道桥结构健康监测中的数据甄别处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道路桥梁等大型土木工程结构物的健康监测系统是目前世界范围内研究的热点问题之一,而各种监测系统中最重要的部分则是对监测数据的分析处理。特别对于无线传感器网络而言,监测数据的传输效率往往是整个系统成败的关键。在监测数据无线传输之前,对监测数据进行甄别可以有效减小数据传输量,提高传输效率,保证监测预警系统的实时性和有效性。我国从20世纪90年代中后期开始研究自动化的结构健康监测平台,虽然取得了一定的效果,但是对于监测数据自适应甄别处理的研究还不是很理想。
     为了在监测过程中能够有效的对数据进行自适应甄别处理,避免传输信道因海量监测数据而发生传输滞后现象,影响预警平台的实时性和有效性。本文结合国家高技术发展计划—“863”计划:“大范围季节冰冻区道路灾害参数监测与辨识预警系统研究”,并根据课题中有关数据甄别的研究要求,在阅读大量相关文献的基础上,通过将传统与现代数据分析处理技术相结合的方法实现了监测数据的自适应甄别处理过程:
     1、对边坡、路基和桥梁结构的监测过程进行了分析,对各种结构的监测参数特点进行了分析。明确了边坡、路基、桥梁的主要监测参数,确定了整个监测过程中实时监测数据甄别的基本框架和流程。
     2、提出了一种基于时间序列算法(ARMA)的数据甄别模型,实现了边坡位移、路基沉降实时监测数据的自适应甄别处理。通过室内试验和实际工程两方面验证了该方法的可行性和有效性。
     3、形成了一种基于灰色关联度理论的桥梁动力响应监测数据甄别方法,此方法能够剔除外界温度对监测数据的影响。使用该方法能够实现桥梁结构动力响应数据的自适应甄别处理。通过在长春市硅谷立交桥监测中的应用,验证了该方法的可行性和有效性。
     在监测数据的自适应甄别处理上,首先将监测传感器采集到的原始监测数据通过有线的方式存储到基站计算机的数据库中。然后在基站计算机中,通过编制的自适应甄别程序对数据进行甄别处理。最后,对于需要发送到预警平台的监测数据,使用3G无线网络进行发送,对于甄别后的无效数据则保存在基站计算机中一段时间后,自动清除,以保证基站计算机有足够的空间来实现监测数据的存储和甄别过程。
     在对边坡、路基监测数据进行甄别处理之前,首先要对监测传感器采集到的原始监测数据进行预处理,即保证监测数据的连续性和准确性。由于边坡路基是长时间处于稳定状态的结构,而且拉绳式位移计和精密单点位移计均是深埋入其中的,因此监测数据相对准确,受到外界的影响较小。因此,认为两种结构的监测数据受到噪声的影响不大。故使用不复杂的去噪方法对原始监测数据进行预处理。同时,由于太阳能供电可能导致电压不稳等客观原因,一般会产生监测传感器的漏采现象:即数据采集不是等时间间距的。为了不改变监测数据的性质,需要对漏采数据进行补齐。针对边坡路基数据本文使用拉格朗日插值的方法对其进行补齐。在对原始监测数据进行了以上预处理过程之后,需对数据进行平稳化处理。一般情况下,监测到的数据均是非平稳的时序,这时,可以使用差分的办法对数据序列进行差分处理,并对差分后的数据序列进行自相关系数检验以便保证数据序列已经近似为平稳时序,可以用来进行ARMA建模。在监测数据的ARMA甄别模型建立过程中,作者通过借鉴其参数的求解方法推导了ARMA数据甄别模型的计算公式,并对模型的求解方法进行了详细阐述。最后,对推导出的计算公式进行编程,并在室内试验过程中对此方法进行了验证,在取得了很好的甄别效果后,将其应用于长春地铁西客站和国道“102”线的监测工程当中,取得了良好的效果。
     在桥梁的监测数据甄别上,首先通过FFT变换将传感器采集的加速度响应计算为桥梁的实时频率数据,并通过二元回归分析剔除外界温湿度对其实时频率数据灰色关联度的影响。然后继续使用灰色关联度算法,将计算出的桥梁前4阶频率与桥梁初始状态的频率进行比较。以监测数据作为比较序列,以桥梁结构初始状态的频率作为原始序列。对于比较后,灰色关联度大于阈值的频率作为安全数据不对其进行无线传输发送;对于比较后,灰色关联度小于阈值的频率值作为不安全数据,将其通过3G无线网络发送到预警平台进行判断。将以上过程进行编程以实现桥梁监测数据的自适应甄别处理,并将其应用于长春市硅谷立交桥的监测工程中,取得了很好的监测效果。
At present, health monitoring system of road and bridge structures is one of the mostpopular research directions in the world. And in the health monitoring system, the mostimportant part is the analysis of monitoring data. In addition, especially for the wirelesssensor networks, the data transfer efficiency is the key to the success of the entire healthmonitoring system. Before the wireless transmission of monitoring data, the discriminationof monitoring data can effectively reduce the amount of data to be transported and also canimprove the efficiency of the transmission, so that it can ensure the real-time andeffectiveness of monitoring and warning system. In China, the study of automated structuralhealth monitoring platform is from the late1990s. Although we have obtained some goodachievements, for the adaptive discrimination processing of monitoring data is not to besatisfied.
     In order to solve the adaptive discrimination processing of monitoring data during themonitoring process and avoid the transmission channel lag phenomenon due to the mass ofmonitoring data which would affect the real-time and effectiveness of warning platform, wehave analyzed the monitoring process of slope, subgrade and bridges on the basis of readinglots of relevant literatures. Then, we study on the features of monitoring parameters of thethree structure above combined with the National High Technology Research andDevelopment Program ("863"Program) of China named “The research of wide range seasonfrozen road disasters parameter monitoring and identification of warning system” andaccording to the research topics in the data discrimination requirements.
     1. We analyze the monitoring process of slope, subgrade and bridge structure. Themonitoring parameters of these structure are studied. Then the frame of data discriminationwere determined.
     2. ARMA data discrimination algorithm based on modern time series model has beendecided, and the setting up and solving process is derived in detail and elaboration. Slopedisplacement, subgrade settlement of the real-time monitoring data adaptive discriminationprocess were established. Feasibility and effectiveness of this method are verified throughlaboratory tests and practical engineering.
     3. Dynamic response of the gray relational theory-based bridge monitoring data discrimination is established, and the discrimination model and solution procedure areanalyzed in detail. Adaptive discrimination of bridge frequency data is realized. In the modelbuilding process, the use of binary regression analysis of gray relational grade of thereal-time frequency data corrected to standard temperature, thus excluding the impact ofoutside temperature change. This method is applied to the Changchun City, Silicon Valleyoverpass monitoring projects, to verify the feasibility and effectiveness of discrimination onthe bridge dynamic response data.
     And on the adaptive discrimination processing of monitoring data, we first save themonitoring data into the database of base station computer. This stored procedure is finishedby the transmission line connected with monitoring sensors and base station computer.Secondly, we realize the adaptive discrimination processing of monitoring data byprogramming in the base station computer. Finally, after the data discrimination, for themonitoring data need to be send to the warning platform, we use3G Wireless Networks toconduct the transmission process. After data discrimination, the invalid monitoring data isstored in base station computer for some time, and then it would be automatically cleared toensure that the base station computer has enough space to store monitoring data andcomplete the process of data discrimination. On the algorithm of data adaptivediscrimination processing, after comparative study of a variety methods of datadiscrimination, we decide that the slope displacement data and subgrade settlement data areusing time series methods to data discrimination. However, the bridge frequency data areusing the gray grey correlation method to discriminate.
     Before the discrimination of displacement data of slope and subgrade, we must do somepretreatment to the original monitoring data collected through the monitoring sensors in filedso that we can ensure continuity and accuracy of monitoring data. Because slope andsubgrade structure is also in a stable state for a long time, and the rope type displacementmeter and precision single-point displacement meter are buried deep into the slope andsubgrade, respectively, the monitoring data of the two meters is relatively accurate and lesssubject to outside influence. On this basis, we believe that the two structural monitoring datais not much affected by noises. Thus, we use simple denoising method to preprocess the rawmonitoring data. At the same time, because solar power supply may lead to voltageinstability and for other objective reasons, it will generally have a monitoring sensor leakagephenomenology: the data acquisition is not the equal time interval. So for the nature ofmonitoring data could not be changed, we need to fill the data which is lacking. In this paper, we use lagrange interpolation method to fill the data. After the pretreatment process above,we need to test the stationarity of the monitoring data. Under normal circumstances, themonitoring data are non-steady time series. We usually use the differential approach to treatthe monitoring data sequence and then test the self-correlation coefficient in order to the datasequence has become stationary time series. Then we can use it for the ARMA modeling.During the ARMA modeling of monitoring data discrimination, the author use the solutionof how to solve the parameter to derive the formula of ARMA modeling and describe thesolution process in detail. Finally, we use the derived formula for programming. Then, thismethod is validated in the room test and obtains a good discriminate effect. After that, weapply the method to Changchun Metro West Railway Station and State Road “102” linemonitoring project and it is also has achieved good results.
     In discrimination of bridge monitoring data, we first calculate the bridge frequencythrough the FFT transform using the acceleration response data. Then, we use greycorrelation algorithm to compare the bridge frequency with the initial state of bridge. We usethe monitoring data as the comparison sequence and the frequency of the initial state of thebridge structure as the original sequence. After comparison, if gray relational degree of themonitoring is greater than the threshold frequency, we regard it as the safety data and won’tsend it wirelessly. On the opposite side, we send the data whose relational degree is less thanthe threshold frequency to the warning platform to judge. We use the method above forprogramming in order to realize the adaptive discrimination of bridge monitoring data andwe do the indoor experiments. After achieving better results in the laboratory test, we use itfor the bridge monitoring in Changchun City and have a good monitoring effect.
引文
[1]川谢强,薛松涛.土木工程结构健康监测的研究现状与进展[J].中国科学基金,2001,5:285-288
    [2]搜狐网.国外桥梁坍塌事故[N].2008,6
    [3]腾讯网.细数中国最近几年的塌桥事故中国桥梁的非正常死亡[N].2011,8
    [4]陈世民.桥梁监测系统中海量数据分析理论与应用[D],重庆大学,2011,5
    [5] Rosemarie Helmerich, Ernst Niederleithinger, Herbert Wiggenhauser. Toolbox withNondestructive Testing Methods for Condition Assessment of Railway Bridges [J].Transportation Research Record: Journal of the Transportation Research Board Volume.2006:65-73
    [6] Christian U. Grosse, Markus Krüger. Wireless acoustic emission sensor networks forstructural health monitoring in civil engineering [M].2006
    [7] Charles R Farrar, Keith Worden. An introduction to structural health monitoring [J]. Phil.Trans. R. Soc. A,2007,365(1851):303-315
    [8] Yang Wang, Jerome P. Lynch, Kincho H. Law. A wireless structural health monitoringsystem with multithreaded sensing devices: design and validation [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2007,3(2):103-120
    [9] Mustafa Gul, F. Necati Catbas. Ambient Vibration Data Analysis for StructuralIdentification and Global Condition Assessment [J]. Journal of Engineering Mechanics,2008,134(8):650-663
    [10] N. Metje, D.N. Chapman, C.D.F. Rogers, P. Henderson, M. Beth. An Optical FiberSensor System for Remote Displacement Monitoring of Structures—Prototype Testsin the Laboratory [J]. Structural Health Monitoring,2008,7(1):51-63
    [11] F. Necati Catbasa, Melih Susoyb, Dan M. Frangopolc. Structural health monitoring andreliability estimation: Long span truss bridge application with environmentalmonitoring data [J]. Engineering Structures,2008,30(9):2347-2359
    [12] Daniele Posenatoa, Francesca Lanatab, Daniele Inaudi, Ian F. C. Smith. Model-free datainterpretation for continuous monitoring of complex structures [J]. AdvancedEngineering Informatics,2008,22(1):35-144
    [13] Jian-Huang Weng, Chin-Hsiung Loh, Jerome P. Lynch, Kung-Chun Lu, Pei-Yang Lin,Yang Wang. Output-only modal identification of a cable-stayed bridge using wirelessmonitoring systems [J]. Engineering Structures,2008,30(7):1820-1830
    [14] Samir N. Shoukrya, Mourad Y. Riadb. Longterm sensor-based monitoring of an LRFDdesigned steel girder bridge [J]. Engineering Structures,2009,31(12):2954-2965
    [15] Attoh-Okine, N, Mensah, S.A. Sensor Fusion and Civil Infrastructure SystemsMonitoring: A Valuation Algebras Analysis of Output Data [J]. Sensors Journal, IEEE,2009,9(11):1518-1526
    [16] Mustafa Gul, F. Necati Catbas. Statistical pattern recognition for Structural HealthMonitoring using time series modeling: Theory and experimental verifications [J].Mechanical Systems and Signal Processing,2009,23(7):2192-2204
    [17] Ince, N.F, Chu-Shu Kao, Kaveh, M, Tewfik, A, Labuz, J.F. Averaged acoustic emissionevents for accurate damage localization [J]. IEEE International Conference, Acoustics,Speech and Signal Processing, ICASSP2009
    [18] Ki-Young Koo, Seunghee Park, Jong-Jae Lee, Chung-Bang Yun. AutomatedImpedance-based Structural Health Monitoring Incorporating Effective FrequencyShift for Compensating Temperature Effects [J]. Journal of Intelligent MaterialSystems and Structures,2009,20(4):367-377
    [19] Jyrki Kullaa. Eliminating Environmental or Operational Influences in Structural HealthMonitoring using the Missing Data Analysis [J]. Journal of Intelligent MaterialSystems and Structures,2009,20(11):1381-1390
    [20] Seda alapa, Mahmut Onur Karsl o lua, Nuray Demirelb. Development of a GIS-basedmonitoring and management system for underground coal mining safety [J].International Journal of Coal Geology,2009,80(2):105-112
    [21] Hongqin Fan, Osmar R. Za ane, Andrew Foss, Junfeng Wu. Resolution-based outlierfactor: detecting the top-n most outlying data points in engineering data [J].KNOWLEDGE AND INFORMATION SYSTEMS,2009,19(1):31-51
    [22] Picozzi. M, Milkereit. C, Zulfikar. C, Ditommaso. R, Erdik. M, Safak. E, Fleming. K,Ozel.O, Zschau. J, Apaydin. A. Wireless technologies for the monitoring of strategiccivil infrastructures: an ambient vibration test of the Faith Bridge, Istanbul, Turkey [J].EGU General Assembly,2009
    [23] A.J. Cardini, J.T. DeWolf. Long-term Structural Health Monitoring of a Multi-girderSteel Composite Bridge Using Strain Data [M],2009
    [24] Filipe Magalh es, álvaro Cunha, Elsa Caetano. Online automatic identification of themodal parameters of a long span arch bridge [J]. Mechanical Systems and SignalProcessing,2009,23(2):316–329
    [25] Mohammad Karamouz, Amir Khajehzadeh Nokhandan, Reza Kerachian, edoMaksimovic. Design of on-line river water quality monitoring systems using theentropy theory: a case study [J]. ENVIRONMENTAL MONITORING ANDASSESSMENT,2009,155(1-4):63-81
    [26] Changyoon Kim, Hyoungkwan Kim, Yeonjong Ju. Bridge Construction ProgressMonitoring Using Image Analysis [J].26th International Symposium on Automationand Robotics in Construction (ISARC2009)
    [27] Gwanghee Heo, Joonryong Jeon. A smart monitoring system based on ubiquitouscomputing technique for infra-structural system: Centering on identification ofdynamic characteristics of self-anchored suspension bridge [J]. KSCE JOURNAL OFCIVIL ENGINEERING,2009,13(5):333-337
    [28] Bart Peetersa, G. Couvreurb, O. Razinkovb, C. Kündigb, H. Van der Auweraera, G. DeRoeckc. Continuous monitoring of the resund Bridge: system and data analysis [J].Structure and Infrastructure Engineering: Maintenance, Management, Life-CycleDesign and Performance,2009,5(5):395-405
    [29] Matteo Ceriotti, Luca Mottola, Gian Pietro Picco, Amy L. Murphy, Stefan Guna,Michele Corra, Matteo Pozzi, Daniele Zonta, Paolo Zanon. Monitoring heritagebuildings with wireless sensor networks: The Torre Aquila deployment,'09Proceedings of the2009International Conference on Information Processing in SensorNetworks:277-288
    [30] Bosma Carlos F, Galenkamp Hessel F, Obladen Bas, Van Breugel Klaas, KoendersEddy A. B. Bridge Management by Modelling, Monitoring and Experimental Research[J]. IABSE Symposium Report, Venice2010,(8):54-61
    [31] Oliver R. de Lautour, Piotr Omenzetter. Nearest neighbor and learning vectorquantization classification for damage detection using time series analysis [J].Structural Control and Health Monitoring,2010,17(6):614-631
    [32] Lee Canning, Sam Luke. Technical Papers: Development of FRP Bridges in the UK-An Overview [J]. Advances in Structural Engineering,2010,13(5):823-835
    [33] Nader M. Okasha, Dan M. Frangopol. Integration of structural health monitoring in asystem performance based life-cycle bridge management framework [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2010
    [34] R Zaurin, F N Catbas. Integration of computer imaging and sensor data for structuralhealth monitoring of bridges [J]. Smart Mater. Struct,2010,19(1):15-19
    [35] Glauco Feltrin, Jonas Meyer, Reinhard Bischoff, Masoud Motavalli. Long-termmonitoring of cable stays with a wireless sensor network [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2010,6(5):535-548
    [36] M. Rivas Lopez, O. Yu. Sergiyenko, V. V. Tyrsa, W. Hernandez Perdomo, L. F. DeviaCruz, D. Hernandez Balbuena, L. P. Burtseva, J. I. Nieto Hipolito. OptoelectronicMethod for Structural Health Monitoring [J]. Structural Health Monitoring,2010,9(2):105-120
    [37] Ibrahim. M. R, Jaafar. J, Yahya. Z, Samad, A. M. A feasibility study of buildingstructural deformation monitoring using Global Positioning System (GPS), terrestrialsurveying technique (TST) and crack gauge measurement (CGM)[J]. SignalProcessing and Its Applications (CSPA),2010,5
    [38] LM Zhang, Tong Wang, Yukio Tamura. A frequency–spatial domain decomposition(FSDD) method for operational modal analysis [J]. Mechanical Systems and SignalProcessing,2010,24(5):1227-1239
    [39] Daniele Posenato, Prakash Kripakaran, Daniele Inaudi, Ian F.C. Smith. Methodologiesfor model-free data interpretation of civil engineering structures [J]. Computers&Structures,2010,88(7-8):467-482
    [40] Maria I. Todorovska, Mihailo D. Trifunac. Earthquake damage detection in the ImperialCounty Services Building II: Analysis of novelties via wavelets [J]. Structural Controland Health Monitoring,2010,17(8):895-917
    [41] Jennifer A. Rice, Kirill Mechitov, Sung-Han Sim, Tomonori Nagayama, Shinae Jang,Robin Kim, Billie F. Spencer, Jr, Gul Agha, Yozo Fujino. Flexible smart sensorframework for autonomous structural health monitoring. Smart Structures and Systems,2010,6(5-6):423-438
    [42] Kyung Jun Gil, Prasetiyo, R.B, Hyun Ju Park, Sang Boem Lim, Yang Dam Eo. Firemonitoring system based on Open Map API [J]. Networked Computing and AdvancedInformation Management (NCM),2010
    [43] Fanis Moschas, Stathis Stiros. Measurement of the dynamic displacements and of themodal frequencies of a short-span pedestrian bridge using GPS and an accelerometer[J]. Engineering Structures,2011,33(1):10-17
    [44] H. Burak Gokce, F. Necati Catbas, Dan M. Frangopol. Evaluation of Load Rating andSystem Reliability of Movable Bridge [J]. Transportation Research Record: Journal ofthe Transportation Research Board,2011,22(51):114-122
    [45] Seunghee Park, Ju-Won Kim, Changgil Lee, Sun-Kyu Park. Impedance-based wirelessdebonding condition monitoring of CFRP laminated concrete structures [J]. NDT&EInternational,2011,44(2):232-238
    [46] Kerri Stone, Charles Oden, Brian Hoenes, Tracy Camp. Hardware for a WirelessGeophysical Monitoring Testbed [M],2011
    [47] Bocca. M, Toivola. J, Eriksson. L. M, Hollmén. J, Koivo. H. Structural HealthMonitoring in Wireless Sensor Networks by the Embedded Goertzel Algorithm [J].Cyber-Physical Systems (ICCPS),2011
    [48] Anne S. Kiremidjian, Garo Kiremidjian, Pooya Sarabandi. A wireless structuralmonitoring system with embedded damage algorithms and decision support system [J].Structure and Infrastructure Engineering: Maintenance, Management, Life-CycleDesign and Performance,2011,7(12):881-894
    [49] Maurizio Bocca, Lasse M. Eriksson, Aamir Mahmood, Riku J ntti, Jyrki Kullaa. ASynchronized Wireless Sensor Network for Experimental Modal Analysis in StructuralHealth Monitoring [J]. Computer-Aided Civil and Infrastructure Engineering,2011,26(7):483-499
    [50] C. Rainieri, G. Fabbrocino, E. Cosenza. Integrated seismic early warning and structuralhealth monitoring of critical civil infrastructures in seismically prone areas [J].Structural Health Monitoring,2011,10(3):291-308
    [51] Jeffry Neil Sundermeyer, Nitin R. Patel, Ryan Paul Allgaier, Don Sit, Timothy AllenVik, Jeffrey Dale Baskett, Hiroko Kyuba, Daniel Kimsey Dunn, Byron Edwin Truax,Burton Roland Clarke. Systems and methods for maintaining load histories [P],2011
    [52] E. Caetano, S. Silva, J. Bateira. A VISION SYSTEM FOR VIBRATIONMONITORING OF CIVIL ENGINEERING STRUCTURES [J]. ExperimentalTechniques,2011,35(4):74–82
    [53] Brownsell. S, Bradley. D, Cardinaux. F, Hawley, M. Developing a Systems andInformatics Based Approach to Lifestyle Monitoring within Health [J]. HealthcareInformatics, Imaging and Systems Biology (HISB),2011
    [54] Gaetana Ganci, Annamaria Vicari, Luigi Fortuna, Ciro Del Negro. The HOTSATvolcano monitoring system based on combined use of SEVIRI and MODISmultispectral [J]. ANNALS OF GEOPHYSICS,2011,54(5):5334-5338
    [55] William Quinn, Ger Kelly, John Barrett. Development of an embedded wireless sensingsystem for the monitoring of concrete [J]. Structural Health Monitoring,2012
    [56] Wen Xiong, C. S. Cai, Xuan Kong. Instrumentation design for bridge scour monitoringusing fiber Bragg grating sensors [J]. Applied Optics,2012,51(5):547-557
    [57] C. Rainieri, G. Fabbrocino, G. Manfredi, M. Dolce. Robust output-only modalidentification and monitoring of buildings in the presence of dynamic interactions forrapid post-earthquake emergency management [J]. Engineering Structures,2012,34:436-446
    [58] Junhee Kim, Jerome P. Lynch. Experimental analysis of vehicle–bridge interactionusing a wireless monitoring system and a two-stage system identification technique [J].Mechanical Systems and Signal Processing,2012
    [59] Fan Yang, Biao Wei. Optical Fiber Sensing Information Technology for Nuclear WasteRepository Monitoring [J]. ADVANCES IN COMPUTER, COMMUNICATION,CONTROL AND AUTOMATION, Lecture Notes in Electrical Engineering,2012,121:417-422
    [60] Xiangwu Li, Zhenglong Yan, Rui Zhuo. Key Issues of the Remote Monitoring-controlSystem of Sluice Gate in the Tarim River Basin [J]. Advances in Intelligent and SoftComputing,2012,114:953-962
    [61] T.Y. Liu, W.L. Chiang, C.W. Chen, W.K. Hsu, L.C. Lu, T.J. Chu. Identification andmonitoring of bridge health from ambient vibration data [J]. Journal of Vibration andControl,2011,17(4):589-603
    [62] Y. Q. Ni, K. Y. Wong, Y. Xia. Health Checks through Landmark Bridges to Sky-highStructures [J]. Advances in Structural Engineering,2011,14(1):103-119
    [63] Jun Hu, Xingzong Liu. Design and Implementation of Tailings Dam SecurityMonitoring System [J]. Procedia Engineering,2011,26:1914–1921
    [64] Wei Chuang, Huang Lin. Research on Monitoring System of Aquiculture withMulti-environmental Factors [J]. Wearable Computing Systems (APWCS),2010
    [65] Bo Chen, Wenjia Liu. Mobile Agent Computing Paradigm for Building a FlexibleStructural Health Monitoring Sensor Network [J]. Computer-Aided Civil andInfrastructure Engineering,2010,25(7):504–516
    [66] Y. L. Xu, B. Chen, C. L. Ng, K. Y. Wong, W. Y. Chan. Monitoring temperature effect ona long suspension bridge [J]. Structural Control and Health Monitoring,2010,17(6):632–653
    [67] Hong Zhang, Baocen Yang, Shengxiang Huang. Dynamic geometry monitoring systemand its application in Sutong Bridge construction [J]. GEO-SPATIAL INFORMATIONSCIENCE,2010,13(2):137-143
    [68] Zheng Ruan, Feng Li, Mei Gao, Wenhua Zhang, Lianshu Jie. Information Analysis andDissemination Using WebGIS-Based Mesoscale Weather Monitoring and Warning [J].Information Science and Engineering (ICISE),2009
    [69] Y. Q. Ni, Y. Xia, W. Y. Liao, J. M. Ko. Technology innovation in developing thestructural health monitoring system for Guangzhou New TV Tower [J]. StructuralControl and Health Monitoring,2009,16(1):73-98
    [70] W. C. Ko, C. W. Yu. Application of Gutenberg-Richter Relation in AE Data Processing[J]. International Journal of Applied Science and Engineering,2009.7(1):69-78
    [71] Y. Q. Ni, X. W. Ye and J. M. Ko. Monitoring-Based Fatigue Reliability Assessment ofSteel Bridges: Analytical Model and Application [J]. Journal of Structural Engineering,2009,136(12):38-50
    [72] J. M. Ko, Y. Q. Ni, H. F. Zhou, J. Y. Wang, X. T. Zhou. Investigation concerningstructural health monitoring of an instrumented cable-stayed bridge [J]. Structure andInfrastructure Engineering: Maintenance, Management, Life-Cycle Design andPerformance,2009,5(6):497-513
    [73] Mosbeh R. Kaloop, Hui Li. Monitoring of bridge deformation using GPS technique [J].KSCE JOURNAL OF CIVIL ENGINEERING,2009,13(6):423-431
    [74] Housner G W, Bergman L A, Caughey T K, et al. Structural control: past, present andfuture [J]. Journal of Engineering Mechanics,1997,123(9):897-971
    [75]陈晓鹏.岩体边坡监测信息管理与监测数据分析网络系统开发及工程应用[D],山东大学,2008
    [76] Hauser M A, Kunst R M. Forecasting High-frequency Financial Data with theARFIMA-ARCH Model [J]. Journal of Forecasting,2001,20(7):501-518
    [77] Hengl Tomislav, Heuvelink Gerard B. M., Per ec Tadi Melita, Pebesma Edzer J.Spatio-temporal prediction of daily temperatures using time-series of MODIS LSTimages [J]. Theoretical and applied climatology,2012,107-1:256-277
    [78] Ravi S. Slotting allowances: a time series analysis of aggregate effects over threedecades [J]. Journal of the Academy of Marketing Science,2011,36-4:122-133
    [79] Richard A. Davis, Keh-Shin Lii and Dimitris N. Politis. Statistical Spectral Analysis ofTime Series Arising From Stationary Stochastic Processes [J]. Selected Works ofMurray Rosenblatt,2011:52-73
    [80]张东明.边坡监测技术与数据处理方法的研究[J].科学技术与工程,2010,10(22):5539-5543
    [81]王海城,何义斌,王雯涛.沉降监测数据处理软件系统的设计与开发[J].测绘科学.2008,33(增2):205-208
    [82]李志成.沉降监测数据分析系统的设计与实现[J].测绘工程,2005,14(4):65-69
    [83]张勇,陈新民.地理信息系统在边坡数据处理中的应用[J].西部探矿工程.2003,87:177-179
    [84]王穗辉,变形数据处理、分析及预测方法若干问题研究[D].上海:同济大学,2007
    [85]吴小平.复杂桥梁结构综合监测系统开发研究[D].杭州:浙江大学,2005
    [86]杨雅勋.基于动力测试的桥梁结构损伤识别与综合评估理论研究[D].西安:长安大学.2008
    [87]姚智胜,基于实时数据的道路网短时交通流预测理论与方法研究[D]。北京:北京交通大学.2007
    [88]周西振,赵仲荣.坐标法监测基坑水平位移的精度分析及数据处理[J].地矿测绘,2005,21(1):10-12
    [89]范志龙,陈雪丰.基于MATLAB的高层建筑沉降变形监测数据处理[J].测绘与空间地理信息.2009,32(5):137-140
    [90]谭国金,宫亚峰,程永春,刘寒冰,王龙林.基于有载频率的简支梁桥自振频率计算方法[J].振动工程学报,2011,24(1):31-35
    [91]肖鸾.基于GPS的变形监测数据处理时间间隔的合理确定[J].河南理工大学学报(自然科学版),2008,27(4):414-419
    [92]徐寒,岳东杰.基坑工程安全监测及其数据处理分析[J].现代测绘,2004,27(6):26-28
    [93]谷政,褚保金,江惠坤.非平稳时间序列分析的WAVELET—ARMA组合方法及其应用[J].系统工程,2010,28(1):73-77
    [94]高宝成,时良平,史铁林,杨叔子.基于小波分析的简支梁裂缝识别方法研究[J].振动工程学报,1997,10(1):81-85
    [95]李惠彬,秦权,钱良忠.青马悬索桥的时域模态识别[J].土木工程学报,2001,34(5):52-56
    [96]张美英,何杰.时间序列预测模型研究简介[J].江西科学,2009,27(5):697-701
    [97]陈素维.时间序列在建筑结构振动分析中的应用[J].西安工程科技学院学报,2003,17(2):179-181
    [98]刘毅,李爱群,丁幼亮,费庆国.基于时间序列分析的结构损伤特征提取与预警方法[J].应用力学学报,2008,25(2):253-257
    [99]陈志为,林友勤,任伟新.用AR模型判断结构损伤的方法[J].福州大学学报(自然科学版),2005,33(增):301-304
    [100]周玉国,姚恩营.基于小波分析的时间序列建模与预测[J].微计算机信息,2009,25(12):57-61
    [101]佟伟民,李一军,单永正.基于小波分析的时间序列数据挖掘[J].计算机工程,2008,34(1):26-29
    [102]马强.时间序列数据挖掘在瓦斯监测中的应用[J].长治学院学报,2009,26(2):37-40
    [103]何小钰,贾硕,于重重.最小二乘和时序分析在桥梁监测数据回归分析中的应用[J].公路交通科技,2008年第8期:105-107
    [104]田胜利,徐东强,葛修润.大坝水平位移监测数据的小波变换去噪处理[J].水电自动化与大坝监测,2004,28(1):49-53
    [105]胡艳,王惠文.一种海量数据的分析技术—符号数据分析及应用[J].北京航空航天大学学报(社会科学版),2004,17(2):40-44
    [106]吴招才,刘天佑.地震数据去噪中的小波方法[J].地球物理学进展,2008,23(2):493-499
    [107]张正禄.工程的变形分析与预报方法研究进展[J].测绘信息与工程,2002,27(5):37-39
    [108]丁丽宏.基于改进的灰关联分析和层次分析法的边坡稳定性研究[J].岩土力学,2011,32(11):3437-3441
    [109]何书,王家鼎,王欢,韩晓萌.基于信息扩散和BP网络的黄土边坡稳定性分析[J].西北大学学报(自然科学版),2008,38(6):983-988
    [110]李梅,夏元友.基于灰色关联分析和案例推理的边坡稳定性评价方法[J].岩土工程技术,2004,18(3):109-112
    [111]苏忖安,盛松涛,陈红萍.边坡位移预测的混沌时间序列分析方法应用研究[J].中南公路工程,2006,31(6):5-7
    [112]张振华,冯夏庭,周辉,张传庆,崔强.基于设计安全系数及破坏模式的边坡开挖过程动态变形监测预警方法研究[J],岩土力学,2009,30(3):603-612
    [113]许江,季惠英,唐晓军.不等时距灰色模型的边坡位移预测及软件化[J],重庆大学学报,2008,31(5):563-567
    [114]许强,黄润秋,李秀珍.滑坡时间预测预报研究进展[J].地球科学进展,2004,19(3):478-483
    [115]何锋,胡志军,吴树仁.黄土坡滑坡变形的灰色预测模型[J].地质力学学报,2004,10(1):51-56
    [116]谭国金,王龙林,程永春基于灰色系统理论的寒冷地区斜拉桥索力状态预测方法[J].吉林大学学报(工学版),2011,41(增2):170-173
    [117]刘绍波.边坡数字无线监测系统关键技术研究[D].武汉:中国科学院武汉岩土力学研究所,2010.6
    [118]欧进萍,何林,肖仪清.基于ARMA模型和自由振动提取技术的海洋平台结构参数识别[J].应用数学和力学,2003,24(4):398-404
    [119]何书元.应用时间序列分析[M].北京:北京大学出版社,2003
    [120] Brockwell P J, Davis R A. Introduction to time series and forecasting (second edition)[M]. New York: Springer-Ver-lag,2002
    [121]蒋贤海.智能远程健康监护系统生理参数数据分析及预报的研究[D],广州:华南理工大学,2011
    [122]陈世民.桥梁监测系统中海量数据分析理论与应用[D].重庆大学,重庆,2011
    [123]陈建群.基于信号分析的结构模态参数提取方法[D].长安大学,西安,2009
    [124]刘天明.无粘结预应力钢—混凝土组合连续梁理论与试验研究[D].吉林大学,长春,2009
    [125]石双忠.基于小波技术的时序分析法用于GPS监测数据处理的研究[D].河海大学,南京,2004
    [126]岳东杰.水利水电工程变形监测中GPS技术与数据处理研究[D].河海大学,南京,2005
    [127]夏开旺,石双忠,杨永平.卡尔曼滤波在变形监测数据处理中的应用[J].三晋测绘,2004
    [128]冒爱泉.海堤工程施工监测技术与应用[D].河海大学,南京,2007
    [129]徐佩华.基于人工神经网络方法的锦屏一级水电站枢纽区高边坡稳定性分区研究[D].吉林大学,长春,2006
    [130]张福荣.自适应卡尔曼滤波在变形监测数据处理中的应用研究[D].长安大学,西安,2009
    [131]李俊峰.灰色系统理论及其在铁谱磨粒图像处理中的应用研究[D].东华大学,上海,2009
    [132]王海军.基于灰色系统理论的信息隐藏技术研究[D].西北工业大学,西安,2007
    [133]曹明霞.灰色关联分析模型及其应用的研究[D].南京航空航天大学,南京,2007
    [134]孙玉刚.灰色关联分析及其应用的研究[D].南京航空航天大学,南京,2007
    [135]杨强.基于IGS连续跟踪站的地壳垂直形变时间序列分析[D].山东科技大学,济南,2007
    [136]李扬.基于灰色系统理论的信息隐藏技术研究[D].西北工业大学,西安,2006
    [137]梅红.基于稳健估计的时序分析方法在变形监测中的应用[D].河海大学,南京,2005
    [138]胡国宏.基于灰色关联层次分析的点柱稳定性研究[D].中南大学,重庆,2009
    [139]陈晓鹏.岩体边坡监测信息管理与监测数据分析网络系统开发及工程应用[D].山东大学,济南,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700