井下应急排水车行走机构液压系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国蕴藏丰富的天然煤炭资源,是世界上生产煤炭最多的国家,但也是消费煤炭最多的国家。在如此大的煤炭消耗量面前,煤矿开采过程中的安全问题也越来越突出,受到煤矿企业的高度重视。其中,对矿山企业危害较大的不安全因素以煤矿水灾害危害最大,它不仅破坏了煤矿企业正常的生产和建设,还给企业带来了严重的物质、经济损失,危害到了煤矿工人的生命财产安全。
     本文从我国煤矿建设和生产过程中经常遇到的水灾害入手,以煤矿井下排水的大环境为背景,给出了煤矿斜井井下常用的四种排水方案:并列组合式潜水电泵用于小型矿井抢险排水、斜井深井泵排水、斜井潜水泵群排水、斜井卧式离心泵排水;提出了本文所要深入研究的课题——井下应急排水车行走机构液压系统;在文中说明了研究内容和技术路线,即设计种响应迅速、流量大、现场安装时间短、复杂路面通过性好,可实现快速救援的煤矿井下履带式水陆两用应急排水车
     为了更好的研究履带式水陆两用应急排水车的液压系统,文中首先利用仿真软件对所设计的液压系统进行稳定性及整体性分析。这将有效的弥补当今应急救援设备存在的不足,为预防矿井水灾害提供有效的保障,对于维护国家和人民生命财产安全提供重要支撑;然后确定了液压系统的基本方程、传递函数以及相关参数,并且在MATLAB/SIMULINK仿真软件中建立闭式回路的控制系统的模型,分析了其动态性能;接着在AMEsim软件中建立履带式应急排水车液压系统的模型,用此模型对液压系统的稳定进行了分析,证明了系统设计的可行性;最后利用ADAMS动力学软件和AMESim控制软件对液压泵控系统进行了联合仿真,检验了所设计的液压系统的合理性。
Our country has rich natural coal resources, the production of coal is the most in the world, also the consumption of coal is the most. In the face of so much consumption of coal,safety problems in the process of mining is more and more outstanding, it has been attached great importance. Among them, the largest harm to the mining enterprise is flood hazard, it can't only damage the coal mine enterprise's normal production and construction, but also bring serious physical, economic losses, the harm to the lives and property of the coal mine worker safety.
     The article is basic from the our country coal mine construction and production often encountered in the process of water disaster, to mine water environment as the background, gives four kinds of inclined shaft of coal mine underground drainage scheme:the parallel combination of submersible electric pump used in small coal mine rescue and dewatering shaft, deep well pump, submersible pump in drainage well group drainage horizontal, inclined shaft centrifugal pump; puts forward the subject of intensive research--downhole emergency drainage running mechanism hydraulic system; in this paper describes the research contents and technical route, namely to design a fast response, large flow, field installation time is short, the complex pavement through the good, can realize the rapid rescue for coal mine underground track amphibious dual-purpose emergency drainage vehicle.
     In order to better research tracked amphibious emergency drainage vehicle hydraulic system, firstly, by using the simulation software of hydraulic system stability and overall analysis. This will effectively compensate for the emergency rescue equipment shortages, for the prevention of mine water disasters to provide effective protection, for the maintenance of safety of country and people life property to provide important support; Then determine the hydraulic system of the basic equation, transfer function and related parameters, and the simulation software MATLAB/SIMULINK to establish the close loop control system model, analyzes its dynamic performance; then in AMEsim software in building crawler emergency drainage vehicle hydraulic system model, use this model on the stability of hydraulic system were analysed, proved the feasibility of system design; finally, using ADAMS dynamics software and AMESim control software for the hydraulic pump control system of joint simulation, inspection of the design of the hydraulic system.
引文
[1]冯立杰,高传昌,杨武洲.大功率潜水电泵的排水运行模式研究[J].中国农村水利水电,2003,(08).
    [2]C. Faria Santos, Z. T. Bieniawski. Floor design in underground coal mines[J]. Rock Mechanics and Rock Engineering,1989,22(4).
    [3]] S. Siddharth, A. Jamal,B. B Dhar, Rakesh Shukla. Acid-Base Accounting: A Geochemical Tool for Management of Acid Drainage in Coal Mines [J]. Mine Water and the Environment,2002,21(3).
    [4]邢冬梅,叶义成,赵雯雯,王其虎.我国矿山透水事故致因分析及安全管理对策[J].中国安全生产科学技术,2011,(12).
    [5]朱正平.使用高效矿山抢险排水装备[J].劳动保护,2008,(01).
    [6]蒋猛.矿山抢险排水方法综述[J].中州煤炭,2003,(02).
    [7]陈太安.大功率潜水电泵在矿山斜井追排水中的应用[J].煤矿机械,2008,(02).
    [8]黄炳仁,李夕兵,王军,李爱兵.非煤矿山突水淹井应急救援适用性技术综述[J].中国安全生产科学技术,2010,(03).
    [9]杨国平.国内外筑路机械最新发展动态.筑路机械与施工机械化,2001,(5).
    [10]Tatsuro Muroa, Tingji Heb, Munehito Miyoshi. Effects of a roller and a tracked vehicle on the compaction of a high lifted decomposed granite sandy soil[J].Journal of Terramechanics,1998, (35):265-293.
    [11]I.T. Hong, E. C. Fitch. Hydraulic System Modeling and Simulation-C ompen-diums and Prospects[C]. Proceeding of the fourth Internatio nal Symposium on Fluid Power Transmission and Control(ESFP'2003).:30-137
    [12]孙勇,李文哲.双流传动履带车辆转向机构的研究现状及发展趋势[J].农机化研究,2008,(03).
    [13]巩青松,董阿忠,陈靖芯,秦永法,袁鹤来,习强.履带式车辆关键机构分析与设计[J].农业装备与车辆工程,2008,(04).
    [14]J.Y.Wong,Wei Huang. "Wheels vs. tracks"-A fundamental evaluation from the traction perspective[J].Journal of Terramechanics,2006, (43):27-42.
    [15]赵文生.履带式行走机构设计分析[J].湖北农机化,2010,(04).
    [16]赵瑜,闫宏伟.履带式行走机构设计分析和研究[J].新技术新工艺,2010,(05).
    [17]李帅.泵控马达闭式回路调速控制系统特性研究[D].浙江大学,2010.
    [18]I. T. Hong, E. C. Fitch. Hydraulic System Modeling and Simulation-C ompen-diums and Prospects[C]. Proceeding of the fourth Internatio nal Symposium on Fluid Power Transmission and Control(ESFP 2003):30-137.
    [19]齐红卫,陈艳红.非圆曲线的逼近法数控加工[J].新技术新工艺,2010,(05).
    [20]周曼川,彭福人.路面冷铣刨机履带行走机构设计参数分析[J].筑路机械与施工机械化,2005,(11).
    [21]桑月仙.闭式液压系统补油泵研究[D].西南交通大学,2010.
    [22]柳利平.Z6500水平定向钻机动力头及其液压驱动系统动力学研究[D].长安大学,2009.
    [23]刘敏.80kN自行走式牵引机液压传动系统的研究.济南大学,2006.
    [24]周陈锋.基于Simulink的UHF RFID系统的数掘传输分析与仿真[D].湖南大学,2009.
    [25]Neeley Concha Kaye Ramsey. Connective technology adoption in the supply chain:The role of organizational, interorganizational and technology-related factors.Texas:University of North Texas,2006
    [26]Neeley Concha Kaye Ramsey. Connective technology adoption in the supply chain:The role of organizational, interorganizational and technology-related factors.Texas:University of North Texas,2006
    [27]宁璐,张吉军,路勇.车载发电液压传动系统的建模与仿真分析[J].系统仿真学报,2011,(S1).
    [28]朱磊.基于小波变换的消弧线圈接地系统单相接地故障选线研究[D].长沙理工大学,2011.
    [29]姚齐国.MATLAB在频域分析中的应用[J].中南民族学院学报.2001(3):17-20.
    [30]刘增光,李文英,岳大灵.基于AMESim的连轧管机液压压下系统仿真研究[J].流体传动与控制,2008,(03).
    [31]刘锋.中型液压挖掘机回转系统工作性能的研究[D].中南大学,2011.
    [32]Borghi Massimo, Milani Massimo, Paoluzzi Roberto. Influence of notches shape and number of notches onthe metering characteristics of hydraulic spool valves[J].International Journal of Fluid Power,2005,3(2):5-18
    [33]Pettersson H, Krus P, Jansson A, et al. Design of pressure compensators for load sensing hydraulic system. In:Proceedings of the 1996 UNACC International Conference On Control, Part 2 of 2, Exeter U. K,1996
    [34]冷雪原.冲击振动压路机振动机构仿真研究[D].长安大学,2010.
    [35]唐静芳.六自由度力加载系统的建模与仿真[D].华中科技大学,2009.
    [36]任锡义.液压支架整体动态特性仿真分析[D].太原理工大学,2010.
    [37]于倩.防爆无轨胶轮车三维建模与仿真[D].西南交通大学,2011.
    [38]余佑官,龚国芳,胡国良AMESim仿真技术及其在液压系统中的应用[J],2005,(03).
    [39]John A. Baross, Sarah E. Hoffman. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life[J]. Origins of Life and Evolution of the Biosphere,1985,15(4)
    [40]Fumito Komatsu, Ryuji Mori,Yuji Uchio. Optimum surgical suture material and methods to obtain high tensile strength at knots:problems of conventional knots and the reinforcement effect of adhesive agent [J]. Journal of Orthopaedic Science,2006,11(1)
    [41]朱学超.小功率全液压推土机行驶驱动系统研究[D].长安大学,2008.
    [42]唐定友.900吨轮胎式运梁车液压行走驱动系统研究[D].长安大学,2007.
    [43]余佑官.盾构推进电液控制系统研究[D].浙江大学,2006.
    [44]韩宇.45t水平定向钻机液压驱动系统研究[D].长安大学,2007.
    [45]杨毅.自适应控制在波浪补偿系统中的应用研究[D].武汉理工大学,2007.
    [46]陆华才Matlab在《电机与拖动》教学中的应用[J].科技信息,2009,(25).
    [47]吴卫国.50t轮胎式搬运机行走驱动液压系统和卷扬液压系统研究[D].长安大学,2008.
    [48]雷福伟.同步碎石封层设备液压系统研究[D].长安大学,2008.
    [49]陈永峰,陈杰荣.工程车辆AMESim建模与转向性能仿真[J].中国工程机械学报,2008(4).
    [50]雷珊.平地机工作装置负载敏感系统研究[D].长安大学,2011.
    [51]杨传营,赵飞麒,崔洪新.基于Pro/E与ADAMS行星齿轮轮系的参数化设计和运动仿真[J].科技广场,2009,(07).
    [52]吴墩明,岑豫皖,罗铭.基于ADAMS的液压破碎机液压系统仿真[J].安徽工业大学学报(自然科学版),2007,(03).
    [53]邢科礼,冯玉,金侠杰,李庆.基于AMESim/Matlab的电液伺服控制系统的仿真研究[J].机床与液压,2004,(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700