基于图像分析的路面病害自动检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的基于人工视觉检测路面病害的方法有成本高、精确度低、危险性高等诸多的不足,已经不能适应高速公路迅速发展的要求。近年来,基于图像分析的路面病害检测系统在公路养护事业中获得了广泛的应用,但当前系统的自动检测算法不完善,后期的数据处理仍然是采用人机结合甚至完全人工的方式,导致工作量仍然过大。因此,如何设计有效的自动检测算法是当前亟待解决的热点、难点问题。本文将针对自动检测算法中存在的一些难题,从路面图像的去噪、增强、灰度校正、阴影消除、病害信息的提取以及病害信息的度量、分类和地理定位等多个方面进行研究。
     针对路面图像噪声严重、裂缝边缘模糊且断裂点较多等问题,本文提出了两种基于偏微分方程(PDE)的路面图像增强方法。首先提出了一种基于梯度的相干增强扩散。该方法在相干增强扩散中吸纳了前向-后向扩散模型的思想,在计算扩散强度时,针对完好路面背景、裂缝边缘和噪声边缘采取不同的扩散策略,能够消除正常路面处的噪声,同时能够增强裂缝的流式结构和锐化裂缝边缘。第二种方法是针对P-M方程、Shock滤波器和相干增强扩散等基本偏微分方程模型的不足,提出了将几种基本模型加以融合的方法,在不同的图像区域采用不同的权值分配方案。该方法同样能够在增强裂缝流式结构、锐化裂缝边缘和去噪几方面均取得良好的效果。
     路面图像中的裂缝信息往往较为弱小,与背景的对比度很低,难以直接检测到。基于此,本文提出了一种用于路面图像的模糊增强算法。首先对模糊隶属度函数进行了研究改进:(1)对函数中的一个重要参数—渡越点,通过采用基于邻域一致性模糊熵测度的像素分类,对每个像素点均确定一对应的最佳渡越点;(2)设计了的新的函数形式,该函数具有更合适的良好的曲线形状;(3)通过自适应调整控制参数,使渡越点的位置和函数曲线进行最佳的结合。在模糊逆映射上,采用线性逆变换函数,能够同时保持模糊映射所带来的增强效果和消除由于截断带来的灰度信息的损失,在运算效率上也得到了提高。
     针对光照不均的路面图像,本文通过对图像进行分块采样,并采用双线性插值拟合图像照度,再对原图像和照度图像进行差值运算,消除了图像中的不均匀光照。针对阴影图像,本文提出了一种各向异性中心/环绕Retinex算法(Anisotropic Diffusion Center/Surround Retinex,ADCSR),该算法在模拟全局照度时采用基于PDE的各向异性扩散,并根据阴影的特点出了基于“边界性”(Edge Degree,ED)的新的扩散方案,能够很好的模拟阴影图像的全局照度,因此能够在消除阴影时取得良好的效果。
     在裂缝信息的提取上,本文将二维平面图像映射到三维空间曲面,通过分析三维曲面中“山谷”的曲率特征,采用基于微分几何的空间检测算子准确地提取了曲面中的“山谷”,并反映射到二维图像平面作为裂缝点。对于检测结果中可能出现的伪裂缝,通过基于方向一致性的路径增长,消除过短的“路径”,成功的消除了绝大部分的伪裂缝。
     根据不同类型裂缝的几何形态差异,本文通过抽取裂缝的投影向量、像素总数和密度等具有鉴别意义的裂缝模式特征,设计基于BP神经网络的模式分类器实现了对裂缝的精确分类。在裂缝病害的的度量上,本文设计了有效的算法计算网状裂缝和块状裂缝的面积,以及横向裂缝和纵向裂缝的长度和宽度。
     在裂缝病害的地理坐标精确定位上,本文提出了模糊自适应联邦卡尔曼滤波器(Fuzzy Adaptive Federated Kalman filter, FAFKF)对GPS/DR组合导航定位系统进行数据融合。该滤波器首先通过模糊自适应滤波控制器监控观测量的残差理论值和实际值,并通过增强它们的一致性来调整各子系统观测噪声方差阵,使之更符合真实的模型,有效提高了Kalman滤波器对模型变化的适应能力。然后通过模糊自适应信息融合控制器对各子系统可信度进行模糊评判,并根据可信度自适应计算信息分配系数来实现数据的融合。
Traditional manual methods for pavement distress detection have too manyshortcomings such as time-consuming、dangerous, costly and so on, so it can't meet theneed of pavement's development now. Nowadays, pavement distress detection based ondigital image analysis has been developed greatly. However, the algortims for automaticare still not satisfying. This paper is devoted to reseach the automatic detection algortims,including pavement surface image enhancement、shadow removal、crack imformationabstract、carck classification、crack measurement and crack positioning.
     In pavement surface images, the noises often very serious and cracks are very tiny, sotwo methods on Partial Differential Equation (PDE) are proposed to enhance thepavement surface. Firstly, a gradient-based coherence enhancing diffusion that enhancesthe cracks and also eliminates the other unwanted noises is proposed. The new diffusiondistinguishes cracks from unwanted elements by gradients on the assumption that thegradients of cracks are approximately unchanged, and takes different strategies to controlcracks and other elements. The new approach also absorbs the idea of forward-backwarddiffusion to determine the strengths and directions of the diffusion process in order tosharpen the edges of cracks. As a result, both the edges and the flow-like structure ofcracks are enhanced. Secondly, a new model fused by P-M diffusion、Shock filter、coherence enhancing diffusion is proposed. On the assumption that images are not noised,3 weight functions depending on the local gradients and the degree of consistency oflocal directional structure are designed, and the 3 basic PDE models are fused togetherby the 3 weight functions. Then according to the characteristics of road surface images,the new model for not-noised images are generalized to process complex road surfaceimages by improving the basic PDE models and the weight functions.
     The illumination of the pavement surface image often imbalance, even there aresometimes shadows in road surface images and make it difficult to process the image.Images without shadows are processed by a illumination correction method based on thesimulation of the background of the image. As for the shadows, An Anisotropic DiffusionCenter/Surround Retinex (ADCSR) is presented to eliminate it. First anisotropic diffusionbased on PDE is introduced to ADCSR, further a new anisotropic diffusion scheme basedon "Edge Degree"(ED) is presented, which avoids the embarrassment to select different parameters such as gradient threshold. Experimental results show that shadows areeliminated successfully by ADCSR.
     The contrast of the pavement surface images are enhanced by fuzzy imageenhancement algorithms. Traditional fuzzy image enhancement algorithms can't enhanceimages with changeful grey levels well, also it is difficult to decide the controlparameters, so a new fuzzy image enhancement algorithm is proposed to overcome thedrawbacks. First the crossover points for each pixel are computed adaptively based onthe local feature of the neighborhood of each pixel. Then a new fuzzy membershipfunction is proposed. The new fuzzy membership function is S-shape, and can combinedwith the crossover points perfectly by adjust the parameters. Road surface images withchangeful grey levels can obtain satisfactory enhancement effect by the new algorithm.Also the new algorithm is universal because all the parameters are computed adaptively.
     New algorithms for detecting and classifying、measuring road surface cracks areresearched systemically. First the 2D pavement surface images are mapped to 3D spatialsurfaces and the cracks that are difficult to describe in 2D images can be regarded as"valleys" in them. Then the "valleys" are detected by differential geometry operator andtaken as cracks in the 2D images. Further the line feature of the real cracks is analyzed,and the lengths of the cracks are obtained by path growing in the consistent direction,cracks that are not long enough are considered to be fake and eliminated. Than a patternclassifier based on BP neural network is designed to recognize different cracks accordingto the geometrical shape difference of different cracks, effective methods for measuringcracks are proposed after that.
     At last, a fuzzy adaptive federated Kalman filter (FAFKF) is presented for positioningcracks. First, a real-time fuzzy adaptive filter controller is used to monitor the fact valueand theoretic value of residual covariance, and adjust the covariance matrices ofobservation noises towards the real model by enhancing their consistencies. As a result, theKalman filter's tolerance to model error is improved. Then a fuzzy adaptive data fusioncontroller is used to evaluate the reliability of each subsystem, and the informationdistribution coefficients of each subsystem are computed according to the reliability.Theoretical analysis and experimental data show that the precision and fault tolerance ofFAFKF are improved both.
引文
[1] Fukuhara, (1990). Automatic Pavement-Distress-Survey System. ASCE Journal of Transportation Engineering, Vol. 116, No. 3, May/June, pp.280-286.
    [2] P. Offrell,Automatic Crack Measurement in Sweden. Pavement Surface Characteristics. Ⅳ'th International Symposium "SURF 2000". Proceedings pp. 497-506. Nantes (France), 22-24 May 2000.
    [3] IMS,(1996).An Overview of the PAVUE Fully Automated Surface Distress Image Processing System.
    [4] Zhao Chun Xia, Tang Zhen Min, Yang Jing Yu; He An Zhi. N-1 style intelligent data gathering and processing system for pavement surface detecting. IEEE International Conference on Intelligent Transportation Systems. 2003, Vol(2): 1556-1558
    [5] Siriphan Jitprasithsiri. Development of a new digital pavement image processing algorithm for unified crack index computation[D]. A Dissertation Submitted to the Faculty of the University of Utah, 1997.
    [6] Koutsopoulos H N, Downey A B. Primitve-based classification of pavement cracking images[J]. J. Transp. Engrg., 1993,19(3): 136-143.
    [7] Chou J C, O' Nell W A. Pavement distress evaluation using fuzzying logic and moment invariants. Transp. Res. Record, 1505, Transportation Research Board, Washington D C: 144-148.
    [8] Cheng Hengda. Automated real-time pavement distress detection using fuzzy logic and neural network[J]. SPIE Proceeding, 1994, 2946: 140-151.
    [9] Velisky S A, Kirschke K R. Design considerations for automated pavement crack selling machinery[Z]. Proc. 2nd Int. Conf. on Applications of Advanced Technologies in Transp. Engrg.: 77-80.
    [10] Li L, Chan P, Rao A, et al. Flexible pavement distress evaluation using image ananysis[J]. J. Transp. Engrg. ASCE, 1993, 119(3): 402~418.
    [11] Grivas D A. Bhagvati C. Skolnick M M, et al. Feasibility of automating pavement distress assessment using mathematical morphology[J]. Transportation Research Record, 1994(1435): 52-58.
    [12] Bhagvati.C, Skonlnick.M.M, and Grivsa.D.A. Gaussian normalization of morphological size distributions for increasing sensitivity to texture variations and its application to pavement distress classification[C]. IEEE Computer Vision and Pattern Recogintion Conference,Seattle, WA, 1994,20-24
    [13] Cheng H D, Rong Jim. Novel approach to pavement cracking detection based on fuzzy set theory[J]. ASCE, 1999, 13(4): 270-280.
    [14] 张洪光,王祁,魏玮.基于人工种群的路面裂纹检测.南京理工大学学报.2005,Vol.29,No.4:389-393.
    [15] H. G.. Zhang, Q.wang. Use of artificial living system for pavement distress survey. The 30th annual conference of the IEEE industrial Electronics Society, Novemeber 2-6, 2004. Busan, Korea.
    [16] Naoki Tanaka, Kenji Uematsu. A crack detection method in road surface images using morphology. MVA'98 LAPR Workshop on Machine Vision. Nov. 17-19, 1998, Makuhari, Chiba, Japan.
    [17] Sunil K. Sinha, Paul W. Fieguth. Automated detection of cracks in buried concrete pipe images. Automation in construction. 2006,Vol. 15, No. 11: 58-72.
    [18] Yaxiong Huang, Bugao Xu. Automatic inspection of pavement cracking distress. Journal of Electronic Imaging. 2006, Vol. 15, No. 1.
    [19] S. Paquis, V. Legeay, H. Konik, J. Charrier. Multiresolution Texture Analysis applied to Road Surface Inspection.SPIE vol.3652 1999:242-249
    [20] Chun J, Chi F C. Airport pavement distress image classificati0n using moment invariant neural network[Z]. 22 nd Asian Conference on Remote Sensing, 2001.
    [21] Miyojim M, Cheng H D. Novel system for automatic pavement distress detection[J]. ASCE, 1998, 12(3): 145~152.
    [22] Kasko M S, Ritchie comparison of traditional and neural classifiers for pavement crack detection[J]. ASCE,1994,120(4): 552-569.
    [23] Kaseko M.S., S,G.Ritehie(1993).A Neural Network-Based Methodology for Pavement Crack Detection and Classification.Transportation Research, 1C(4): 275-291.
    [24] Ritehie S G,Che L Y. Development of an intelligent system for automated pavement evaluation[R]. Transportation Research Record, 1993. 1311: 112-119.
    [25] Perona P, Malik J. Scale-Space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.
    [26] Weickert. Coherence enhancing diffusion filtering. International Journal of Computer Vision, 1999, 31(2/3): 111~127.
    [27] S. Osher, L.I.Rudin. Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 1990(27): 919~940.
    [28] 谢美华,王正明.基于边缘定向增强的各向异性扩散抑噪方法[J].电子学报,2006,34(1):59-64
    [29] J. Weickert. Coherence-enhancing shock filters. Pattern Recognition, 2003, 2781: 1-8
    [30] 谢华英,周海银.P-M扩散与相干增强扩散相结合的抑制噪声方[J].中国图象图形学报,2005,10(2):158-163.
    [31] K. Inoue, K.Uranhama. Anisotropic shock filter for enhancement and non-photorealistie generation of flow patterns[C].The 47th IEEE international Midwest Symposium on Circuits and Systems, 2004:277~280
    [32] Marr D. Vision, San Francisco, CA: Freeman, 1982
    [33] Rosenfeld A, Thurston M. Edge and curve detection for visual scene analysis. IEEE Trans on Computers, 1971, C220: 562-569
    [34] Witkin A.Scale-space filtering. In: International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, 1983. 1091-1021
    [35] Koenderink J. The structure of images. Biological Cybernetics, 1984, 50: 363-370
    [36] Hummel R A. Representations based on zero-crossings in scale-space. In: Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami Beach, FL,1986.204-209
    [37] A lvarez L, Lions P L, Morel J M. Image selective smoothing and edge detection by nonlinear diffusion Ⅱ. SLAM J Numerical Analysis,1992, 29(3): 845-866
    [38]A IvarezL, Mazorra L. Signal and image restoration using shock filters and anisotropic diffusion. SLAM J Numerical Analysis,1994, 31(2): 590-605
    [39] NiessenW et al. A general framework for geometry2driven evolution equations. International J Computer Vision, 1997, 21(3): 187-205
    [40] Bart M. ter Haar Romenyeds. Geometry-Driven Diffusion in Computer Vision. Netherlands: Kluwer Academic Publishers, 1994
    [41] Gilboa G, Zeevi Y Y, Sochen N A. Forward and backward diffusion processes for adaptive image enhancement denoising. IEEE Transaction on Image Processing, 2002, 11(7): 689-703
    [42] Joachim Weickert. A scheme for coherence enhancing diffusion filtering with optimized rotation invariance [J]. Journal of VisualCommunication and Image Representation, 2002, page(s)103-118.
    [43] Catte F, Lious P L, Morel J M, Coll T. Image selective smoothing and edge detection by nonlinear diffusion[J]. SIAM J, Numerical Analysis. 1992, 29(2): 182-193.
    [44] 王炳健,刘上乾.基于平台直方图的红外图像自适应增强算法[J].光子学报,2005,Vol.34,No.2:299-301
    [45] 燕文浩,马彩文.基丁小波变换的图像融合新算法[J].光子学报,2006,Vol 35,No.4:638-640
    [46] Pal S K, King R A. On EdgeDetection of X- Ray lmagesU sing Fuzzy Sets[J]. IEEE Trans. PattAnal and Math inelntell., 1983, PAM 1-5(1): 69-77.
    [47] S K Pal, R A King. Image enhancement using fuzzy sets[J]. Electron Lett, 1980, 16 (9): 376-378
    [48] 王晖,张基宏.图像边缘检测的区域对比度模糊增强算法[J].电子学报,2000,Vol.28,No.1:45-47
    [49] ZHANG Xiao-guang, GAO Ding. Generalized Fuzzy Enhancement of Image for Radiographic Testing Weld, Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005: 94-99
    [50] H. D. Cheng. Jim-Rong Chen, Chris Glazier. Novel approach to pavement cracking detecion based on fuzzy theory. Journal of Computing in Civil Engineering, 1999.Vol. 13, No. 4
    [51] 王倩,阮海波.快速模糊边缘检测算法[J].中国图象图形学报,2001,Vol.6,No.1:92-95
    [52] 汪亚明,吴国忠,赵匀,胡觉亮.基于模糊熵及遗传算法的图像增强技术[J].农业机械学报,2003,Vol.34,No.1:96-98
    [53] 刘金华,唐竞新,龙图景.一种改进的模糊边缘检测快速算法[J].系统仿真学报,2003,Vol.15,No.2:273-275
    [54] Pan, Rongjiang Meng, Xiangxu. A Method of Local Enhancement Based on Fuzzy Set Theory[C]. Proceedings of the 3rd World Congress on Intelligent Control and Automation June 28-July 2, 2000, Hefei, P. R. China
    [55] 李弼程,郭志刚,文超.图像的多层次模糊增强与边缘提取[J].模糊系统与数学,2000,14(4):77-83
    [56] 王保平,刘升虎.基丁模糊熵的白适应图像多层次模糊增强算法[J].电子学报,2005,Vol.33.No.4:730-734
    [57] 张麟兮,王保平.基于多特征和FCM的图像边缘检测方法[J].光子学报,2005,Vol.34,No.12:1893-1896
    [58] 范九伦.模糊熵理论.西安:西北大学出版社,1999.9-10
    [59] 马志峰,杨水超.改进的快速图像模糊边缘检测算法[J].激光与红外,2005,Vol.35,No.4:300-302
    [60] 韩培友,董桂云,赫重阳.双线性广义模糊增强边界图像检测算法[J].计算机辅助设计与图形学学报,2005,Vol.17.No.2:300-304
    [61] James D F, Robert A S. Spatially variant contrast enhancement using local ranger modification[J ]. SPIE, 1983, Vol. 22, No. 3: 378-381.
    [62] 田金文,柳斌,程伟.基于局部最大熵的辐射校正方法[J].中国图象图形学报,1999,Vol.4,NO.1:41-44.
    [63] 王学良,黄廉卿.改进的局部最大熵图象恢复方法[J].中国图象图形学报. 2000,Vol.5.No.7:589-592.
    [64] Edwin H.Land. The Retinex theory of color vision[M]. Scientific American, 1977:108-129.
    [65] 唐亮,谢维信.城市航空影像中基于模糊Retinex的阴影消除[J].电子学报,2005,33(3):500-503.
    [66] 肖志级,黄建军.城市彩色航空影像的边缘模糊Retinex阴影消除[J].中国体视学与图像分析,2004,Vol.9,No.2:95-98.
    [67] GD Finlayson,S D Hordley,M S Drew. Removing Shadows from Images Using Retinex[A]. Proceedings of IS&T/ SID Tenth Color Imaging Conference: Color Science, Systems and Applications. Scottsdale, Arizona: IS&T/SID, 2002.
    [68] Otsu, N. A threshold selection method from a gray level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9:62-66.
    [69] Jonathan Frankle, John McCann. Method and Apparatus for Lightness Imaging. US Patent #4,384,336, May 17, 1983
    [70] Ted J.Cooper, Farhan A.Baqai. Analysis and extensions of the Frankle_ McCann Retinex algorithm. Journal of Electronic Imaging, 2004, 13(1), 85-92.
    [71] J.J.McCann. Lessons learned from Mondrians applied to real images and color gamuts. Proc.IS&T/SID 7th Color Imag. Conf., 1999, 1-8.
    [72] Brian Funt, Florian Ciurea, John McCann. Retinex in Matlab. Journal of Electronic Imaging, 2004,13(1), 48-57.
    [73] Florian Ciurea, Brian Funt. Tuning Retinex parameters. Journal of Electronic Imaging, 2004,13(1), 58-64.
    [74] D.J.Jobson, Z.Rahman. A multiscale Retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 1997.
    [75] B Funt, K Barnard. Investigations into multiscale Retinex [M], Pages 17-36,1999.
    [76] Catte F, Lious P L, Morel J M,Coll T. Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM J, Numerical Analysis. 1992,29(2): 182~193.
    [77] 王毅,张良培.各向异性扩散平滑滤波的改进算法[J].中国图象图形学报,2006,11(2):210-216.
    [78] 钱伟新,刘瑞根.基于图像特征方向的各向异性扩散滤波方法[J].中国图象图形学报,2006,11(6):818-822.
    [79] R.M.Haralick. Digital step edge from zero-crossing of second directiona derivatives. IEEE Transactions on Pattern Analysis and Machine Intelligence,6(1):January 1984.
    [80] P.Montesinos,H.V.Blanc.Perceptual Grouping of Continuation: Application to Satellite Images. CARI 94, 2nd African Conference on Reasearch in Computer Science,Ouagadougou,Burkina Faso,October 1994
    [81] O.Monga, R.Lengagne, R.Deriche. Extraction of the zero-crossings of the curvature derivative in volumic 3D medical images: a multi-scale approach. In IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA June 1994.
    [82] O.Monga, S.enayoun and D.Faugeras. Using partial derivatives of 3D images to extract typical surface features. In IEEE Conference on Vision and Pattern Recognition, Urbana Champaign, Illinois, July 1992. Also INRIA Research Report 1599.
    [83] O.Monga, R.Lengagne, R.Deriche. Crest lines extraction in volumic 3D medical images: a multiscale approach. In International Conference on Pattern Recognition(ICPR),Jerusalem.Israel,October 1994.
    [84] F.L.Bookstein and C.B.Cutting. A proposal for the apprehension of curving craniofacial form in three dimensions.In K.Vig and B.A.editors, Craniofacial Morphogenesis and Dysmorphogenesis, pages 127-140, Center of Human Growth. University of Michigan, Ann Arbor, 1988.
    [85] J. Deelerck, G. Subsoh J. P. Thirion, and N. 柳ache. Automatic retrieval of anatomical structures in 3d medical images. Rapport de Recherche 1881, INRIA, Le Chesnay, France, 1995.
    [86] J. P. Thirion and A. Gourdon. The marching lines algorithm: new results and proofs. Rapport de Recherche 1881, INRIA, Le Chesnay, France, April 1993.
    [87] A. Jain, L. Hong, and R. Bolle. On-line fingerprint verifieation. IEEE Trans. Pattern Analysis and Machine intelligence, 19: 302, 1997
    [88] D. Maio and D. Maltoni. Direct geay-scale minutiae detection in fingerprints. lEEE Yrans. Pattern Analysis and Machine Intelligence. 19: 27-39.1997
    [89] S. Lee and Y. Joon. Direct extraction of features for gray scale character recognition. IEEE Trans. Pattern Analysis and Machine Intelligence, 17: 724-729, 1995
    [90] O. Trier, T. Taxt, and A. Jain. Reeognition of digits in hydrographic maps: Binary versus topographic analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19: 399-404, 1997.
    [91] O. Monga, N. Armande, and P Montesinos. Thin nets and crest lines: Application to satellite data and medical images. In Proc. IEEE Inter Conf. on Image Processing, pages 468-471.IEEE Computer Society Press, 1995.
    [92] C. Steger. Extracting curvilinear structures: a differential geometric approach. In B. Buxton and R. Cipolla, editors, Proc. 4th Euro. Conf. on Computer Vision, volume 1064 of Lecture Notes in Computer Science, pages 630-641.Springer-Verlag, 1996.
    [93] V Lang, AG Belyaev, IA Bogaevsici, TL Kunii. Fast algorithms for ridge detection. Proceedings of the International Conference on Shape Modeling and Applications. Mar. 3-6, 1997: 189-197.
    [94] Chou, Ch-P(Natl Taiwan Univ)Liau. T. Development of automated algorithms for pavement condition survey[J], Transportation Research Record on 1536 Nov 1996 National Research Council p 103-109 0361-1981
    [95] 滕井玉.路面病害自动检测系统的体系结构改进及检测算法研究.硕士论文.南京理工大学
    [96] 中华人民共和国行业标准.JTJ 075—94.公路养护质量检查评定标准.1994
    [97] 中华人民共和国行业标准.JTJ 073—96.公路养护技术规范.1996
    [98] 金桃,张美珍.公路工程检测技术.第1版.北京:人民交通出版社,2002
    [99] 沙庆林.高述公路沥青路面早期破坏现象及预防.第1版.北京:人民交通出版社,2001
    [100] 中华人民共和国交通部发布.高速公路养护质量检评方法.第1版.北京:人民交通出版社,2003
    [101] 楼伟,沈宁.高等级公路路面裂缝类病害轮廊提取的算法研究.电子技术应用.2002(10):30-32
    [102] Krakiwsky E J. Harris C B. Wong R V C. A Kalman filter for integrated of dead reckoning, map matching and GPS positioning [A]. In: Institute of Navigation. ed. IEEE PLANS' 88[C]. Orlando: In stitute of Navigation, 1988.39-46.
    [103] Eduardo M N, Hugh D W. A high integrity navigation architecture for outdoor autononous vehicles[J]. Robotics and Autononuus Systems, 1999.26(2): 81-97
    [104] Yanjuan Yang, Zhihua Jin, Application of fixed interval smoothing to GPS/DR integrated navigation system. IEEE Transaction Intelligent Transportation System. Vol. 2, page(s) 1027-1031, 2003
    [105] 郑利龙,曹志刚.GPS组合导航系统的数据融合.电子学报.Vol.30,NO.9,2002:1384-1386
    [106] 周哲,翁海娜,庄良杰.联合卡尔曼联合滤波及其在舰船综合导航系统中的应用[J].控制与决策,2000,15(4):501-503.
    [107] 万德均,房建成,王庆.GPS动态滤波的理论、方法及其应用[M].南京:江苏科学技术出版社 2000.1481-58.
    [108] Antonio Tiano, Antonio Zirilli. Application of interval and fuzzy techniques to integrated navigation system[C]. IFSA World Congress and 20th NAFIPS International Conference, 2001: 13-18
    [109] 张常云.自适应滤波方法研究[J].航空学报.1998.19(7):96-99
    [110] Geng, Yanrui, Cui, Zhongxing. Adaptive fading Kalman filter with applications in integrated navigation system. Journal of Beijing University of Aeronautics and Astronautics. Vol. 30, no. 5, pp. 434-437, 2004
    [111] Jing Zhang, Zhi-hua Ji, Wei-feng Tian. A Suboptimal Kalman Filter with Fading Factors for DGPS/MEMS-IMU/Magnetic Compass Integrated Navigation. IEEE Transaction on Intelligent Transportation Systems. Volume 2, 12-15 Oct. pp.1229-1234, 2003
    [112] 胡峰.孙国丛.Kalman滤波的抗野值修正[J].自动化学报.1999.25(5):692-696
    [113] 陶俊勇,邱静,温熙森.等.自适应联合滤波模型及其在车载SINS/GPS组合导航系统中的应用[J].信息与控制.2000,29(2):168-172.
    [114] P. J. Esearnilla, N.Mort. Multisensor Data Fusion Architecture Based on Adaptive Kalman Filters and Fuzzy Logic. Proceeding of the fifth international Conference on information Fusion, July 8-11. Annapolis, Maryland. USA. pp. 1542-1549. 2002, Vol. 2
    [115] J.Z.SASIADEK, Q. WANG, M.B.ZEREMBA. Fuzzy Adaptive Kalman Filtering For INS/GPS Data Fusion. Proceeding of the 15th IEEE International Symposium on Intelligent Control, Greece, PP 181-186, 2000
    [116] Sasiadek J Z, Wang Q, Zeremba M B. Fury adaptive Kalman filtering for INS/GPS data fusion[C]. Proc. of the 15th IEEE International Symposium on Intelligent Control. Rio.Patras.GREECE.2000. 17-19; 181-186.
    [117] 邓自立,高嫒.按对角阵加权信息融合Kalman滤波器[J].控制理论与应用.Vol.22,No.6,2005:870-874
    [118] Neal A. Carlson. Federated Kalman Filter Simulation Result[J]. Journal of the Institute of Navigation. VOL.41, NO.3, 1994: 124-128
    [119] 许丽佳,陈阳舟.组合导航系统的模糊信息融合[J].系统仿真学报.Vol.17,No.1,2005:pp124-128
    [120] 付梦印.Kalman滤波理论及其在导航系统中的应用[M].第一版.科学出版社,2003
    [121] 宋文尧.张牙.Kalrnan滤波[M].北京:科学出版社,1991
    [122] 刘基余.GPS卫星导航定位原理与方法[M]北京:科学出版社,2002
    [123] 高建贞.基于基于图像分析的道路病害自动检测研究.博士论文.南京理工大学.
    [124] 初秀明.沥青路面破损图像识别方法研究.博士论文.吉林大学.
    [125] Kelvin C.P.Wang, Robert P.Elliott. Investigation of Image Archiving for Pavement Surface Distress Survey. A final report submitted to Mack-Blackwell Transportation Center. July 26, 1999
    [126] 田村秀行等著,赫荣威译,计算机图像处理技术。北京:北京师范大学出版社,1986。
    [127] Kenneth.R.Castleman著.朱志刚等译.数字图像处理。电子工业出社,1998。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700