抗玉米粗缩病RNA干扰载体的构建和农杆菌介导的遗传转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米粗缩病是由玉米粗缩病毒、水稻黑条矮缩病毒或Mal de Rio Cuarto virus引起的一种世界性病毒病,主要通过灰飞虱进行持久性传播。近年来,该病在我国玉米部分主产区流行,给玉米生产造成了严重的经济损失。因此,怎样控制玉米粗缩病的发病率,是一个具有重要现实意义的问题。选育和推广抗病品种是防治玉米粗缩病最经济、有效的方法。目前,粗缩病抗性育种主要是利用玉米种质资源的遗传抗性。但高抗粗缩病的种质资源非常缺乏,使得长期以来传统抗病育种工作进展缓慢,难以满足生产上对品种抗性的要求。
     RNA干扰(RNAi)现象是生物进化上形成的抵御外来核酸侵犯的防御机制。研究发现,将来源于病毒的基因片段以反向重复的方式导入植物,其转录后形成的双链发夹RNA结构(hairpin RNA, hpRNA)可有效引发病毒基因沉默,使转基因植物获得对该病毒及相近病毒的抗性。因此,本研究利用RNAi原理,将引起玉米粗缩病的病毒外层衣壳蛋白基因和核心外壳蛋白基因的部分序列构建成RNAi表达载体,通过农杆菌介导法转化玉米,以期获得阳性转化植株,并使其自交纯合,为后续抗病性鉴定提供纯合的转化株系。研究结果如下:
     1)构建了具有反向重复结构的中间载体pSK-303、pSK-452、pSK-291,该中间载体可为其它RNA干扰载体构建所用。首先对NCBI上提交的玉米粗缩病毒外壳蛋白(coat protein, CP)基因S10和水稻黑条矮缩病毒CP基因S10、S8进行序列同源性分析,选择保守区域中的303bp、452bp、291bp片段作为RNAi靶序列。利用两组带有酶切位点的特异引物扩增模板序列,分别正向、反向连入到pSK-int载体,构建成具有反向重复结构的中间载体。其中,正反向片段之间间隔一段玉米内含子序列,便于转录后形成发夹结构。
     2)根据构建成的具有反向重复结构的中间载体pSK-303、pSK-452、pSK-291,构建成了适用于农杆菌介导的三个植物表达载体,分别为pRNAi-303、pRNAi-452、pRNAi-291。利用SpeI和XhoI限制性内切酶将中间载体上的反向重复序列切下,连接到植物表达载体pJIM19,构建成本试验的RNAi表达载体。
     3)通过冻融法将表达载体质粒转入农杆菌菌株EHA105,利用芽尖法成功将植物表达载体pRNAi-303转化玉米自交系“18-599”中,获得了7个独立的阳性转化株系,T1代PCR检测获得了23个独立的阳性转化株系。其它两个表达载体也以玉米自交系“18-599”胚性愈伤组织为受体进行了遗传转化,经1.5、3、5 mg/L Basta筛选后,获得了抗性愈伤组织,目前正在分化再生植株。
Maize rough dwarf disease (MRDD) is a worldwide viral disease caused by maize rough dwarf virus (MRDV)、Rice black streaked dwarf virus (RBSDV) or Mal de Rio Cuarto virus (MRCV), and persistently transmitted by Laodelphax striatellus Fallen in a circulative manner. In recent years, the disease was epidemic in our part of the main producing areas of corn and caused serious economic losses. Therefore, how to control MRDD is an issue of great pratical significance. Screening and cultivating resistant resource is the most economic and effective way to control MRDD. Currently, maize rough dwarf disease resistance breeding mainly using genetic resistance of maize germplasm. However, high resistance to rough dwarf virus is a lack of germplasm resources. The work of resistance breeding is a long process. It is difficult to meet the production requirements through conventional breeding.
     RNA interference (RNAi) is an evolutionarily conserved mechanism targeted against invasive or mobile RNA elements. It was demonstrated that silencing can be effectively triggered when invert repeat (IR) fragments deriving from pathogen was introduced in host plants, and endowed transgenic plant resistance to the virus and similar virus. Therefore, based RNAi principle, this study use part of MRDD outer coat protein gene and the core coat protein gene to construct RNAi expression vector and transform to maize by Agrobacterium-mediated in order to obtain positive transgenic plants. And make it self homozygous for the subsequent identification of disease resistance provide homozygous transgenic lines. The results are as follows:
     1) The intermediate vectors pSK-303、pSK-452、pSK-291 were constructed with inverted repeats, which could be applied to other RNA interference. Firstly, sequences of MRDV CP genes S10 and RBSDV CP genes S10 and S8 submitted on NCBI were analysised, and 303bp,452bp,291bp fragment of the conserved domain were selected as RNAi target sequence. Two pairs of primer with restriction sites were used to amplify the sense and anti-sense fragments, with double enzyme digestion, the sense and anti-sense fragments were linked into intermediate vectors. In order to produce a intron-hairpin structure, there is a maize intron between sense and anti-sense fragment.
     2) According constructed with inverted repeats of intermediate vector pSK-303, pSK-452, pSK-291, became applicable to build three plants expression vector by Agrobacterium-mediated. They are pRNAi-303, pRNAi-452 and pRNAi-291. Using SpeI and XhoI restriction enzyme cut inverted repeat sequence, connected to the plant expression vector pJIM19, construction RNAi expression vector.
     3) The pRNAi-303 expression vector was transformed into the Agrobacterium strain EHA105 by freeze-thaw method and used to inplanta transform the apical portion of "18-599" mediated by Agrobacterium, and obtained 3 independent positive plants. PCR detection of T1 generation, obtained 23 positive independent transgenic lines. Two other expression vectors were genetic transformation. Maize inbred line "18-599" embryogenic callus was the receptor of genetic transformation. After screening with 1.5,3,5 mg/L Basta, the resistant callus are being differentiated.
引文
[1]苗洪芹,路银贵,邸垫平等.玉米抗粗缩病研究进展[会议论文].2008-中国植物保护学会2008年学术年会
    [2]DiD. P, HQ. Miao.Maize rougll dwarf and related viruses[J]. Grain Crops & Ornamentals,2008,4: 111-126
    [3]张跃进,姜玉英,冯晓东等.2009年全国农作物重大病虫害发生趋势[J].中国植保导刊,2009,3:33—36
    [4]陈景堂,池书敏.玉米粗缩病(MRDV)研究现状及展望[J].玉米科学,2000,08(3):76-78
    [5]黄振平,赵广军.玉米粗缩病的发生规律及预防技术[J].粮食作物,2008,09:110-112
    [6]陈景堂,池书敏,刘志增等.玉米粗缩病(MRDV)研究现状及展望[J].玉米科学,2000,8(3):76-78
    [7]陈长青,孙甲,白石,史磊.玉米粗缩病研究进展[J].辽宁农业科学,2008,(4):38-40
    [8]陈义红,阮龙,王俊等.玉米粗缩病抗病育种研究进展[J].河北农业科学,2010,14(6):42-44
    [9]Fang S., Yu J, Feng J.Identification of rice black-streaked dwarf fijivirus in maize with roughdwarf disease in China[J]. Archives of Virology,2001,146:167-170
    [10]Bai F.W., Jian Yan, Zhi-cai Qu. Phylogenetic Analysis Reveals that a dwarfing disease on different cereal crops in China is due to rice black streaked dwarf virus (RBSDV)[J]. Virus Genes,2002,25(2): 201-206
    [11]Wang ZH, Fang SG, Xu JL et al. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease[J]. Virus Genes,2003,27:163-168
    [12]龚祖埙,沈菊英,陈巽祯等.我国禾谷类病毒病的病原问题——玉米粗缩病病原的研究[J].生物化学与生物物理学报,1981,31(1):55-60
    [13]Harpaz I. Needle transmission of a new maize virus[J]. Nature (London),1959,184:77-78
    [14]张恒木.水稻黑条矮缩病毒分子生物学[学位论文].杭州,浙江大学,2001
    [15]杨本荣,马巧月.玉米粗缩病的病毒寄主范围研究[J].植物病理学报,1983,13(3):1—8
    [16]杨满昌,陈巽祯.玉米粗缩病毒介体灰飞虱的传毒特性[J].河北农学报,1985,10(4):28-30
    [17]Caciagli P. Testing maize hybrids for susceptibility to maize rough dwarf fijivirus by experimental inoculation with the vector Laodelphax striatellus[J]. Rivista di Patologia Vegetale,1992,2(1):15-21
    [18]陈永坤,李新海,肖木辑等.64份玉米自交系抗粗缩病的遗传变异分析[J].作物学报,2006,32(12):1848-1854
    [19]刘志增,池书敏,宋占权等.玉米自交系及杂交种抗粗缩病性鉴定与分析[J].玉米科学,1996,4(4):68—70
    [20]粱琼.玉米不同品种(系)抗感玉米粗缩病毒与生理生化关系的研究[学位论文].武汉,华中农业大学,2004
    [21]王安乐,王娇娟.网棚控制灰飞虱传毒感病鉴法[J].山西农业科学,1998,26(2):68—69
    [22]邸垫平,苗洪芹,路银贵等.玉米抗粗缩病接种鉴定方法研究初报[J].河北农业大学学报,2005,28(2):76-78
    [23]Fire A, Xu S Q, Montgomery M K potent and specific interfetcuce by double-stranded RNA in Caenorhabditis elegans[J]. Nature,1998,391(6669):806-811
    [24]Baulcombe D. RNA silencing in Plants[J]. Nature,2004,431(7006):356-363
    [25]白描,杨国顺,陈石等.植物RNAi的特点及其应用研究进展[J].生物技术通报,2009,8:6-10
    [26]Waterhouse PM, Graham M, Wang MB. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA[J]. National Acad Sciences,1998, 95(23):13959-13964
    [27]高凤琴.RNA干扰的研究进展[J].陕西医学杂志,2008,37(6):738
    [28]Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNA mediate RNA interference in cultured mamma lian cells[J]. Nature,2001,411:494-498
    [29]李婧.RNAi的发展与应用[J].亚太传统医药,2007,3(12):25—28
    [30]郭兴启,于大胜,陈红等.植物中转录后基因沉默的启动、传导与抑制[J].生命科学研究,2001,5(3):129-133
    [31]Stoutjesdijk P A, Singh S P, Liu Q, et al. hpRNA-Mediated Targeting of the Arabidopsis FAD2 Gene Gives Highly Efficient and Stable Silencing Plant Physiologists[J]. Plant Physiology Preview, 2002,129:1-9
    [32]柴晓杰,王不武,关淑艳等.应用RNA干扰技术降低玉米支链淀粉含量[J].植物生理与分子生物学学报,2005,31(6):625—630
    [33]MA Zhong-liang, YANG Huai-yi, WANG Rong. Construct Hairpin RNA to Fight Against Rice Dwarf Virus[J]. Plant. Biol,2004,46,332-336
    [34]ZhangL, Jing F, Li F, et al. Biotechnol Appl Biochem,2009,52:199-207
    [35]Wang M B, Abboa D C, Waterhouse P M. A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to barley yellow dwarf virus[J]. Molecular Plant Pathology,2000,1(6): 347-356
    [36]燕飞,张文蔚,成卓敏等.转病毒来源发夹RNA小麦表现对大麦黄矮病毒的抗性[J].遗传,2007,29(1):97-102
    [37]颜培强,白先权,万秀清等,应用RNAi技术培育抗TMV病毒转基因烟草[J].遗传,2007,29(8):1018-1022
    [38]Wang P, Liang Z, Zeng J, et al. Generation of tobacco lines with widely different reduction in nicotine levels via RNA silencing approaches[J]. J. Biosci,2008,33(2):177-184
    [39]Wesley S V, Helliwell C A, Smith N A, et ai. Construct design for efficient, effective and high-throughput gene silencing in plants[J].Plant Journal,2001,.27(6):581-590
    [40]Helliwll C, Waterhouse P. Constructs and methods for high-throughput gene silencing in plants[J]. Methods,2003,30(4):289-295
    [41]Rahman M, Ali I, Husnain T, Riazuddin S. RNA interference:The story of gene silencing in plants and humans[J]. Biotechnol Adv,2008,26(3):202-209
    [42]Abel P, Nelson R, Hoffmann N, et al. Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene[J]. Science,1986,232(4751):738-743
    [43]Hackland A, Rybicki E, Thomson J. Coat protein-mediated resistance in transgenic plants. Archives of Virology,1994,139(1):1-22
    [44]Tougou M, Yamagishi N, Furutani N, et al. Soybean dwarf virus-resistant transgenic soybeans with the sense coat protein gene[J]. Plant Cell Reports,2007,26(11):1967-1975
    [45]Liu X, Tan Z, Li W, et al. Cloning and transformation of SCMV CP gene and regeneration of transgenic maize plants showing resistance to SCMV strain MDB[J]. African Journal of Biotechnology, 2009,8(16):3747-3753
    [46]竺晓平,朱常香,宋云枝等.CP基因3'端短片段介导的对马铃薯Y病毒的抗性[J].中国农业科学,2006,39(6):1153-1158
    [47]Marano M, Baulcombe D. Pathogen-derived resistance targeted against the negative-strand RNA of tobacco mosaic virus:RNA strand-specific gene silencing[J]. Plant Journal,1998,13(4):537-554
    [48]Hellwald K, Palukaitis P. Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus[J]. Cell,1995,83(6):937-946
    [49]Bai Y, Yang H, Qu L,et al. Inverted-repeat transgenic maize plants resistant to sugarcane mosaic virus[J]. Frontiers of Agriculture in China,2008,2(2):125-130
    [50]程英豪,王继伟.植物抗病毒基因工程[J]生物学通报,1998,33(5):5-6
    [51]Cronin S, Verchot J, Haldemancahill R,et al. Long-distance movement factor, a transport function of the potyvirus helper component proteinase[J]. Plant Cell,1995,7:549-559
    [52]李卫,郭光沁,郑国铝.根癌农杆菌介导遗传转化研究的若干新进展[J]科学通报,2000,45(8):798-807
    [53]Hiei Y, Ohta S, Komari I, et al. Eficient transformation of rice (Oryza sativa L.)mediated by Agrobacterium and sequence anaylise of the boundaries of the T-DNA[J]. Plant,1994,6:271-282
    [54]Ishida Y, Saito H, Ohta S, et al. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens[J]. Nature Biotechnology,1996, (14):745-750
    [55]Cheng M, Fry J E, Pany S. Genetic transformation of wheat mediated by Agrobacterium tumefaciens[J].Plant Physiol,1997,115:971-980
    [56]刘建光,农杆菌介导玉米大斑病的遗传转化[学位论文].保定,河北农业大学,2007
    [57]Koncz C, Nrmryh K, Redei G P, et al. T-DNA insertional mutagenesis in Arabidopsis[J].Plant Mol Biol,1992,20:963-976
    [58]Nacry P, Camilleri C, Courtial B, et al. Major chromosomal rearrangements induced by T-DNA transformation in Arabidopsis[J]. Genetics,1998,149:641-650
    [59]Stafford H A. Crown gall disease and Agrobacterium tumefaciens:a study of the history, present knowledge, missing information and impact on molecular genetics[J]. Bot Rev,2000,66:101-118
    [60]Zhu J, Oger P M, Schrammeijer B, et al. The bases of crown gall tumorigenesis[J]. Bacteriol,2000, 182:3885-3895
    [61]Zupan J, Muth T R, Draper O, et al. The transfer of DNA from Agrobacterium tumefacieds into plants:a feast of fundamental insights[J]. Plant,2000,23:11-28
    [62]Cangelosi G A, Ankenbauer R G, Nester E. Sugar induce the Agrobacterium virulence genes through a periplasmic bingding protein and a transmembrane signal protein[J]. Proc Natl Acad,1990,87: 6708-6712
    [63]Stachel S E, Zambryski P C. VirA and VirG control the plant induced activation of the T-DNA transferprocess of A tumefacieds [J]. Cell,1986,46:325-333
    [64]Liu C N, Lix Q, Gelvin S B. Mutiple copied of virG enhances the transient transformation of celery carrot and rice tissues by A tumefacieds[J].Plant Mol Biol,1992,20:1071-1087
    [65]Hooykaas P J..The virulence system of Agrobacterium tumefacieds[J].Annu Rev phytopathol, 1994,32:157-159
    [66]Michielse C B, Hooykaas PJ. Transformation as a tool for functional genomics in fungi[J]. Curr Genet,2005,48:1-17
    [67]Mullins E D, Chen X, Romaine P, et al. Agrobacterium-mediated transformation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer[J]. Phytopathology,2001,91: 173-180
    [68]Li M, Gong X, Zheng J,et al. Transformation of Coniothtrium minitans,a parasite of sclerotinia sclerotiorum, with Agrobacterium tumefacieds[J]. FEMS Microbiol Lett,2005,243:323-329
    [69]Vergunst A C, Schrammeijer B, Den Dulk A, et al. VirB/D4-dependent protein translocation from Agrobacterium into plant cells[J]. Science,2000,290:979-982
    [70]张素芝,荣廷昭.农杆菌介导的玉米遗传转化系统研究进展[J].遗传,2008,30(10):1249-1256
    [71]Huang X, Wei Z. Successful Agrobacterium mediated genetic transformation of maize elite inbred lines[J]. Plant Cell Tissue Organ Cult,2005,83:187-200
    [72]Ishida Y, Saito H, Hiei Y, et al. Improved protocol for transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens[J]. Plant Biotechnol,2003,20(1):57-66.
    [73]Ishids Y, Saito, H ohta S, et al. Nat Biotechnol.1996,14(6):745-750
    [74]谭震波,刘昕,曹鸣庆.玉米遗传转化的研究进展[J].生物技术通报,2000,6:9-14
    [75]Rhodes C A, Pierce D A, Mettles I J, et al. Genetically transformed Maize plants from protoplasts[J]. Science,1988,240:204-207
    [76]孙世孟,赛吉庆.玉米获白×莱1029的悬浮细胞系的建立及其再生植株的研究[J].作物学报,1994,20(2):168-175
    [77]Armstrong C L, Green C E. Establishment and maintence of friable, embryogenic maize callus and the involvement of L-proline[J]. Planta,1985,164:207-214
    [78]No 1305005,张举仁.一种转化大粒种子植物的方法及其应用[P].中国,2005
    [79]李学红,李冬玲,张举仁等.玉米茎尖培养研究-胚状体和丛生芽发生的扫描电镜观察[J].潍 坊学院学报,2001,1(2):47—50
    [80]巩健,杨芳.单子叶植物表达载体的构建及农杆菌介导的玉米遗传转化的研究[J].生物技术,2007,17(3):2-5
    [81]吕素莲,尹小燕,张可炜等.农杆菌介导的棉花茎尖遗传转化及转betA植株的产生[J].高技术通讯,2004,14(11):20—25
    [82]丁群星,李太元.用子房注射法将Bt毒蛋白基因导入玉米的研究[J].中国科学(B辑),1993,23(7):707-713
    [83]董云洲,段胜军,赵连元等.用基因枪转化花粉获得转基因谷子和玉米[J].中国农业科学,1999,32(2):9—13
    [84]付凤玲,张丽萍,朱祯.玉米优良自交系转基因受体系统建立及转化后的筛选与再生[J].四川农业大学学报,2000,18(2):97-99
    [85]Welter ME, Clayton DS, Miller MA, Petolino JP. Morphotypes of friable embryogenic maize callus[J]. Plant Cell Rep,1995,14:725-729
    [86]Smith N, Singh S, Wang MB, et al. Waterhouse PM. Gene expression:Total silencing by intron-spliced hairpin RNAs[J]. Nature,2000,407(6802):319-320
    [87]Obbard D, Gordon K, Buck A, et al. The evolution of RNAi as a defence against viruses and transposable elements[J]. Biological Sciences,2009,364(1513):99-115

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700