [83] 陈晓峰, 王晓红. 充油设备故障类型及其油中气体的特征[J]. 电力学报, 2001, 16(2): 22-25
    [84] Lee S H, Lee H, Pak H. Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic properties of branched-chain alkanes[R]. Bulletin of the Korean Chemical Society, 1997, 18(5): 501-509
    [85] 孙才新, 郭俊峰, 廖瑞金等. 变压器油中溶解气体分析中的模糊模式多层聚类故障诊断方法的研究[J]. 中国电机工程学报, 2001, 21(2): 37-41
    [86] 李维仲, 陈聪, 杨健. L-J流体自扩散系数及其与温度关系的分子动力学模拟[J]. 热科学与技术, 2006, 2: 30-34
    [87] 孙炜, 陈中, 黄素逸. 模型流体扩散系数与温度关系的分子动力学模拟[J]. 武汉化工学院学报, 2005, 4: 2-4
    [88] HU Y, LIU H L. Molecular engineering and chemical Engineering[J]. Progress in chemistry, 1995, 7(3): 235-250
    [89] Liguras D K, Allen D T. Structural models for catalytic cracking 1 Model compound reactions[J]. Ind Eng Chem Res, 1989a, 28: 665-673
    [90] 刘枫林, 徐魏. 石蜡基和环烷基变压器油的性能比较[J]. 变压器, 2004, 41(7): 27-30.
    [91] Hofmann D, Fritz L, Ulbrich J, et al. Molecular simulation of small molecule diffusion and solution in dense amorphous polysiloxanes and polyimides [J]. Computational and Theoretical Polymer Science, 2000, 10: 419-436.
    [92] Fried J R, Ren P. Molecular simulation of the glass t ransition of polyphosphazenes[J]. Computational and Theoretical Polymer Science, 1999, 10: 111-116
    [93] Heuchel M, Hofmann D. Molecular modeling of polyimide membranes for gas separation[J]. Desalination, 2002, 144: 67-72.
    [94] Gusev A A, Arizzi S, Suter U W. Dynamics of light gases in rigid matrices of dense polymers [J]. J. Chem. Phys, 1993, 99: 2221-2227
    [95] Müller-Plathe F, Rogers S C, van Gunsteren W F. Computational evidence for anomalous diffusion of small molecules in amorphous polymers[J]. Chem. Phys. Lett, 1992, 199: 237-243
    [96] Shahsiah A, Degeneff R C, Nelson J K. A new dynamic model for propagation of characteristic gases in transformer oil-cellulose structures due to temperature variation, Ann. Rep. Conf. on Elect. Ins. & Diel. Phen., IEEE, 2005: 269-272

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700