基于潮滩高程模型的沙洲冲淤态势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地貌形态随时间的变化过程,是地理学历来极为关注的内容之一。尽管近30年来不同尺度的潮滩冲淤变化分析已取得很大成功,但至今冲淤季节性变化分析理论仍不够成熟,在机理分析、数据获取、分析方法等方面还有待拓展;从遥感和GIS的角度来看,现有的遥感和GIS软件也缺乏时空过程分析和动态模拟能力。
     江苏苏北辐射沙脊群沉积地貌体系较为特殊,它以形态特殊、地形复杂多变而著称,是潮流脊研究的典型区域,本研究在GIS、RS、空间统计等技术方法的支持下,探讨江苏辐射沙洲冲淤态势变化分析方法,对其冲淤季节性变化进行研究,符合江苏沿海开发战略要求,对世界其它地区的潮流脊及我国沿海潮流沙脊演化研究有着较强的借鉴意义,为淤泥质潮滩剖面研究提供背景资料,而且对引导研究区有序开发利用具有重要的现实意义。
     研究选取江苏辐射沙脊群中面积较大的东沙沙洲为研究区,利用多时相卫星影像的水边线信息构建潮滩高程模型,以多时期潮滩高程模型为数据源,将定性描述与定量计算相结合,结合遥感与GIS方法对东沙地区的冲淤变化态势进行研究,重点对泥沙冲淤总量变化、冲淤沉积速率变化、冲淤输运率及输运方向变化进行定量计算与定性分析,并探讨影响冲淤季节性变化的因素。研究主要内容包括:(1)冲淤总量季节性变化分析。本研究以按季节构建的数字高程模型为数据源,首先将栅格数据转换成文研究件数据进行分析,等间距划定不同的等高线标准,分别计算高于各等高线的标准下的冲淤面积和冲淤体积,进而计算冲淤量,并最终分析冲淤量季节性变化规律及其影响因素。(2)冲淤速率变化分析。对求交后的各数字高程模型进行差值运算,得到表示各时间段绝对高程差的栅格数据。研究重点探讨了各高程模型“成像时间”的计算方法,从而得到冲淤速率变化结果,并最终分析冲淤速率变化规律及其影响因素。(3)冲淤输运量及输运方向季节性变化分析。首先对按季节构建的数字高程模型进行求交运算及差值运算,计算栅格图像的梯度与梯度方向,以此表示冲淤输运率及输运方向。探讨将冲淤输运率及输运方向数据以模式图的形式表示,从而清晰展现冲淤变化方向及大小,并最终分析冲淤输运率及输运方向季节性变化规律及其影响因素。
     研究结果主要包括:(1)秋、冬季冲淤量明显高于春、夏季。春季与秋季的冲淤量持平,夏季冲淤量最低。冲淤量季节性冲淤变化与风浪、潮差、潮流、潮沟系统以及其它等因素密切相关。(2)全区域的冲淤速率极大值点集中在研究区潮沟密集处。潮滩有向西北侧移动的趋势。(3)研究区内存在着明显的输运方向的会聚与分散现象。输运方向会聚的区域表现为淤积。反之,输运方向分散的区域表现为侵蚀。输运率在潮沟分布密集处较大。
The process of landforms change over time has always been one of great attention in geography science.
     Though, study on erosion and deposition change of sandbank under different scales has achieved great success in the past thirty years, however, theory of erosion and deposition seasonal change is still not mature enough so far, it should be expanded at mechanism, data acquisition, and analysis methods. From the point of view of remote sensing and GIS, the exiting RS and GIS software also lacks of capability of space-time process analysis and dynamic simulation.
     Jiangsu radial sandbank is the most special depositional geomorphologic system among the coastal regions of China which is known by the special shape, complex and changeable terrain. It is a typical region for studying tidal current ridge. Under the support of GIS, RS, and spatial statistical, this study explores method which is to analyst erosion and deposition change of radiation sandbank, studies on erosion and deposition seasonal change, fits in with the requests of Jiangsu coastal development and strategy, has a strong reference for the research of tidal current ridge of Chinese coastal and other regions of world, provides background information for the profile study of muddy sandbank, also has important practical significance of guiding the orderly development and utilization of study area.
     This article selects Dongsha which has a large area in radial sandbank ridges as the study area, firstly, builds tidal flat elevation models by using waterlines picked up by multi-temporal RS images, takes multi-period tidal flat elevation model as data source, combines qualitative description and quantitative calculation, uses remote sensing and GIS methods to study the erosion and deposition variation trend of Dongsha, focus on the amount change of sediment erosion and deposition, the change of erosion and deposition rate, the change of erosion and deposition transport rate and the change of erosion and deposition transport direction, explores the factors that affect erosion and deposition seasonal changes. Study include:(1)Seasonal changes in the amount of erosion and deposition. Study takes DEM built by season as the data source, converts raster data into text files, delineates different contour lines with equal interval, separately calculates erosion and deposition area and erosion and deposition volume under different contour levels, and then calculates the amount of erosion and deposition, and finally analysts the regulations of seasonal change in the amount of erosion and deposition and its influencing factors.(2)Change of erosion and deposition rate. Take the minus operation using DEM which has been extracted, obtain raster data which represents the difference in value of DEM, focuses on the calculation of the "imaging time" of DEM, obtains the result of erosion and deposition rate, and finally analysts the change regulations of erosion and deposition rate and its influencing factors.(3)Seasonal change of erosion and deposition transport rate and direction. Firstly, the study takes the intersection operation and the minus operation using the DEM models, calculates gradient and gradient direction of the raster image which is represented the transport rate and transport direction, explores the display form of a diagram using transport rate data and transport direction data, so that clearly shows the change of erosion and deposition transport rate and transport direction, and finally analysts the regulations of seasonal change of erosion and deposition transport rate and transport direction and its influencing factors.
     The results of the study include:(1)The amount of erosion and deposition in autumn and winter is significantly higher than in spring and summer. The amount in spring is almost the same with it in autumn; the amount is lowest in summer. Seasonal changes in the amount of erosion and deposition are closely related with wing and waves, tidal range, tidal current, tidal creek systems and other factors.(2)The maximum point of erosion and deposition rate of the whole region is concentrated in the tidal creek densely area. Tidal flat has the trend of moving to the west north side.(3)The study area, There is the obvious convergence and dispersion phenomena of the transport direction. The region in which transport direction is convergence represents deposition. On the contrary, the region in which transport direction is dispersion represents erosion. Transport rate is large in the tidal creek densely area.
引文
[1]国家发展改革委.江苏沿海开发战略[S].2009
    [2]省发展改革委,省沿海办.江苏沿海滩涂围垦及开发利用规划纲要[S].2011
    [3]王宝灿,黄仰松.海岸动力地貌[M].上海:华东师范大学出版社.1989:217
    [4]张忍顺,陈才俊.江苏岸外沙洲演变与条子泥并陆前景研究[M].北京:海洋出版社.1992:24-27
    [5]杨忆,赵英时.全新世海侵痕迹遥感信息特征提取方法研究[J].地理研究.1996(1):73-81
    [6]汪小钦,陈崇成.遥感在近岸海洋环境监测中的应用[J].海洋环境科学.2000(4):72-76
    [7]王敬贵,杨晓梅,杜云艳等.海岸带影像数据库的设计与集成方法[J].地球信息科学.2002(4):16-23
    [8]Timothy David A., Soon Maureen Y. S., Calvert Stephen E. Settling fluxes in Saanich and Jervis Inlets, British Columbia, Canada:sources and seasonal patterns[J]. Progress In Oceanography.2003, 59 (1):31-73
    [9]Prandle D., Ballard G., Flatt D.et al. Combining modelling and monitoring to determine fluxes of water, dissolved and particulate metals through the Dover Strait[J]. CONTINENTAL SHELF RESEARCH.1996,16 (7):235-257
    [10]Baumert H., Chapalain G.. Smaoui H.et al. Modelling and numerical simulation of turbulence, waves and suspended sediments for pre-operational use in coastal seas[J]. COASTAL ENGINEERING. 2000,41 (1-3):63-93
    [11]Morehead M. D., Syvitski J. P., Hutton Ewhet al. Modeling the temporal variability in the flux of sediment from ungauged river basins[J]. GLOBAL AND PLANETARY CHANGE.2003,39 (1-2): 95-110
    [12]Engelund Frank, Fredsoe Jorgen. A Sediment Transport Model for Straight Alluvial Channels[J]. Nordic Hydrology.1976,7 (5):293-306
    [13]张红武,赵连军,王光谦等.黄河下游河道准二维泥沙数学模型研究[J].水利学报.2003(4):1-7
    [14]吴永胜,王兆印.渤海动力对黄河入海泥沙输移的影响[J].黄渤海海洋.2002(2):22-30
    [15]Lee Jae Ii, Clift Peter D., Layne Grahamet al. Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains[J]. Sedimentary Geology.2003,160 (1-3):243-257
    [16]Tallberg P., Koski-Vahala J., Hartikainen H. Germanium-68 as a tracer for silicon fluxes in freshwater sediment[J]. WATER RESEARCH.2002,36 (4):956-962
    [17]Dearing J. A., Jones R. T. Coupling temporal and spatial dimensions of global sediment flux through lake and marine sediment records E-4206-2010[J]. GLOBAL AND PLANETARY CHANGE.2003,39 (1-2):147-168
    [18]许炯心.黄河下游泥沙淤积的经验统计关系[J].地理研究.1997(1):23-30
    [19]程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算[J].地理学报.1984(4):418-427
    [20]陈子燊.伶仃河口湾铜鼓水域水沙净输运分析[J].海洋工程.1999,17(1):79-85
    [21]Ogston A. S., Guerra J. V., Sternberg R. W. Interannual variability of nearbed sediment flux on the Eel River shelf, northern California[J]. Continental Shelf Research.2004,24 (1):117-136
    [22]Christie M. C., Dyer K. R., Turner P. Sediment flux and bed level measurements from a macro tidal mudflat[J]. ESTUARTNE COASTAL AND SHELF SCIENCE.1999,49 (5):667-688
    [23]沈健,沈焕庭,潘定安等.长江河口最大浑浊带水沙输运机制分析[J].地理学报.1995,50(5):411-420
    [24]Mclaren P. An interpretation of trends in grain size measurement[J]. Journal of sedimentary Petrology.1981,15:611-624
    [25]Gao S., Collins M. A Critique of the McLaren Method(quote)for Defining Sediment Transport Paths[J]. Journal of sedimentary petrology.1991,61:143-146
    [26]曹祖德,王桂芬.波浪掀沙-潮流输沙的数值模拟[J].海洋学报.1993,15(1):107-118
    [27]董礼先,苏纪兰,王康墡.黄渤海潮流场及其与沉积物搬运的关系[J].海洋学报(中文版).1989(1):102-114
    [28]Liang B. C, Li H. J., Lee D. Y. Numerical study of three-dimensional suspended sediment transport in waves and currents[J]. OCEAN ENGINEERING.2007,34 (11-12):1569-1583
    [29]王海龙,李国胜.黄河入海泥沙在渤海中悬移输送季节变化的数值研究[J].海洋与湖沼.2009,40(2):129-137
    [30]Koide Minoru, Bruland Kenneth W., Goldberg Edward D.228Th/232Th and 210Pb geochronologies in marine and lake sediments[J]. Geochim Cosmochim Ac.1973,37:1171-1187
    [31]Delaune R. D., Patrick W. H., Buresh R. J. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh[J]. Nature.1978,275:532-533
    [32]Gao Shu, Collins Michael. Modelling exchange of natural trace sediments between an estuary and adjacent continental shelf[J]. Journal Of Sedimentary Research.1992,62 (1):35-40
    [33]Heathershaw A. D., Carr A. P. Measurements of sediment transport rates using radioactive tracers. In:Coastal Sediments [J].1977:399-416
    [34]高抒.示踪沉积物方法的理论框架[J].科学通报.2000,45(3):329-334
    [35]Einstein H. A. The bed-load function for sediment transportation in open channel flows[M]. Washington D.C.:Tech. Bull.1026, Soil Conserve. Serv., U.S. Dep. Of Agric.1950
    [36]Misri R. L., Garde R. J., Raju Kgr. BED-LOAD TRANSPORT OF COARSE NONUNEFORM SEDIMENT-CLOSURE[J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE.1984,110 (6): 312-328
    [37]Wiberg P. L., Smith J. D. MODEL FOR CALCULATING BED-LOAD TRANSPORT OF SEDIMENT[J]. JOURNAL OF HYDRAULIC ENGINEERING-ASCE.1989,115 (1):101-123
    [38]Hsu Shaohua Marko, Jr M. Holly. Conceptual bed-load transport model and verification for sediment mixture [J]. Journal of Hydraulic Engineering.1992,118 (8):1135-1152
    [39]Grochowski N. T. L., Collins M. B., Boxall S. R.et al. Sediment transport predictions for the English Channel, using numerical models[J]. Journal Of The Geological Society.1993,150 (4) 683-695
    [40]Shepard Francis P. Beach cycles in Southern California[J]. U.S. Army Corps of Engrs, Beach Erosion Board Tech Memo.1950 (20):26
    [41]Anderson F. E. The northern muddy intertidal:Seasonal factors controlling erosion and deposition--A Review[J].Can. J. Fish. Aquat. Sci.1983,40 (1):143-159
    [42]李炎,张立人,谢钦春.浙江象山大目涂淤泥质潮滩发育的周期性[J].海洋学报(中文版).1987,9(6):725-734
    [43]章可奇,金庆祥,王宝灿.杭州湾北岸张家厍潮滩动态系统的频谱分析[J].海洋与湖沼.1994,25(4):446-451
    [44]陈卫跃.潮滩泥沙输移及沉积动力环境——以杭州湾北岸、长江口南岸部分潮滩为例[J].海洋学报.1991,13(6):813-821
    [45]杨世伦.风浪在开敞潮滩短期演变中的作用——以南汇东滩为例[J].海洋科学.1991(2):59-64
    [46]季子修,蒋自巽,朱季文等.海平面上升对长江三角洲和苏北滨海平原海岸侵蚀的可能影响[J].地理学报.1993,48(6):516-526
    [47]何小勤,戴雪荣,顾成军.崇明东滩不同部位的季节性沉积研究[J].长江流域资源与环境.2009,19(2):157-162
    [48]徐元,王宝灿.淤泥质潮滩季节性冲淤状态的探讨——以杭州湾北岸张家厍潮滩为例[J].华东师范大学学报(自然科学版).1885(4):88-96
    [49]宋召军,黄海军,王珍岩等.苏北潮滩的近期变化分析[J].海洋科学.2008,32(6):25-29
    [50]张忍顺,王雪瑜.江苏省淤泥质海岸潮沟系统[J].地理学报.1991,46(2):195-206
    [51]张忍顺.淤泥质潮滩均衡态——以江苏辐射沙洲内缘区为例[J].科学通报.1995,40(4)347-350
    [52]贾建军,汪亚平,高抒等.江苏大丰潮滩推移质输运与粒度趋势信息解译[J].科学通报.2005,50(22):2546-2554
    [53]陈君.江苏岸外条子泥沙洲潮盆——潮沟系统特征及其稳定性[D]:南京师范大学.2002
    [54]杨桂山,施雅风,季子修.江苏淤泥质潮滩对海平面变化的形态响应[J].地理学报.2002,57(1):76-84
    [55]申宪忠,仲德林,张凤岐.利用陆地卫星象片对江苏潮流沙脊群的分析研究[J].黄渤海海洋.1983,1(1):74-79
    [56]黄海军,李成治.南黄海海底辐射沙洲的现代变迁研究[J].海洋与湖沼.1998,29(6)640-645
    [57]刘永学,张忍顺,李满春.质心分析法在小沙洲动态演化分析中的应用——以江苏辐射沙洲亮月沙为例[J].海洋通报.2004,23(1):69-75
    [58]吴曙亮,蔡则健.江苏省沿海沙洲及潮汐水道演变遥感分析[J].国土资源遥感.2002(3):29-32
    [59]刘永学,张忍顺,李满春.应用卫星影像系列海图叠合法分析沙洲动态变化——以江苏东沙为例[J].地理科学.2004,24(2):199-204
    [60]陆丽云,张忍顺,陈君.江苏沿海辐射沙洲开发利用的前景[J].南京师大学报(自然科学版).2002(3):18-24
    [61]任美锷.江苏省潮滩带和海涂资源综合调查报告[M].北京:海洋出版社.1985:122-134
    [62]中国科学院海洋研究所情报研究室.苏北长江口区海岸动力地貌调查研究报告[M].1980:1-120
    [63]沈明球,房建孟,高爱仙.影响上海市及邻近区域台风的灰色预测[J].台湾海峡.1999(3):235-238
    [64]任美锷.江苏省海岸带和滩涂资源综合调查报告[M].北京:科学出版社.1986:122-134
    [65]李成治,李本川.苏北沿海暗沙成因的研究[J].海洋与湖沼.1981,12(4):321-331
    [66]赵松龄.苏北浅滩成因的最新研究[J].海洋地质与第四纪地质.1991(3):105-112
    [67]周长振,孙家淞.试论苏北岸外浅滩的成因[J].海洋地质研究.1981(1):83-91
    [68]杨长恕.弶港辐射沙脊成因探讨[J].海洋地质与第四纪地质.1985(3):35-44
    [69]朱永其,曾成开,冯韵.东海陆架地貌特征[J].东海海洋.1984(2):1-13
    [70]王建,闾国年,林珲等.江苏岸外潮流沙脊群形成的过程与机制[J].南京师大学报(自然科学版).1998(3):99-112
    [71]李从先,张家强,杨守业等.苏北陆上潮成砂体的特征和古环境演化[J].中国科学(D辑:地球科学).1998(5):418-424
    [72]张忍顺.历史时期的江苏岸外沙洲及其演变[M].历史地理.上海:人民出版社.1990:45-58
    [73]李志林,朱庆.数字高程模型[M].武汉:武汉大学出版社.2003:13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700