基于螺旋线的岩土变形分布式测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来重大地质灾害事件频发对广大人民群众的生命和财产安全构成了严重的威胁。为了有效分析和评估地质灾害发生的风险,及时发布预警信息,由各类传感器构成的地质灾害监测系统正在全国各地广泛的建立起来。其中,岩土变形监测传感器是地质灾害监测系统的重要组成部分。
     当前岩土变形监测技术种类很多,各类传感器都其各自的优缺点和适用范围。岩土变形的发生在空间上具有不确定性,实际监测中需要一种分布式的测量技术。然而,光纤分布式变形监测技术由于局部变形量有限,在实际监测中容易发生断裂,无法完全满足地表变形分布式测量需要。针对上述问题,在研究当前各种时域反射测量探头的基础上,提出了一种基于时域反射技术的单层双线并绕螺旋线结构的岩土变形分布式测量电缆。该测量电缆由硅胶内芯、单层双线并绕螺旋线和外部硅胶保护套共同构成。与硬制探针型和圆柱容器型探头相比,螺旋线测量电缆可以实现结构变形的分布式测量;与同轴电缆的局部剪切变形测量相比,螺旋线可以用于局部拉伸变形测量而且在一定的拉伸范围内不会发生断裂。因此,螺旋线更加适合于地表岩土拉伸变形的分布式测量。
     测量探头的特性阻抗与其被测参数之间的相互关系是时域反射测量的基础。当前圆柱型和探针型探头的特性阻抗与其周围介质的介电常数之间的关系已经得到深入的研究,同轴电缆的截面变形与特性阻抗间的关系也得到了理论分析。因此,研究螺旋线拉伸变形与特性阻抗间的关系变得非常重要。针对这一关键问题,在分析一般传输线特性阻抗构成的基础上,提出了螺旋线特性阻抗的理论计算方法,并证明了螺旋线的特性阻抗随拉伸变形而增大。论文进一步通过精密阻抗分析仪和阶跃信号时域反射两种实验方法验证上述结论。
     时域反射测量技术在实际应用中分为脉冲时域反射和阶跃时域反射两种。在研究理想传输线局部阻抗不连续情况下时域反射波形的基础上,论文从上述两个方面对螺旋线时域反射波形进行了研究。通过脉冲时域反射波形的研究,发现螺旋线在拉伸区间较小时可以有效定位变形区间的位置。通过阶跃时域反射波形的研究,提出了阶跃反射波形差分处理方法,并在此基础上给出了反射尖峰幅值与螺旋线拉伸长度、拉伸区间位置、拉伸区间长度之间的关系。最后,利用差分阶跃反射波形测试了螺旋线的变形区间的定位能力。
Across the country in recent years, the frequent occurrence of geological disaster events constitute a serious threat to life and property safety of human being. In order to effectively analysis and risk assessment of geological disasters timely dissemination of early warning information, geological disaster monitoring system that includes various types of sensors are set up in the various geological disaster point. Geotechnical deformation monitoring sensor is an important part of the geological disaster monitoring system.
     At present, there are many kinds of geotechnical deformation sensors, such as GPS. The various types of sensors have their respective characteristics and application range. Due to the uncertainty of the geotechnical deformation occurred in the space, so sometimes deformation distributed measurement technology is necessary in actual geotechnical monitoring. Distributed fiber measurement techniques, due to the very limited amount of local deformation, will break in geotechnical deformation monitoring. In response to these problems, based on the research of present TDR sensing cables, a single layer spiral structure TDR sensing cable for the geotechnical deformation distributed measurement is first proposed. The sensing cable consists of silicone inner core, single layer spiral wires and external silicone rubber pipe. Compared with the traditional parallel structure probe, the spiral cable can detect distributed structural deformation caused by tensility. Compared with the coaxial cable used in measuring localized shear deformation measurement, the spiral cable can be used for the local tensile deformation measurement and is not broken in a certain tensile range. Therefore, the spiral cable is more suitable in the surface geotechnical tensile deformation distributed measurement.
     TDR sensing cable measurement is based on the corresponding relationship between the characteristic impedance of the measurement cables to their measured parameters. The relationship between the characteristic impedance of the parallel structure of the probe to the dielectric constant of the surrounding medium has been the in-depth study. The relationship between the deformation and the characteristic impedance of the coaxial cable cross-section has also been a theoretical analysis. To research the relationship between the tensile deformation and characteristic impedance of spiral cable becomes very important. Based on the analysis of general transmission line characteristic impedance, a theoretical calculation method of spiral cable's characteristic impedance is proposed. The result shows that the characteristic impedance of the spiral increases in the tensile deformation. Further, the paper verify the above conclusion with precision impedance analyzer and step signal two experimental method.
     TDR measurement technique is divided into pulse signal time domain reflectometry and step signal domain reflectometry in the practical applications. Based on the spiral cable characteristic impedance conclusion, TDR waves are researched from the above two angles. Pulse signal TDR experiments show that the spiral cable with smaller stretching interval can effectively locate the position of the stretching interval from the reflected waveform. A difference processing method is proposed for step signal TDR waveform analysis. Based on this method, the relationship between the reflection peak amplitude and stretched length, stretching the section position, stretching interval length is analyzed. Finally, the differential step reflected waveforms is used to locate the deformation interval.
引文
[1]何满潮.滑坡地质灾害远程监测预报系统及其工程应用[J].岩石力学与工程学报,2009,28(6):1081-1090.
    [2]林恢亮.试析我国地质灾害的监测方法与发展趋势[J].科技信息(科学教研),2007,(26):307+335.
    [3]韩子夜,薛星桥.地质灾害监测技术现状与发展趋势[J].中国地质灾害与防治学报,2005,16(3):138-141.
    [4]常中华,陈厚军,张乐中,杨天亮.奎屯河新龙口右岸山体崩塌原因及再次失稳可能性分析[J].工程地质学报,2005,13(1):76-80.
    [5]朱千明,金云雷,周一勤.甬台温高速公路某段山体崩塌成因及防治措施[J].工业安全与环保,2007,33(6):4143.
    [6]吴建川,胡新丽,徐伟,滑帅.岩土工程应变监测方法比较研究[J].人民长江,2012,43(S1):192-195.
    [7]李喜童,李璐.舟曲地质灾害监测预警体系建设概述[J].中国应急救援,2012,(5):17-20.
    [8]魏学勇,欧阳祖熙,周昊,李捷,韩文心.三峡库区高切坡变形监测——以万州区为例[J].中国地质灾害与防治学报,2010,14(4):72-76.
    [9]E. Intrieri, G. Gigli, F. Mugnai, R. Fanti, N. Casagli. Design and implementation of a landslide early warning system[J]. Engineering Geology,2012,147-148:124-136.
    [10]M. V. Ramesh. Design, development, and deployment of a wireless sensor network for detection of landslides[J]. Ad Hoc Networks,2012, In press
    [11]S. Matsuura, S. Asano, T. Okamoto. Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide[J]. Engineering Geology,2008,101(1-2):49-59.
    [12]朱代尧,刘小阳.GPS在灾害监测中的应用综述[J].防灾科技学院学报,2007,9(2):73-75.
    [13]肖鸾,胡友健,王晓华.GPS技术在变形监测中的应用综述[J].工程地球物理学报,2005,2(2):160-165.
    [14]舒海翅,李双平,马能武.地质灾害变形监控的GPS实时监测系统简介[J].人民长江,2010,41(20):79-81.
    [15]C. Squarzoni, C. Delacourt, P. Allemand. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps)[J]. Engineering Geology,2005,79(3-4):215-229.
    [16]J. A. Gili, J. Corominas, J. Rius. Using Global Positioning System techniques in landslide monitoring[J]. Engineering Geology,2000,55(3):167-192.
    [17]J. L. Moss. Using the Global Positioning System to monitor dynamic ground deformation networks on potentially active landslides[J]. International Journal of Applied Earth Observation and Geoinformation,2000,2(1):24-32.
    [18]F. Mantovani, R. Soeters, C. J. Van Westen. Remote sensing techniques for landslide studies and hazard zonation in Europe[J]. Geomorphology,1996,15(3-4):213-225.
    [19]L. M. Peci, M. Berrocoso, R. Paez, A. Fernandez-Ros, A. de Gil. IESID:Automatic system for monitoring ground deformation on the Deception Island volcano (Antarctica)[J]. Computers and Geosciences,2012,48:126-133.
    [20]J.-C. Du, H.-C. Teng.3D laser scanning and GPS technology for landslide earthwork volume estimation[J]. Automation in Construction,2007,16(5):657-663.
    [21]J. Chadwick, S. Dorsch, N. Glenn, G. Thackray, K. Shilling. Application of multi-temporal high-resolution imagery and GPS in a study of the motion of a canyon rim landslide[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2005,59(4):212-221.
    [22]C. Squarzoni, C. Delacourt, P. Allemand. Differential single-frequency GPS monitoring of the La Valette landslide (French Alps)[J]. Engineering Geology,2005,79(3-^4):215-229.
    [23]C. Cencetti, P. Conversini,F. Radicioni, C. Ribaldi, S. Selli, P. Tacconi. The evolution of Montebestia landslide (Umbria, Central Italy). Site investigations, in-situ tests and GPS monitoring[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2000,25(9):799-808.
    [24]V. Rizzo. GPS monitoring and new data on slope movements in the Maratea Valley (Potenza, Basilicata)[J]. Physics and Chemistry of the Earth, Parts A/B/C,2002,27(36):1535-1544.
    [25]M. Peyret, Y. Djamour, M. Rizza, J. F. Ritz, J. E. Hurtrez, M. A. Goudarzi, H. Nankali, J. Chery, K. Le Dortz, F. Uri. Monitoring of the large slow Kahrod landslide in Alborz mountain range (Iran) by GPS and SAR interferometry[J]. Engineering Geology,2008, 100(3-4):131-141.
    [26]N. Shimizu, S. Tayama, H. Hirano, T. Iwasaki. Monitoring the ground stability of highway tunnels constructed in a landslide area using a web-based GPS displacement monitoring system[J]. Tunnelling and Underground Space Technology,2006,21(3-4):266-267.
    [27]X. Zhu, Q. Xu, J. Zhou, M. Deng. Remote Landslide Observation System with Differential GPS[J]. Procedia Earth and Planetary Science,2012,5:70-75.
    [28]J. P. Malet, O. Maquaire, E. Calais. The use of Global Positioning System techniques for the continuous monitoring of landslides:application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology,2002,43(1-2):33-54.
    [29]余明,杨久龙,丁志刚,李冬航,过静珺.GPS应用于滑坡示范区监测系统中的研究[J].工程勘察,2004,(3):54-55+58.
    [30]徐绍铨,程温鸣,黄学斌,李征航.GPS用于三峡库区滑坡监测的研究[J].水利学报,2003,(1):114-118.
    [31]熊先才,岳仁宾,彭军还,张永兴.GPS技术在万州明镜滩滑坡监测中的应用[J].测绘科学,2008,(3):149-150+145.
    [32]韦明.滑坡监测工程中GPS测量技术探讨[J].中国高新技术企业,2010,1(13):49-50.
    [33]R. Engelkemeir, S. D. Khan, K. Burke. Surface deformation in Houston, Texas using GPS[J]. Tectonophysics,2010,490(1-2):47-54.
    [34]张勇慧,李红旭,盛谦,邬凯,李志勇,岳志平.基于表面位移的公路滑坡监测预警研究[J].岩土力学,2010,31(11):3671-3677.
    [35]杨兴,胡建明,戴特力.光纤光栅传感器的原理及应用研究[J].重庆师范大学学报(自然科学版),2009,26(4):101-105.
    [36]Z.-W. Zhu, D.-Y. Liu, Q.-Y. Yuan, B. Liu, J.-C. Liu. A novel distributed optic fiber transduser for landslides monitoring[J]. Optics and Lasers in Engineering,2011,49(7):1019-1024.
    [37]T.-C. Liang, Y.-L. Lin. Ground vibrations detection with fiber optic sensor[J]. Optics Communications,2012,285(9):2363-2367.
    [38]F. Pingue, S. M. Petrazzuoli, F. Obrizzo, U. Tammaro, P. De Martino, G. Zuccaro. Monitoring system of buildings with high vulnerability in presence of slow ground deformations (The Campi Flegrei, Italy, case)[J]. Measurement,2011,44(9):1628-1644.
    [39]H.-N. Li, D.-S. Li, G.-B. Song. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures,2004,26(11):1647-1657.
    [40]F. Bastianini, M. Corradi, A. Borri, A. d. Tommaso. Retrofit and monitoring of an historical building using "Smart" CFRP with embedded fibre optic Brillouin sensors[J]. Construction and Building Materials,2005,19(7):525-535.
    [41]F. Cappa, Y. Guglielmi, S. Gaffet, H. Lancon, I. Lamarque. Use of in situ fiber optic sensors to characterize highly heterogeneous elastic displacement fields in fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(4):647-654.
    [42]A. E. Scheidegger. A review of recent work on mass movements on slopes and on rock falls[J]. Earth-Science Reviews,1984,21(4):225-249.
    [43]S. Liehr, P. Lenke, M. Wendt, K. Krebber, M. Seeger, E. Thiele, H. Metschies, B. Gebreselassie, J. C. Munich. Polymer optical fiber sensors for distributed strain measurement and application in structural health monitoring[J]. IEEE Sensors Journal,2009,9(11): 1330-1338.
    [44]国兵,隋青美,韦斌.基于布里渊散射的分布式光纤传感器的发展[J].信息技术与信息化,2009,(3):56-58.
    [45]黄波,周荫清,谭立英,马晶.温度及应力变化对光纤光栅布喇格波长的影响[J].光纤与电缆及其应用技术,2001,(3):23-25.
    [46]H. Kwon, S. Kim, S. Yeom, B. Kang, K. Kim, T. Kim, H. Jang, J. Kim, S. Kang. Analysis of nonlinear fitting methods for distributed measurement of temperature and strain over 36km optical fiber based on spontaneous Brillouin backscattering[J]. Optics Communications,2013, 294:59-63.
    [47]S. Nan, Q. Gao. Application of Distributed Optical Fiber Sensor Technology Based on BOTDR in Similar Model Test of Backfill Mining[J]. Procedia Earth and Planetary Science, 2011,2:34-39.
    [48]K. Brown, A. W. Brown, B. G. Colpitts. Characterization of optical fibers for optimization of a Brillouin scattering based fiber optic sensor[J]. Optical Fiber Technology,2005,11(2): 131-145.
    [49]Y. Ding, B. Shi, D. Zhang. Data processing in BOTDR distributed strain measurement based on pattern recognition[J]. Optik-International Journal for Light and Electron Optics,2010, 121(24):2234-2239.
    [50]F. Ravet, L. Zou, X. Bao, L. Chen, R. F. Huang, H. A. Khoo. Detection of buckling in steel pipeline and column by the distributed Brillouin sensor[J]. Optical Fiber Technology,2006, 12(4):305-311.
    [51]Y. Lu, C. Li, X. Zhang, S. Yam. Determination of thermal residual strain in cabled optical fiber with high spatial resolution by Brillouin optical time-domain reflectometry[J]. Optics and Lasers in Engineering,2011,49(9-10):1111-1117.
    [52]A. Klar, R. Linker. Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometry[J]. Tunnelling and Underground Space Technology,2010, 25(5):575-586.
    [53]H. Ohno, H. Naruse, M. Kihara, A. Shimada. Industrial Applications of the BOTDR Optical Fiber Strain Sensor[J]. Optical Fiber Technology,2001,7(1):45-64.
    [54]J. Gao, B. Shi, W. Zhang, H. Zhu. Monitoring the stress of the post-tensioning cable using fiber optic distributed strain sensor[J]. Measurement,2006,39(5):420-428.
    [55]S. Z. Yan, L. S. Chyan. Performance enhancement of BOTDR fiber optic sensor for oil and gas pipeline monitoring[J]. Optical Fiber Technology,2010,16(2):100-109.
    [56]H. Mohamad, K. Soga, P. J. Bennett, R. J. Mair, C. S. Lim. Monitoring Twin Tunnel Interaction Using Distributed Optical Fiber Strain Measurements[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(8):957-967.
    [57]王宝军,施斌.边坡变形的分布式光纤监测试验研究及实践[J].防灾减灾工程学报,2010,30(1):28-34.
    [58]O. Monserrat, M. Crosetto. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2008,63(1):142-154.
    [59]B. Yang, L. Fang, J. Li. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2013,79:80-93.
    [60]L. Schueremans, B. Van Genechten. The use of 3D-laser scanning in assessing the safety of masonry vaults-A case study on the church of Saint-Jacobs[J]. Optics and Lasers in Engineering,2009,47(3-4):329-335.
    [61]W. Kociuba, W. Kubisz, P. Zagorski. Use of terrestrial laser scanning (TLS) for monitoring and modelling of geomorphic processes and phenomena at a small and medium spatial scales in Polar environment (Scott River-Spitsbergen)[J]. Geomorphology, In press
    [62]P. E. Miller, J. P. Mills, S. L. Barr, S. J. Birkinshaw, A. J. Hardy, G. Parkin, S. J. Hall. A remote sensing approach for landslide hazard assessment on engineered slopes[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(4):1048-1056.
    [63]R. Salvini, M. Francioni, S. Riccucci, F. Bonciani, I. Callegari. Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola-Iselle railway, the Italian Alps[J]. Geomorphology,2013,185(1):110-122.
    [64]S. A. Dunning, C. I. Massey, N. J. Rosser. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning[J]. Geomorphology,2009,103(1):17-29.
    [65]D. Santana, J. Corominas, O. Mavrouli, D. Garcia-Selles. Magnitude-frequency relation for rockfall scars using a Terrestrial Laser Scanner[J]. Engineering Geology,2012,144-145: 50-64.
    [66]C. Colesanti, J. Wasowski. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry[J]. Engineering Geology,2006,88(3-4):173-199.
    [67]V. Singhroy, K. E. Mattar, A. L. Gray. Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images[J]. Advances in Space Research, 1998,21(3):465-476.
    [68]G. Herrera, J. A. Fernandez-Merodo, J. Mulas, M. Pastor, G. Luzi, O. Monserrat. A landslide forecasting model using ground based SAR data:The Portalet case study[J]. Engineering Geology,2009,105(3-4):220-230.
    [69]D. Tarchi, N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, S. Silvano. Landslide monitoring by using ground-based SAR interferometry:an example of application to the Tessina landslide in Italy[J]. Engineering Geology,2003,68(1-2):15-30.
    [70]C. Zhao, Z. Lu, Q. Zhang, J. de la Fuente. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA[J]. Remote Sensing of Environment,2012,124:348-359.
    [71]C. Squarzoni, C. Delacourt, P. Allemand. Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry[J]. Engineering Geology,2003,68(1-2): 53-66.
    [72]B. Fruneau, J. Achache, C. Delacourt. Observation and modelling of the Saint-Etienne-de-Tinee landslide using SAR interferometry[J]. Tectonophysics,1996,265(3-4):181-190.
    [73]F. Catani, P. Farina, S. Moretti, G. Nico, T. Strozzi. On the application of SAR interferometry to geomorphological studies:estimation of landform attributes and mass movements[J]. Geomorphology,2005,66(1-4):119-131.
    [74]G. Metternicht, L. Hurni, R. Gogu. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J]. Remote Sensing of Environment,2005,98(2-3):284-303.
    [75]P. Liu, Z. Li, T. Hoey, C. Kincal, J. Zhang, Q. Zeng, J.-P. Muller. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China[J]. International Journal of Applied Earth Observation and Geoinformation,2013,21: 253-264.
    [76]F. Bovenga, J. Wasowski, D. O. Nitti, R. Nutricato, M. T. Chiaradia. Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis[J]. Remote Sensing of Environment,2012,119:272-285.
    [77]L. Noferini, M. Pieraccini, D. Mecatti, G. Macaluso, C. Atzeni, M. Mantovani, G. Marcato, A. Pasuto, S. Silvano, F. Tagliavini. Using GB-SAR technique to monitor slow moving landslide[J]. Engineering Geology,2007,95(3-4):88-98.
    [78]蒋兴超.滑坡地质灾害监测方法概述[J].长江大学学报(自然科学版)理工卷,2010,7(3):345-347.
    [79]王桂杰,谢谟文,邱骋,江崎哲郎D-INSAR技术在大范围滑坡监测中的应用[J].岩土力学,2010,31(4):1337-1344.
    [80]D. Perissin, F. Rocca. High-accuracy urban DEM using permanent scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(11):3338-3347.
    [81]G. Metternicht, L. Hurni, R. Gogu. Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments[J]. Remote Sensing of Environment,2005,98(2-3):284-303.
    [82]T. Strozzi, U. Wegmuller, H. R. Keusen, K. Graf, A. Wiesmann. Analysis of the terrain displacement along a funicular by SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters,2006,3(1):15-18.
    [83]M. Pieraccini, L. Noferini, D. Mecatti, C. Atzeni, G. Teza, A. Galgaro, N. Zaltron. Integration of radar interferometry and laser scanning for remote monitoring of an urban site built on a sliding slope[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(9): 2335-2341.
    [84]邓辉,黄润秋.InSAR技术在地形测量和地质灾害研究中的应用[J].山地学报,2003,21(3):373-377.
    [85]C. Furse, Y. C. Chung, C. Lo, P. Pendayala. A critical comparison of reflectometry methods for location of wiring faults[J]. Smart Structures and Systems,2006,2(1):25-46.
    [86]岳英洁,业渝光,刁少波,裴建新,赵广涛.时域反射技术应用与研究新进展[J].海洋湖沼通报,2007,(S1):170-175.
    [87]K. Takeda, M. Kawashima, H. Koga, A. Hayashi. New pulse echo fault location method using waveform pattern matching for paired subscriber cables[J]. Electronics and Communications in Japan, Part Ⅰ:Communications (English translation of Denshi Tsushin Gakkai Ronbunshi), 1992,75(1):46-55.
    [88]B. Liu, Y. Jiang, S. Yin, B. Wang. Integrated Intelligent Cable Fault Tester Design[J].2011 International Conference on Electrical and Control Engineering (ICECE),2011:5302-5304.
    [89]M. Jones. Single-chip cable and wiring checker[J]. Elektronik Praxis,2005, (14):16-1818.
    [90]王昆,李敏雪,生宏,王靖,缴春景.海底电缆的故障检测及修复工艺[J].光纤与电缆及其应用技术,2012,(4):3942.
    [91]S. Arsoy, M. Ozgur, E. Keskin, C. Yilmaz. Enhancing TDR based water content measurements by ANN in sandy soils[J]. Geoderma,2013,195-196:133-144.
    [92]U. L. Ladekarl. Estimation of the components of soil water balance in a Danish oak stand from measurements of soil moisture using TDR[J]. Forest Ecology and Management,1998, 104(1-3):227-238.
    [93]R. Greco, A. Guida. Field measurements of topsoil moisture profiles by vertical TOR probes[J]. Journal of Hydrology,2008,348(3-4):442-451.
    [94]T. C. Baruah, S. Hasegawa. In-situ measurement of soil evaporation from a volcanic ash soil by TOR technique using soil water diffusivity[J]. Geoderma,2001,102(3-4):317-328.
    [95]D. A. Robinson, C. M. K. Gardner, J. D. Cooper. Measurement of relative permittivity in sandy soils using TOR, capacitance and theta probes:comparison, including the effects of bulk soil electrical conductivity [J]. Journal of Hydrology,1999,223(3-4):198-211.
    [96]K. Rajkai, B. E. Ryden. Measuring areal soil moisture distribution with the TOR method[J]. Geoderma,1992,52(1-2):73-85.
    [97]D. Moret, J. L. Arrue, M. V. Lopez, R. Gracia. A new TOR waveform analysis approach for soil moisture profiling using a single probe[J]. Journal of Hydrology,2006,321(1-4): 163-172.
    [98]R. Greco. Soil water content inverse profiling from single TDR waveforms[J]. Journal of Hydrology,2006,317(3-4):325-339.
    [99]R. Munoz-Carpena, C. M. Regalado, A. Ritter, J. Alvarez-Benedi, A. R. Socorro. TDR estimation of electrical conductivity and saline solute concentration in a volcanic soil[J]. Geoderma,2005,124(3-4):399-413.
    [100]M. Menziani, S. Pugnaghi, L. Pilan, R. Santangelo, S. Vincenzi. TDR soil moisture measurements at the Lago Maggiore MAP target area:preliminary results[J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,2001,26(5-6):431-436.
    [101]S. Asseng, J. T. Ritchie, A. J. M. Smucker, M. J. Robertson. Root growth and water uptake during water deficit and recovering in wheat[J]. Plant and Soil,1998,201(2):265-273.
    [102]C. Xue, X. Yang, B. A. M. Bouman, W. Deng, Q. Zhang, W. Yan, T. Zhang, A. Rouzi, H. Wang. Optimizing yield, water requirements, and water productivity of aerobic rice for the North China Plain[J]. Irrigation Science,2008,26(6):459-474.
    [103]E. Cokca, O. Erol, F. Armangil. Effects of compaction moisture content on the shear strength of an unsaturated clay[J]. Geotechnical and Geological Engineering,2004,22(2):285-297.
    [104]D. R. Mailapalli, N. S. Raghuwanshi, R. Singh, G. H. Schmitz, F. Lennartz. Evaluation of time domain reflectometry (TDR) for estimating furrow infiltration[J]. Irrigation Science, 2008,26(2):161-168.
    [105]S. A. Kreba, C. P. Maule. Estimating vertical soil water fluxes with tracers and time domain reflectometry (TOR) in a sand column under controlled laboratory conditions[J]. Canadian Biosystems Engineering/Le Genie des biosystems au Canada,2010,52:1.09-1.17.
    [106]G. C. Topp, J. L. Davis, A. P. Annan. ELECTROMAGNETIC DETERMINATION OF SOIL WATER CONTENT:MEASUREMENTS IN COAXIAL TRANSMISSION LINES[J]. Water Resources Research,1980,16(3):574-582.
    [107]S. B. Jones, R. W. Mace, D. Or. A time domain reflectometry coaxial cell for manipulation and monitoring of water content and electrical conductivity in variably saturated porous media[J]. Vadose Zone Journal,2005,4(4):977-982.
    [108]C. P. Lin, S. H. Tang, C. C. Clung. Development of TOR penetrometer through theoretical and laboratory investigations:1. Measurement of soil dielectric permittivity [J]. Geotechnical Testing Journal,2006,29(4):306-313.
    [109]J. J. Casanova, S. R. Evett, R. C. Schwartz. Design of access-tube TDR sensor for soil water content:Testing[J]. IEEE Sensors Journal,2012,12(6):2064-2070.
    [110]C. M. Regalado, R. Munoz Carpena, A. R. Socorro, J. M. Hernandez Moreno. Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils[J]. Geoderma,2003,117(3-1):313-330.
    [111]D. A. Robinson, S. B. Jones, J. M. Wraith, D. Or, S. P. Friedman. A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry[J]. Vadose Zone Journal,2003,2(4):444-475.
    [112]A.-M. O. Mohamed, S. S. Marwan. Impact of soil magnetic properties on moisture content prediction using TDR[J]. Geotechnical Testing Journal,2011,34(3):1-6.
    [113]S. y. Katsura, K. i. Kosugi, T. Mizuyama. Application of a coil-type TDR probe for measuring the volumetric water content in weathered granitic bedrock[J]. Hydrological Processes,2008,22(6):750-763.
    [114]张青,史彦新,朱汝烈.TDR滑坡监测技术的研究[J].中国地质灾害与防治学报,2001,6(2):67-69.
    [115]陈云敏,陈赞,陈仁朋,梁志刚.滑坡监测TDR技术的试验研究[J].岩石力学与工程学报,2004,23(16):2748-2755.
    [116]朱健.TDR技术在边坡监测中的应用[J].城市勘测,2009,(1):151-153.
    [117]C.-P. Lin, S.-H. Tang, W.-C. Lin, C.-C. Chung. Quantification of cable deformation with time domain reflectometry-Implications to landslide monitoring[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(1):143-152.
    [118]蒋志勇,柳存根,姚震球,王志东.脉冲反射法液位测量系统研究[J].船舶工程,1997,(3):51-53.
    [119]陈春歌,王建华,刘建芸,赵磊.TDR型液位自动监测系统的研究与应用[J].仪表技术与传感器,2008,4):39-41.
    [120]胡开新,刘伟荣,陈小忠,钱国圣.脉冲时域反射物位计在电厂中的应用[J].中国仪器仪表,2009,(9):88-90.
    [121]A. Thomsen, B. Hansen, K. Schelde. Application of TDR to water level measurement[J]. Journal of Hydrology,2000,236(3-4):252-258.
    [122]D. Moret, M. V. Lopez, J. L. Arrue. TDR application for automated water level measurement from Mariotte reservoirs in tension disc infiltrometers[J]. Journal of Hydrology,2004, 297(1-4):229-235.
    [123]A. Cataldo, M. Vallone, L. Tarricone, F. Attivissimo. An evaluation of performance limits in continuous TDR monitoring of permittivity and levels of liquid materials[J]. Measurement: Journal of the International Measurement Confederation,2008,41(7):719-730.
    [124]王银锁,尤晓玲.时域反射仪及其在温度检测系统中的应用[J].甘肃科技纵横,2003,32(4):54.
    [125]业渝光,张剑,胡高伟,刁少波,刘昌岭.天然气水合物超声和时域反射联合探测技术[J].海洋地质与第四纪地质,2008,28(5):101-107.
    [126]王国尚,金会军,林清.时域反射仪在寒区冻融土参数测试中的应用[J].冰川冻土,1998,20(1):89-93.
    [127]A. Cataldo, G. Cannazza, E. De Benedetto, L. Tarricone, M. Cipressa. Metrological assessment of TDR performance for moisture evaluation in granular materials[J]. Measurement,2009,42(2):254-263.
    [128]Z. Pavlik, M. Jirickova, R. Cerny, H. Sobczuk, Z. Suchorab. Determination of moisture diflusivity using the lime Domain Reflectometry (TDR) method[J]. Journal of Building Physics,2006,30(1):59-70.
    [129]王聪颖,孙宇瑞,张慧娟.一种基于三角波窄脉冲序列的时域反射土壤水分测量方法[J].应用基础与工程科学学报,2010,26(5):869-876.
    [130]W. Skierucha, A. Wilczek, O. Alokhina. Calibration of a TDR probe for low soil water content measurements[J]. Sensors and Actuators A:Physical,2008,147(2):544-552.
    [131]A. Nadler, S. R. Green, I. Vogeler, B. E. Clothier. Horizontal and vertical TDR measurements of soil water content and electrical conductivity[J]. Soil Science Society of America Journal, 2002,66(3):735-743.
    [132]X. Zhang, P. J. Van Geel. Development of a vertical TDR probe to evaluate the vertical moisture profile in peat columns to assess biological clogging[J]. Journal of Environmental Engineering and Science,2007,6(6):629-642.
    [133]M. J. Staub, J. P. Gourc, J. P. Laurent, C. Kintzuger, L. Oxarango, H. Benbelkacem, R. Bayard, C. Morra. Long-term moisture measurements in large-scale bioreactor cells using TDR and neutron probes[J]. Journal of Hazardous Materials,2010,180(1-3):165-172.
    [134]C. F. Souza, E. E. Matsura. Multi-wire time domain reflectometry (TDR) probe with electrical impedance discontinuities for measuring water content distribution[J]. Agricultural Water Management,2003,59(3):205-216.
    [135]C. A. Umenyiora, R. L. Druce, R. D. Curry, P. Norgard, T. McKee, J. J. Bowders, D. A. Bryan. Dielectric constant of sand using TDR and FDR measurements and prediction models[J]. IEEE Transactions on Plasma Science,2012,40(10 PART 1):2408-2415.
    [136]C. T. Aimone-Martin, J. L. Francke. Time domain reflectometry (TDR):A comparison of field data to laboratory shear tests[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):84.e1-84.e15.
    [137]K. M. O'Connor, E. W. Murphy. TDR monitoring as a component of subsidence risk assessment over abandoned mines[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3-4):230.el-230.el5.
    [138]童仁园,李青,李明.基于时域反射的分布式地表变形探测技术[J].仪器仪表学报, 2011,32(11):2572-2578.
    [139]张青.滑坡地质灾害TDR监测技术研究[D].吉林:吉林大学,2007.
    [140]P.格里维.高频传输线的物理基础[M].上海:上海科学技术出版社,1984.27-32.
    [141]方伟乔.脉冲参数与时域测量技术[M].北京:中国计量出版社,1989.71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700