粒子群优化与差分进化算法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒子群优化(PSO)与差分进化(DE)是两种基于种群的现代随机优化算法,都具有良好的优化性能。本文对PSO与DE算法进行了分析与研究,从不同角度提出了几种改进算法,并将PSO与DE算法应用于自适应滤波器与天线阵列综合。
     在PSO算法研究方面,首先利用离散时间线性动力系统理论,推导了确定性PSO算法收敛、临界稳定与发散的充分必要条件。根据理论分析结果,给出了PSO算法的参数选择指导方法,讨论了随机性与粒子交互作用对算法性能的影响。然后对PSO算法的信息共享机制进行了研究,以标准PSO为原型设计了4种使用不同信息共享策略的PSO算法,测试比较了它们的性能,归纳总结了有效信息共享策略应满足的一些条件
     在对PSO算法理论与信息共享机制研究的基础上,并借鉴社会学的一些思想,提出了几种改进的PSO算法。主要包括:
     (1)基于分工合作的思想,设计了一种新的自适应PSO算法。新算法对不同性能粒子分配不同任务并采取相应的惯性权,粒子的加速系数根据惯性权自适应调整。
     (2)基于“精英领导多数”与“分工合作”的思想,借鉴人类社会中的等级结构组织方式,构建了一种分等级的多子群PSO (HSPSO)算法。HSPSO算法将整个粒子群划分为多个子群并将其以等级结构形式组织,上层粒子由下层不同子群的精英粒子组成。HSPSO可对不同层粒子分配不同任务,较好地平衡了探索与开发能力。
     (3)研究了两种利用有效信息的PSO (EIPSO)算法形式。EIPSO算法中粒子有选择地共享所有不差于它本身的优秀邻域粒子的信息,既充分利用了优秀邻域粒子的信息,又避免了较差邻域粒子的负面影响。
     (4)设计了一种基于粒子群本质特征的混沌PSO算法。新算法使用混沌搜索方法代替Kennedy的随机数产生器在较好区域内进行局部搜索,混沌搜索区域半径根据粒子个体最优位置间的距离自适应调整。本文还研究了几种改进的自适应滤波算法,并将PSO算法思想应用于自适应滤波器的优化。主要内容包括:
     (1)提出了一种用零阶Sugeno模糊推理系统自适应调整步长的模糊步长LMS算法,并从理论上分析了新算法的计算复杂度及其收敛性能。
     (2)将变阶数自适应滤波器抽头长度与权值调整问题归结为单一的权值调整问题,研究了抽头长度一般更新公式及新的变抽头长度LMS算法,分析了新算法的合理性与收敛性。
     (3)设计了一种能在不同大小噪声条件下都收敛到最优阶数的变抽头长度新算法,并将之应用于变阶数自适应格型RLS滤波器的阶数更新,讨论了格型滤波器阶数更新时相关参数的调整方法。
     (4)根据PSO算法的社会心理学指导思想并结合自适应FIR滤波器的特点,设计合适的惯性项、认知项与社会项表达式更新组合自适应滤波器,提出了基于PSO算法思想的组合自适应滤波算法。仿真结果表明新算法在不同环境下都可以较好地平衡稳态失调与跟踪能力。
     在DE算法研究与改进方面,首先将DE的差分变异理解为局部搜索操作,设计了一种新的差分变异策略:DE/BoR/*/*。DE/BoR/*/*每次先从种群中随机选出若干个个体,然后将其中的最优个体作为差分变异基,剩下的个体构成差分向量。这样,差分变异基可同时具有较好的质量与多样性,更好地平衡了算法的探索与开发能力。
     然后对DE算法中的交叉操作进行了比较研究。为了公平地比较DE中常用的两种交叉方法,即二项式交叉与指数交叉,并研究交叉长度概率分布与交叉连续性的影响,设计了两种新的交叉方法:连续二项式交叉与非连续指数交叉。从理论上分析了文中所用二项式交叉与指数交叉方法的交叉长度概率分布与期望值,综合比较了几种使用不同交叉方法的DE算法性能。根据理论分析与仿真结果讨论了交叉对DE算法可靠性与效率的影响,加深了对交叉在DE中作用的理解。
     最后,本文将DDE/BoR/1/bin与另一种新的改进PSO算法,即利用有效信息的高斯粒子群(EIGPS)算法,应用于非等间距线性天线阵列综合,最小化天线阵的峰值旁瓣电平(PSLL)。研究了入射角分辨率对PSLL计算值的影响。仿真结果表明DDE/BoR/1/bin与EIGPS都具有良好的综合能力,可以得到比一些已有文献所报道结果更小的PSLL值。
Both particle swarm optimization (PSO) and differential evolution (DE) are population-based stochastic optimization algorithms with good performance. In this thesis, PSO and DE are studied and several improved algorithms have been presented. Then, PSO and DE are applied to adaptive filter and antenna arrays synthesis.
     On PSO study, the formal sufficient and necessary condition for the deterministic standard PSO to converge, diverge or oscillate within a range, is first derived by using discrete time linear dynamic system theory. Based on the theory analysis, a general guideline for parameters selection is provided and the effects of randomness and interaction between particles are discussed. Then the information sharing mechanism of PSO is studied. Four kinds of PSO algorithms with different information sharing strategies are designed and compared. Some conditions for a good information sharing strategy are summarized.
     Based on the study of PSO theory and information sharing mechanism, also inspired by some effective sociological ideas, several improved PSO algorithms are proposed. These include:
     (1) Inspired by the idea of specialization and cooperation, a new adaptive particle swarm optimization (APSO) algorithm is proposed. In APSO, particles with different performance are assigned with different tasks and accordingly different inertial weights. And the acceleration coefficients are adaptively adjusted according to the inertial weight.
     (2) Based on the metaphor of "specialization and cooperation" and "the elites lead the majority" in hierarchical social organization, hierarchical subpopulation particle swarm optimization (HSPSO) algorithm is presented. In HSPSO, the entire population is divided into several subpopulations arranged in a hierarchy. The particles at higher level of the hierarchy are composed of the elite particles from different subpopulations of the lower level. Particles at different levels are assigned different tasks thus a good balance of exploration and exploitation can be obtained.
     (3) Two kinds of effectively informed particle swarm optimization (EIPSO) algorithms are presented. In EIPSO, the particle selectively shares the information of all its neighbors better than itself. Thus it can not only make the best of the information from its outstanding neighbors but also avoid the negative influence of its inferior neighbors.
     (4) A chaotic particle swarm optimization (CPSO) algorithm based on the essence of particle swarm is proposed. CPSO uses chaotic search rather than Kennedy's random number generator to search a promising region. The radius of the chaotic searching region is adaptively adjusted according to the distances between the personal best positions of particles.
     Then several improved adaptive filtering algorithms are studied and the idea of PSO is applied to the optimization of adaptive filter. Those improved adaptive filtering algorithms include:
     (1) A fuzzy step size least mean square (FSS-LMS) algorithm is proposed, in which the step size of LMS is adaptively adjusted by a zero-order Sugeno fuzzy inference system. The complexity and convergence performance of FSS-LMS algorithm are also analyzed.
     (2) The tap-length and tap-weight adjusting problems of variable order adaptive filter are converted into a single tap-weight adjusting problem. Then a general tap-length updating formula and a new variable tap-length LMS algorithm are presented. The rationality and convergence property of the new algorithm are analyzed.
     (3) A new tap-length algorithm is presented, which can converge to optimal order or tap-length under noises of different magnitudes. It is then applied to variable order adaptive lattice recursive least square (RLS) filter. The adjustment of correlative parameters when updating the lattice filter order is also discussed.
     (4) Based on the social psychology idea behind PSO and the feature of adaptive FIR filter, the proper expressions for the "inertial", "cognitive" and "social" parts are designed to update the combined adaptive filter. Thus a combined adaptive filtering algorithm based on the idea of PSO is presented. The theory analysis and simulation results show that the new algorithm can well balance the steady state misadjustment and tracking ability under different environments.
     On DE study, a new differential mutation strategy for DE, namely DE/BoR/*/*, is first presented by regarding differential mutation as a local search. DE/BoR/*/* uses the best one of several randomly chosen individuals as differential mutation base while the rest ones as donors for vector differences. Hence, both good diversity and quality of mutation bases are obtained, leading to better balance of exploration and exploitation.
     Then a comparative study of crossover in DE is carried out. In order to fairly compare two most often implemented crossover methods in DE, namely, binomial crossover and exponential crossover, and study the effect of prcbability distribution of crossover length and crossover continuity, two new crossover methods, namely consecutive binomial crossover and non-consecutive exponential crossover, are designed. The probability distribution and expectation of crossover length for binomial and exponential crossover used in this paper are derived. Various DE algorithms with different crossover methods including mutation-only DE are comprehensively compared. Based on the theoretical analysis and simulation results, the effect of crossover on the reliability and efficiency of DE is discussed. Some insights are revealed.
     Finally, DDE/BoR/1/bin and another new PSO algorithm, namely, effectively informed Gaussian particle swarm (EIGPS), are applied to unequally spaced antenna array synthesis to minimize the peak sidelobe level (PSLL). Effect of angle resolution on the PSLL has also been investigated. The simulation results show that both DDE/BoR/1/bin and EIGPS have good synthesis capacity and are able to obtain better results than those reported in some existing literatures.
引文
[1]陈宝林,最优化理论与算法(第2版),清华大学出版社,2005
    [2]A. Qing, Differential Evolution:Fundamentals and Applications in Engineering, New York: John Wiley & Sons,2009
    [3]薛毅,最优化原理与方法,北京工业大学出版社,2001
    [4]王正志,进化计算,国防科技大学出社,2000
    [5]云庆夏,进化算法,冶金工业出版社,2000
    [6]邢文训,现代优化计算方法(第2版),清化大学出版社,2005
    [7]王凌,智能优化算法及其应用,清华大学出版社出版,2001
    [8]莫愿斌,粒子群优化算法的扩展与应用,博士学位论文,浙江大学,2006
    [9]A. E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, Berlin:Springer,2008
    [10]L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution, New York:Wiley,1966
    [11]J. H. Holland, Adaptation in Natural and Artificial Systems (2nd Ed.), Cambridge:MIT Press, 1992
    [12]R. C. Eberhart, Y. Shi, J. Kennedy, Swarm Intelligence, Morgan Kaufmann,2005
    [13]Eric Bonabeau, Marco Dorigo, and Guy Theraulaz, Swarm Intelligence:From Natural to Artificial Systems, Oxford University Press,1999
    [14]张燕,康琦,汪镭等.群体智能,冶金自动化,2005,第2期,pp:1-4
    [15]王玖,朱云龙,何小贤.群体智能研究综述,2005,31(22):194-196
    [16]王辉,钱峰.群体智能优化算法,化工自动化及仪表,2007,34(5):7-13
    [17]M. Dorigo and T. Stutzle, Ant Colony Optimization, Massachusetts:MIT Press,2004
    [18]R. Storn and K. Price, Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, Technical Report TR-95-012, International Computer Science Institute, Berkley, CA,1995
    [19]R. Storn and K. V. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optimization,1997,11(4):341-359
    [20]K. V. Price, An introduction to differential evolution, in D. Corn, M. Dorigo, and F. Glover, Ed., New Ideas in Optimization, London:McGraw-Hill,1999, pp.79-108
    [21]K. V. Price, R. M. Storn, and J. A. Lampinen, Differential Evolution:a Practical Approach to Global Optimization, Berlin:Springer,2005
    [22]U. K. Chakraborty, Ed., Advances in Differential Evolution, Berlin:Springer, Mar.2008
    [23]J. Vesterstr(?)m and R. Thomsen, A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems,2004 IEEE Congress Evolutionary Computation, Portland, OR, June 19-23,2004, vol.2, pp.1980-1987
    [24]S. Paterlini and T. Krink. Differential evolution and particle swarm optimisation in partitional clustering. Computational Statistics & Data Analysis,2006,50(5):1220-1247
    [25]刘波,王凌,金以慧.差分进化算法研究进展,控制与决策,2007,22(7):721-729
    [26]J. Kennedy and R.C. Eberhart. Particle swarm optimization, IEEE Int. Joint Conf. Neural Networks, Perth, Australia,27 Nov.-1 Dec.1995, pp.1942-1948.
    [27]Y. Shi and R. C. Eberhart, A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, Anchorage, Alaska,4-9 May 1998, pp.69-73.
    [28]谢晓锋,张文俊,杨之廉.微粒群算法综述.控制与决策,2003,18(2):129-134
    [29]J. Kennedy and R. C. Eberhart, A discrete binary version of the particle swarm algorithm. Proc. the World Multiconference on Systemics, Cybemetics and Informatics,1997, pp.4104-4109
    [30]C. K. Mahan and B. AI-kazemi, Discrete particle swarm optimization. Proc. the Workshop on Particle Swarm Optimization, Indianapolis, IN.2001
    [31]R. Poli, J. Kennedy and T. Blackwell, Particle swarm optimization:An overview, Swarm Intelligence,2007,1 (1):33-57
    [32]E. Ozcan and C. K. Mohan, Analysis of a simple particle swarm optimization system. Intelligent Engineering Systems Through Artificial Neural Networks,1998, no.8, pp.253-258
    [33]E. Ozcan and C. K. Mohan, Particle swarm optimization:surfing the waves, IEEE congress evolutionary computation, Washington DC,6-9 July 1999, pp.1939-1944
    [34]M. Clerc, J. Kennedy. The particle swarm:explosion stability and convergence in a multi-dimensional complex space, IEEE Trans. Evolutionary Computation,2002,6(1):58-73
    [35]I. C. Trelea. The particle swarm optimization algorithm:Convergence analysis and parameter selection, Information Processing Letters,2003,85 (6):317-325.
    [36]F. van den Bergh, A.P. Engelbrecht. A study of particle swarm optimization particle trajectories, Information Science,2006,176 (8):937-971
    [37]李宁,孙德宝,邹彤等.基于差分方程的PSO算法粒子运动轨迹分析,计算机学报,2006,29(11):2052-2061
    [38]潘峰,陈杰,甘明刚等.粒子群优化算法模型分析.自动化学报,2006,32(3):368-377
    [39]C. Lin and Q. Feng, The standard particle swarm optimization algorithm convergence analysis and parameter selection. Third Int. Conf Natural Computation, Haikou, China, Aug.24-27, 2007, vol.3,823-826
    [40]Visakan Kadirkamanathan, Kirusnapillai Selvarajah, Peter J. Fleming. Stability Analysis of the Particle Dynamics in Particle Swarm Optimizer. IEEE Trans. Evolutionary Computation,2006, 10 (3):245-255
    [41]M. Jiang, Y.P. Luo, S.Y. Yang. Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. Information Processing Letters,2007,102 (1): 8-16
    [42]M. Clerc, Stagnation analysis in particle swarm optimization or what happens when nothing happens. Technical Report CSM-460, Department of Computer Science, University of Essex, August 2006.
    [43]Hongbo Liu, Ajith Abraham, Maurice Clerc. Chaotic dynamic characteristics in swarm intelligence. Applied Soft Computing,2007,7 (3):1019-1026
    [44]Eberhart, R.C.; Shi, Y. Comparing inertia weights and constriction factors in particle swarm optimization.2000 Congress on Evolutionary Computation, La Jolla, CA,16-19 July 2000, vol. 1,pp:84-88
    [45]陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权递减策略研究,西安交通大学学报,2006,40(1):53-56
    [46]Y. Zheng, L. Ma, L. Zhang, and J. Qian, On the convergence analysis and parameter selection in particle swarm optimization, Second Int. Conf. Machine Learning and Cybernectics,, Xi'an,2-5 November 2003, pp.1802-1807
    [47]S. Wen, X. Zhang, H. Li, S. Liu, J. Wang. A modified particle swarm optimization algorithm, Int. Conf. Neural Networks and Brain, Beijing,13-15 Oct.2005, vol.1, pp.318-321
    [48]俞欢军,张丽平,陈德钊等.基于反馈策略的自适应粒子群优化算法,浙江大学学报(工学版)2005,39(9):1286-1291
    [49]Y. Shi and R. C. Eberhart. Fuzzy adaptive particle swarm optimization.2001 Congress Evolutionary Computation, Seoul, South Korea,27-30 May 2001, vol.1, pp:101-106
    [50]陈红州,顾国昌,康望星.一种具有感觉的微粒群算法,计算机研究与发展,2005,42(8):1299-1305
    [51]A. Ratnaweera, S. K. Halgamuge and H. C. Watson, Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients, IEEE Trans. Evolutionary computation,2004,8 (3):240-255
    [52]M. Clerc, Particle swarm optimization. London:ISTE,2006
    [53]林川,冯全源.一种新的自适应粒子群优化算法.计算机工程,2008,34(7):181-183
    [54]J. Kennedy, Small Worlds and Mega-Minds:Effects of Neighborhood Topology on Particle Swarm Performance, Congress Evolutionary Computation, Washington DC,6-9 July 1999, vol. 3, pp.1931-1938
    [55]J. Kennedy and R. Mendes. Population structure and particle swarm performance, Congress Evolutionary Computation, Honolulu, Hawaii,12-17 May 2002, vol.2, pp:1671-1676
    [56]P. N. Suganthan. Particle swarm optimizer with neighborhood operator. Congress Evolutionary Computation, Washington DC,6-9 July 1999, vol.3, pp.1958-1962
    [57]M. Richards and D. Ventura, Dynamic Sociometry in Particle Swarm Optimization, Proc. Joint Conf. Information Sciences, North Carolina, Sep.2003, pp.1557-1560
    [58]J. Kennedy, Stereotyping:Improving Particle Swarm Performance With Cluster Analysis, Congress Evolutionary Computation, La Jolla, CA,16-19 July 2000, vol.2, pp.1507-1512
    [59]Stefan Janson, Martin Middendorf. A hierarchical particle swarm optimizer and its adaptive variant. IEEE Trans. Systems, Man, and Cybernetics-Part B:Cybernectics,2005,35(6):1272-1282
    [60]王雪飞,王芳,邱玉辉.一种具有动态拓扑结构的粒子群算法研究,计算机科学,2007,34(3):205-207,233
    [61]C. Lin and Q. Feng, A hierarchical subpopulation particle swarm optimization algorithm,2007 Intelligent Systems and Knowledge Engineering, Chengdu, Oct.15-16,2007, doi: 10.2991/iske.2007.195, pp:1487-1491
    [62]Ben Niu, Yunlong Zhu, Xiaoxian He, etc., MCPSO:A multi-swarm cooperative particle swarm optimizer. Applied Mathematics and computation,2007,185(2):1050-1062
    [63]Rui Mendes, James Kennedy. The fully informed particle swarm:simpler, maybe better. IEEE Trans. Evolutionary Computation,2004,8(3):204-210
    [64]James Kennedy, Rui Mendes. Neighborhood topologies in fully informed and best-of-neighborhood particle swarm. IEEE Trans. Systems, Man, and Cybernetics-Part C:Applications and Reviews,2006,36(4):515-519
    [65]林川,冯全源.粒子群优化算法的信息共享策略.西南交通大学学报,2009,44(3):437-441
    [66]林川,冯全源.利用有效信息的微粒群优化算法.哈尔滨工程大学学报,2008,29(11):1227-1231
    [67]Y. Liu, Z. Qin, Z. Shi and J. Lu, Center particle swarm optimization, Neurocomputing,2007,70 (4-6):672-679
    [68]刘金洋,郭茂祖,邓超.基于雁群启示的粒子群优化算法.计算机科学,2006,33(11):166-168,191
    [69]Thanmaya Peram, Kalyan Veeramachaneni and Chilukuri K. Mohan. Fitness-distance-ratio based particle swarm optimization, IEEE Swarm Intelligence Symposium, Indianapolis,24-26 Apr.2003, pp:174-181
    [70]J. J. Liang, A. K. Qin, P. N. Suganthan and S. Baskar, Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions, IEEE Trans. Evolutionary Computation,2006,10 (3) 281-295
    [71]C. Yang and D. Simon, A New Particle Swarm Optimization Technique,18th Int. Conf. Systems Engineering, Las Vegas, USA,16-18 Aug.2005,164-169
    [72]A. Immanuel Selvakumar, K. Thanushkodi, A New Particle Swarm Optimization Solution to Nonconvex Economic Dispatch Problems, IEEE Trans. Power System,2007,22 (1):42-51
    [73]J. Kennedy, Bare bones particle swarms, IEEE Swarm Intelligence Symp., Indianapolis,2003, Piscataway, IEEE Service Center,2003:80-87
    [74]J. Kennedy, Probability and dynamics in the particle swarm, Congress Evolutionary Computation,19-23 2004, vol.1, pp.340-347
    [75]J. Kennedy. Why does it need velocity,2005 IEEE Swarm Intelligence Symp., Pasadena, CA,8-10 June 2005,:pp:38-44
    [76]J. Kennedy. In search of the essential particle swarm, IEEE Congress Evolutionary Computations, Vancouver,16-21 July 2006, pp.1694-1701
    [77]林川,冯全源.基于微粒群本质特征的混沌微粒群优化算法.西南交通大学学报,2007,42(6):665-669
    [78]Rui Mendes and James Kennedy, Stochastic Barycenters and Beta Distribution for Gaussian Particle Swarms, Lecture Notes in Computer Science,2007, vol.4874, pp.259-270
    [79]M. Lovbjerg and T. Krink, Extending particle swarms with self-organized criticality, Congress Evolutionary Computation, Honolulu, Honolulu,12-17 May 2002, vol.2, pp.1588-1593
    [80]T. Blackwell and P. J. Bentley, Don't push me! Collision-avoiding swarms. Congress Evolutionary Computation, Honolulu,12-17 May 2002, vol.2, pp.1691-1696
    [81]T. Krink, J. S. Vesterstrom, and J. Riget, Particle swarm optimisation with spatial particle extension. Congress Evolutionary Computation, Honolulu,12-17 May 2002, vol.2, pp.1474-1479
    [82]S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders and R.C. Paton, A particle swarm optimizer with passive congregation, Biosystems,2004,78 (1-3):135-147
    [83]M. El-Abd and M. Kamel, Cooperative Particle Swarm Optimizers:A Powerful and Promising Approach, Stigmergic Optimization, in Studies in Computational Intelligence,2006, vol.31, pp. 239-259
    [84]S. Selleri, M. Mussetta, P. Pirinoli, R. E. Zich, and L. Matekovits, Some Insight Over New Variations of the Particle Swarm Optimization Method, IEEE Antennas and Wireless Propagation Letters,2006,5 (1):235-238
    [85]M. Higashitani, A. Ishigame, K. Yasuda, Particle Swarm Optimization Considering the Concept of Predator-Prey Behavior, IEEE Congress Evolutionary Computation, Vancouver,16-21 July 2006,pp.434-437
    [86]W. Jian, Y. Xue, and J. Huang, Combined Algorithm for Time-varying System based on Improved Particle Swarm Optimization and EWRLS Algorithm, IEEE Int. Conf. Industrial Technology,8-10 Dec.2004, vol.3, pp.1474-1477
    [87]孟红记,郑鹏,梅国晖,谢植.基于混沌序列的粒子群优化算法,控制与决策,2006,21(3):263-266
    [88]J. Sun, B. Feng, and W. Xu, Particle swarm optimization with particles having quantum behavior, Congress Evolutionary Computation, Portland, OR,19-23 June 2004, vol.1, pp. 325-331
    [89]B. Yang, Y. Chen, and Z. Zhao, A hybrid evolutionary algorithm by combination of PSO and GA for unconstrained and constrained optimization problems, IEEE Int. Conf. Control and Automation, Guangzhou, China,30 May-1 June 2007, pp.166-170
    [90]郑小霞,钱锋.一种改进的微粒群优化算法,计算机工程,32(15):25-27
    [91]T. Hendtlass, A combined swarm differential evolution algorithm for optimization problems. In L. Monostori, J. Vancza, and M. Ali (Eds.), Lecture notes in computer science:Vol.2070. Proc. of the 14th international conference on industrial and engineering applications of artificial intelligence and expert systems, Budapest, Hungary, pp.11-18. Berlin:Springer.2001
    [92]A. Kaveh and S. Talatahari, Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures, Computer & Structures,2009,87 (5-6): 267-283
    [93]莫愿斌,陈德钊,胡上序.混沌粒子群算法及其在生化过程动态优化中的应用,化工学报,2006,57(9):2123-2127
    [94]B. Liu, L. Wang, Y. Jin and F. Tang, De-Xian Huang, Improved particle swarm optimization combined with chaos, Chaos, Solitons & Fractals,2005,25 (5):1261-1271
    [95]费春国,韩正之.一种改进的混沌优化算法[J].控制理论与应用,2006,23(3):471-474
    [96]S. S. Fan and E. Zahara, A hybrid simplex search and particle swarm optimization for unconstrained optimization, European J. Operational Research,2007,181 (2):527-548
    [97]F. Wang and Y. Qiu, Empirical Study of Hybrid Particle Swarm Optimizers with the Simplex Method Operator,5th Int. Conf. Intelligent Systems Design and Applications, Wroclaw, Poland, 8-10 Sep.2005, pp.308-313
    [98]X. H. Shi, Y. H. Lu, C. G. Zhou, H. P. Lee, W. Z. Lin, and Y. C. Liang, Hybrid Evolutionary Algorithms Based on PSO and GA, Congress Evolutionary Computation, Canberra, ACT, Australia,8-12 Dec.2003, vol.4, pp.2393-2399
    [99]P. J. Angeline, Using Selection to Improve Particle Swarm Optimization, IEEE Congress Evolutionary Computation, Anchorage, Alaska,5-9 May 1998, pp.84-89
    [100]W. H. Duminy and A. P. Engelbrecht, Tournament Particle Swarm Optimization, IEEE Symp. Computational Intelligence and Games, Honolulu, Hawaii,1-5 Apr.2007, pp.146-153
    [101]潘峰,涂序彦,陈杰,付继伟.协调粒子群优化算法-HPSO,计算机工程,2005,31(1):169-171
    [102]窦全胜,周春光,马铭.粒子群优化的两种改进策略,计算机研究与发展,2005,42(5):897-904
    [103]C. Dong and Z. Qiu, Particle Swarm Optimization Algorithm Based on the Idea of Simulated Annealing, Int. J. Computer Science and Network Security,2006,6 (10):152-157
    [104]F. Van den Bergh and A. P. Engelbrecht, A new locally convergent particle swarm optimizer, IEEE Int. Conf. Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia,6-9 Oct.2002, vol.3, pp.96-101
    [105]F. Van den Bergh and A. P. Engelbrecht, A Cooperative Approach to Particle Swarm Optimization, IEEE Trans. Evolutionary Computation,2004,8 (8):225-239
    [106]D. Devicharan and C. K. Mohan, Particle Swarm Optimization with Adaptive Linkage Learning, Congress Evolutionary Computation, Portland, OR,19-23 June 2004, vol.1, pp.530-535
    [107]Y. P. Chen, W. C. Peng, and M. C. Jian, Particle Swarm Optimization With Recombination and Dynamic Linkage Discovery, IEEE Trans. Systems, Man and Cybernetics-Part B:Cybernetics, 2007,37(6):1460-1470
    [108]崔志华,曾建潮.基于控制理论的微粒群算法分析与改进,小型微型计算机系统,2006,27(5):849-853
    [109]刘宇,覃征,史哲文,简约粒子群优化算法,西安交通大学学报,2006,40(8):883-887
    [110]A. Acan and A. Gunay, Enhanced particle swarm optimization through external memory support, IEEE Congress Evolutionary Computation, Edinburgh, UK,2-5 Sep.2005, vol.2, pp.1875-1882
    [111]A. Acan, A. Unveren, and M. Bodur, The latest vs. averaged recent experience:which better guides a PSO algorithm, IEEE Congress Evolutionary Computation, Vancouver,16-21 July 2006, pp.414-419
    [112]T. Xiang, K. Wong, and X. Liao, A novel particle swarm optimizer with time-delay, Applied Mathematics and Computation,2007,186 (1):789-793
    [113]刘波,王凌,金以慧,黄德先.微粒群优化算法研究进展,化工自动化及仪表,2005,32(3):1-6
    [114]T. Ray and K. M. Liew, A swarm metaphor for multiobjective design optimization, Engineering Optimization,2002,34(2):141-153.
    [115]Y. Wang and Y. Yang, Particle swarm optimization with preference order ranking for multi-objective optimization, Information Sciences,2009,179 (12):1944-1959
    [116]P. K. Tripathi, S. Bandyopadhyay, and S. K. Pal, Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients, Information Sciences,2007,177 (22): 5033-5049
    [117]K. E. Parsopoulos and M. N. VrahatisParticle Swarm Optimization Method for Constrained Optimization Problems. Proc. Euro-international Symp. Computational Intelligence, in P. Sincak, J. Vascak, V. Kvasnicka, J. Pospichal (eds.), Intelligent Technologies-Theory and Applications:New Trends in Intelligent Technologies, pp.214-220,2002.
    [118]X. Hu and R. C. Eberhart, Solving constrained nonlinear optimization problems with particle swarm optimization, Proc.6th World Multiconference Systemics, Cybernetics and Informatics, Orlando, FL, July 14-18 2002, vol.5
    [119]M. Clerc, Discrete particle swarm optimization, illustrated by traveling salesman problem, in G. C. Onwubolu and B. V. Babu (eds.), New Op timization Techniques in Engineering, Berlin: Springer-Verlag,2004
    [120]T. Blackwell and J. Branke. Multi-swarms, exclusion and anti-convergence in dynamic environments. IEEE Ttrans. Evolutionary Computation,2006,10 (4):pp.459-472
    [121]R. C. Eberhart and Y. Shi, Tracking and Optimizing Dynamic Systems with Particle Swarms, IEEE Congress on Evolutionary Computation, May 27-30,2001, Seoul, South Korea, pp.94-97
    [122]D. Parrott and X. Li, A Particle Swarm Model for Tracking Multiple Peaks in a Dynamic Environment using Speciation, Congress Evolutionary Computation, Portland, OR,19-23 June 2004, vol.1, pp.98-103
    [123]K. E. Parsopoulos and M. N. Vrahatis, Particle swarm optimizer in noisy and continuously changing environments. In M. H. Hamza (Ed.), Artificial intelligence and soft computing,2001, pp.289-294
    [124]J. Pugh, A.Martinoli, and Y. Zhang, Particle swarm optimization for unsupervised robotic learning. IEEE swarm intelligence symp., Pasadena, CA,8-10 June 2005, pp.92-99
    [125]J. Zhang, J. Zhang, T. Lok and M. R. Lyu, A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training, Applied Mathematics and Computation,2007,185 (2):1026-1037
    [126]Q. Shen, W.Shi, X. Yang and B. Ye, Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation, European Journal of Pharmaceutical Sciences,2006,28 (5):369-376
    [127]M. A. Abido, Optimal design of power-system stabilizers using particle swarm optimization. IEEE Trans. Energy Conversion,2002,17 (3):406-413
    [128]H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Systems,2000,15 (4):1232-1239.
    [129]E. F. Costa Jr., P. L. C. Lage and E. C. Biscaia Jr. On the numerical solution and optimization of styrene polymerization in tubular reactors, Computers & Chemical Engineering,2003,27 (11): 1591-1604
    [130]C. O. Ourique, E. C. Biscaia Jr and J. C. Pinto, The use of particle swarm optimization for dynamical analysis in chemical processes, Computers & Chemical Engineering,2002,26 (12): 1783-1793
    [131]F. Zhang, D. Xue, Optimal concurrent design based upon distributed product development life-cycle modeling, Robotics and Computer-Integrated Manufacturing,2001,17 (6):469-486
    [132]Xiaoguang Zhang, Li Yu, Yuan Zheng, Yu Shen, Guangtao Zhou, Lin Chen, Lixia Xi, Tiecheng Yuan, Jianzhong Zhang, Bojun Yang, Two-stage adaptive PMD compensation in a 10 Gbit/s optical communication system using particle swarm optimization algorithm, Optics Communications, vol.231, no.1-6, pp.233-242,2004
    [133]Hongwu Liu, Ji Li, A particle swarm optimization based multiuser detection for receive-diversity aided STBC systems, IEEE Signal Processing Letter,2008,15:29-32.
    [134]G. K. Venayagamoorthy and S. Doctor, Navigation of mobile sensors using PSO and embedded PSO in a fuzzy logic controller,39th Industry Applications Conf., Seattle, USA,3-7 Oct.2004, vol.2, pp.1200-1206
    [135]H. Wu, F. Sun, Z. Sun and L. Wu, Optimal Trajectory Planning of a Flexible Dual-Arm Space Robot with Vibration Reduction, J. Intelligent and Robotic Systems,2004,400 (2):147-163
    [136]T. K. Rasmussen and T. Krink, Improved Hidden Markov Model training for multiple sequence alignment by a particle swarm optimization-evolutionary algorithm hybrid, Biosystems,2003, 72 (1-2):5017
    [137]X. Xiao, E. R. Dow, and R. C. Eberhart, et al. A hybrid self-organizing maps and particle swarm optimization approach, Concurrency and Computation:Practice & Experience,2004,16 (9): 895-915.
    [138]B. V. Babu and S. A. Munawar, Differential evolution for the optimal design of heat exchangers, All India Seminar Chemical Engineering Progress Resource Development:A Vision 2010 Beyond, Orissa State Centre Bhuvaneshwar, March 13,2000
    [139]C. S. Chang and D. Y. Du, Further improvement of optimisation method for mass transit signalling block-layout design using differential evolution, IEE Proc. B-Electric Power Applications,1999,146 (5):559-569
    [140]A. C. Nearchou and S. L. Omirou, Differential evolution for sequencing and scheduling optimization,J. Heuristics,2006,12 (6):395-411
    [141]J. Ilonen, J. K. Kamarainen, and J. Lampinen, Differential evolution training algorithm for feed-forward neural networks, Neural Processing Letters,2003,17 (1):93-105
    [142]E. Mezura-Montes, J. Velazquez-Reyes, and C. A. C. Coello, A comparative study of differential evolution variants for global optimization, Genetic and Evolutionary Computation Conf., Seattle, USA, July 8-12,2006, pp.485-492,2006
    [143]A. Salman, A. P. Engelbrecht, and M. G. H. Omran, Empirical analysis of self-adaptive differential evolution, European Journal of Operational Research,2007,183 (2):785-804
    [144]J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems, IEEE Trans. Evolutionary Computation,2006,10 (6):646-657
    [145]Amin Nobakhti and Hong Wang, A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier, Applied Soft Computing,2008,8 (1):350-370
    [146]Junhong Liu, Jouni Lampinen, A Fuzzy Adaptive Differential Evolution Algorithm, Soft Computing-A Fusion of Foundations, Methodologies and Applications,2005,9 (6):448-462
    [147]A. Qing, Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems, IEEE Trans. Geosci. Remote Sens.,2006,44 (1):116-125
    [148]S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, Opposition-based differential evolution, IEEE Trans. Evolutionary Computation,2008,12 (1):64-79
    [149]M. G. H. Omran, A. P. Engelbrecht, and A. Salman, Bare bones differential evolution, European J. Operational Research,2009,196(1):128-139
    [150]P. K. Bergey and C. Ragsdale, Modified differential evolution:a greedy random strategy for genetic recombination, Omega-Int. J. Management Science,2005,33 (3):255-265
    [151]T. T. Chang and H. C. Chang, Application of differential evolution to passive shunt harmonic filter planning,8th Int. Conf. Harmonics Quality Power, Athens, Greece, Oct.14-16 1998, vol. 1,pp.149-153,1998
    [152]H. Y. Fan and J. Lampinen, A directed mutation operation for the differential evolution algorithm, Int. J. Industrial Engineering-Theory Applications Practice,2003,10 (1):6-15
    [153]H. Y. Fan and J. Lampinen, A trigonometric mutation operation to differential evolution, J. Global Optimization,2003, vol.27, pp.105-129
    [154]V. Feoktistov and S. Janaqi, Generalization of the strategies in differential evolution,18th Int. Parallel Distributed Processing Symp., April 26-30,2004, pp.2341-2346
    [155]V. Feoktistov, Differential Evolution:in Search of Solutions, Berlin:Springer,2006
    [156]M. M. Ali and L. P. Fatti, A differential free point generation scheme in the differential evolution algorithm, J. Global Optimization,2006,35 (4):551-572
    [157]E. Mezura-Montes, J. Velasquez-Reyes and C. A. Coello Coello, A Comparative Study of Differential Evolution Variants for Global Optimization,2006 Genetic and Evolutionary Computation Conference, Washington, July,2006, vol.1, pp.485-492
    [158]D. Zaharie, A comparative analysis of crossover algorithms in differential evolution, Proc. of the Int. Multiconference Computer Science and Information Technology, Wisla, Poland,15-17 Oct. 2007, pp.171-181
    [159]M. M. Ali, Differential evolution with preferential crossover, European J. Operational Research, 2007,181 (3):1137-1147
    [160]B. V. Babu and R. Angira, New strategies of differential evolution for optimization of extraction process, Int Symp 56th Annual Session IIChE, Bhubaneswar, December 19-22,2003
    [161]N. Noman and H. Iba, A new generation alternation model for differential evolution, Genetic Evolutionary Computation, Seattle, WA, July 8-12,2006, vol.2, pp.1265-1272
    [162]R. Thomsen, Multimodal optimization using crowding-based differential evolution,2004 IEEE Congress Evolutionary Computation, Portland, OR, June 19-23,2004, vol.2, pp.1382-1389
    [163]S. Das, A. Konar, and U. K. Chakraborty, Improved differential evolution algorithms for handling noisy optimization problems,2005 IEEE Congress Evolutionary Computation, Edinburgh, UK, September 2-5,2005, vol.2, pp.1691-1698
    [164]D. Zaharie, A multipopulation differential evolution algorithm for multimodal optimization, 10th Int. Mendel Conf. Soft Computing, Brno, Czech Republic, June 2004, pp.17-22
    [165]C. H. Liang, C. Y. Chung, K. P. Wong, and X. Z. Duan, Parallel optimal reactive power flow based on cooperative co-evolutionary differential evolution and power system decomposition, IEEE Trans. Power Systems,2007,22 (1):249-257
    [166]赵光权,彭喜元,孙宁.基于混合优化策略的微分进化改进算法,电子学报,2006,34(12): 2402-2405
    [167]A. Qing, Electromagnetic Inverse scattering of multiple perfectly conducting cylinders by differential evolution strategy with individuals in groups (GDES), IEEE Trans. Antennas Propagat.,2004,52 (5):1223-1229
    [168]M. M. Ali and A. Torn, Population set-based global optimization algorithms:some modifications and numerical studies, Computers Operations Research,2004,31 (10):1703-1725
    [169]J. P. Chiou and F. S. Wang, A hybrid method of differential evolution with application to optimal control problems of a bioprocess system, IEEE Congress Computational Intelligence, Anchorage, Alaska, May 4-9,1998, pp.627-632
    [170]T. R. Bhat, D. Venkataramani, V. Ravi, and C. V. S. Murty, An improved differential evolution method for efficient parameter estimation in biofilter modeling, Biochemical Engineering J., 2006,28(2):167-176
    [171]U. K. Chakraborty, S. Das and A. Konar, Differential Evolution with Local Neighborhood, IEEE Congress Evolutionary Computation,16-21 July 2006, Vancouver, Canada, pp.2042-2049
    [172]R. L. Becerra and C. A. C. Coello, Culturizing differential evolution for constrained optimization,5th Mexican Int. Conf. Computer Science,2004, pp.304-311
    [173]R. Storn, Differential Evolution Design of an ⅡR-Filter with Requirements for Magnitude and Group Delay, Technical Report TR-95-026, June 1995, International Computer Science Institute
    [174]R. Storn, Differential evolution design of an IIR-filter,1996 IEEE Int. Conf. Evolutionary Computation, Nagoya, May 20-22,1996, pp.268-273
    [175]R. Joshi and A. C. Sanderson, Multisensor fusion and model selection using a minimal representation size framework,1996 IEEE/SICE/RSJ Int. Conf. Multisensor Fusion Integration Intelligent Systems, Washington, DC, December 8-11,1996, pp.25-32,1996
    [176]A. Qing, Electromagnetic inverse scattering of multiple two-dimensional perfectly conducting objects by the differential evolution strategy, IEEE Trans. Antennas Propagat.,2003,51 (6): 1251-1262
    [177]K. A. Michalski, Electromagnetic imaging of circular-cylindrical conductors and tunnels using a differential evolution algorithm, Microw. Optical Tech. Letters,2000,27 (5):330-334
    [178]D. G. Kurup, M. Himdi, and A. Rydberg, Synthesis of uniform amplitude, unequally spaced antenna arrays using the differential evolution algorithm, IEEE Trans. Antennas Propagation, 2003,51 (9):2210-2217
    [179]F. S. Wang and J. P. Chiou, Optimal control and optimal time location problems of differential-algebraic systems by differential evolution, Industrial Engineering Chemistry Research,1997, 36 (12):5348-5357
    [180]B. V. Babu and K. K. N. Sastry, Estimation of heat transfer parameters in a trickle-bed reactor using differential evolution and orthogonal collocation, Computers Chemical Engineering,1999, 23 (3):327-339
    [181]B. V. Babu and S. A. Munawar, Optimal design of shell-and-tube heat exchangers using different strategies of differential evolution, PreJournal.org-The Faculty Lounge, Article No. 003873, March 3,2001
    [182]M. D. Kapadi and R. D. Gudi, Optimal control of fed-batch fermentation involving multiple feeds using differential evolution, Process Biochemistry,2004,39 (11):1709-1721
    [183]J. P. Chiou, C. F. Chang, and C. T. Su, Variable scaling hybrid differential evolution for solving network reconfiguration of distribution systems, IEEE Trans. Power Systems,2005,20 (2):668-674
    [184]T. T. Chang and H. C. Chang, An efficient approach for reducing harmonic voltage distortion in distribution systems with active power line conditioners, IEEE Trans. Power Delivery,2000,15 (3):990-995
    [185]D. A. Crutchley and M. Zwolinski, Globally convergent algorithms for DC operating point analysis of nonlinear circuits, IEEE Trans. Evolutionary Computation,2003,7 (1):2-10
    [186]E. Balsa-Canto, A. A. Alonso and J. R. Banga, Dynamic optimization of bioprocesses: deterministic and stochastic strategies, Automatic Control Food Biological Processes, Goteborg, Sweden, September 21-23,1998
    [187]K. Y. Tsai and F. S. Wang, Evolutionary optimization with data collocation for reverse engineering of biological networks, Bioinformatics,2005,21 (7):1180-1188
    [188]D. Kiranmai, A. Jyothirmai, and C. S. Murty, Determination of kinetic parameters in fixed-film bio-reactors:an inverse problem approach, Biochemical Engineering J.,2005,23 (1):73-83
    [189]S. Aydin and H. Temeltas, Fuzzy-differential evolution algorithm for planning time-optimal trajectories of a unicycle mobile robot on a predefined path, Advanced Robotics,2004,18 (7): 725-748
    [190]P. Shiakolas, D. Koladiya and J. Kebrle, Optimum robot design based on task specifications using evolutionary techniques and kinematic, dynamic, and structural constraints, Inverse Problems Engineering,2002,10 (4):359-375
    [191]J. Teo, Evolutionary multi-objective optimization for automatic synthesis of artificial neural network robot controllers, Malaysian J. Computer Science,2005,18 (2):54-62
    [192]C. Li, G. Yue, X. Wang, and M. A. Khojastepour, LDPC code design for half-duplex cooperative relay, IEEE Trans. Wireless Communications,2008,7 (11):4558-4567
    [193]F. Xue, A. C. Sanderson, and R. J. Graves, Multi-objective routing in wireless sensor networks with a differential evolution algorithm,2006 Congress Evolutionary Computation, April 23-25, 2006,pp.880-885
    [194]S. P. Mendes, J. A. G. Pulido, M. A. V. rodriguez, M. D. J. simon, and J. M. S. Perez, A Differential Evolution Based Algorithm to Optimize the Radio Network Design Problem, IEEE Int. Conf. e-Science and Grid Computing, Amsterdam, The Netherlands, Dec.2006, pp.119-125
    [195]Simon Haykin. Adaptive Filter Theory,4th Edition. 北京:电子工业出版社,2002.7
    [196]Paulo S. R. Diniz著,刘郁林,景晓军,谭刚兵等译,自适应滤波算法与实现,电子工业出版社,2004
    [197]J. A. Apolinario Jr. and P. S. R. Diniz. A New Fast QR Algorithm Based on a Priori Errors, IEEE Signal Processing Letters,1997,4(11):307-309
    [198]R. H. Kwong and E. W. Johnston. A Variable Step Size LMS Algorithm, IEEE, Trans. Signal Processing,1992,40(7):1633-1642
    [199]Tyseer Aboulnasr, K. Mayyas. A Robust Variable Step-Size LMS-Tpye Algorithm:Analysis and Simulations, IEEE Trans. Signal Processing,1997,45(3):631-639
    [200]P. Sristi, W.-S. Lu, A. Antoniou. A New Variable-Step-Size LMS Algorithm and Its Application in Subband Adaptive Filtering for Echo Cancellation. IEEE Int. Symp. Circuits and Systems, Sydney,6-9 May 2001, vol.2, pp:721-724
    [201]H. Ye, X. Chao, B. Wu. A Robust Adaptive Filtering Algorithm with Variable Step Size, Military Communications Conf, Boston, MA, USA,15-18 Oct.1989, vol.2, pp.526-530
    [202]W.S. Gan. Designing a fuzzy step size LMS algorithm. IEE Proc. Visual Image Signal Process., 1997,144(5):261-266
    [203]H. Y. Lin, C. C. Hu, Y. F. Chen, etc. An Adaptive Robust LMS Employing Fuzzy Step Size and Partial Update. IEEE Signal Processing Letters,2005,12(8):545-548
    [204]林川,冯全源.模糊步长LMS算法及其性能分析.系统工程与电子技术,2007,29(6):967-970
    [205]Y. Gong and C. F. N. Cowan, A novel variable tap-length algorithm for linear adaptive filters, IEEE Int. Conf. Acoust., Speech, Signal Process., Montreal, Canada, May 2004, vol.2:825-828
    [206]Y. Gong and C. F. N. Cowan, An LMS style variable tap-length algorithm for structure adaptation. IEEE Trans. On Signal Processing,2005,53(7):2400-2407
    [207]F. Riera-Palou and J. M. Noras, Cruickshank D G M. Linear equalisers with dynamic and automatic length selection, Electron Letters,2001,37(25):1553-1554
    [208]Y. Gu, K. Tang, and H. Cui, LMS algorithm with gradient descent filter length, IEEE Signal Proc. Letter,2004, 11(3):305-307
    [209]Y. Zhang and J. A. Chambers, Convex Combination of Adaptive Filters for a Variable Tap-Length LMS Algorithm, IEEE Signal Processing Letters,2006,13(10):628-631
    [210]林川,冯全源.变抽头长度LMS自适应滤波算法.电子与信息学报,2008,30(7):1676-1679
    [211]林川,冯全源.应用于自适应格型RLS滤波器的变阶数算法,信号处理,拟发表于2010年第1或2期
    [212]Tai-Kuo Woo, Fast hierarchical least mean square algorithm, IEEE Signal Processing Letters, 2001,8(11):289-291
    [213]Tai-Kuo Woo, HRLS:a more efficient RLS algorithm for adaptive FIR filtering, IEEE Communications Letters,2001,5(3):81-84
    [214]谷源涛,唐昆,崔慧娟等.独立假设下的最优变步长LMS模型和算法.中国科学E辑,2003,33(8):760-768
    [215]谷源涛,唐昆,崔慧娟.步长选择定理及其应用.中国科学E辑,2003,33(10):947-953.
    [216]M. Martinez-Ramon, J. Arenas-Garcia, A. Navia-Vazquez, etc. An adaptive combination of adaptive filters for plant identification.14th Int. Conf. Digital Signal Processing, Pine Mountain, Georgia, USA 13-16 Oct.2002.1195-1198.
    [217]J. Arenas-Garcia, V. Gomez-Verdejo, and A. R. Figueiras-Vidal, New algorithms for improved adaptive convex combination of LMS transversal filters. IEEE Trans. Instrumentation and Measurement,2005,54(6):2239-2249.
    [218]J. Arenas-Garcia, A. R. Figueiras-Vidal, and A. H. Sayed, Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Processing,2006,54(3):1078-1090.
    [219]林川,冯全源.基于粒子群优化算法思想的组合自适应滤波算法.电子与信息学报,2009,31(5):1245-1248
    [220]R. C. Bilcu, P. Kuosmanen, and K. Egiazarian, A transform domain LMS adaptive filter with variable step size. IEEE Signal Processing Letters,2002,9(2):51-53
    [221]D. J. Krusienski and W. K. Jenkins, Design and performance of adaptive systems based on structured stochastic optimization strategies. IEEE Circuits and Systems Magazine,2005,5(1): 8-20
    [222]焦永昌,杨科,陈胜兵等.粒子群优化算法用于阵列天线方向图综合设计,电波科学学报,21(1):16-20,25
    [223]N. Jin and Y. Rahmat-Samii, Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations, IEEE Trans. Antennas and Propagation,2007,55 (3):556-567
    [224]B. P. Kumar and G. R. Branner, Design of unequally spaced arrays for performance improvement, IEEE Trans. Antennas and Propagation,1999,47 (3):511-523
    [225]B. P. Kumar and G. R. Branner, Generalized analytical technique for the synthesis of unequally spaced arrays with linear, planar, cylindrical or spherical geometry, IEEE Trans. Antennas and Propagation,2005,53 (2):621-634
    [226]Haupt, R.L.; Menozzi, J.J.; McCormack, C.J., Thinned arrays using genetic algorithms, Int. Symp. Antennas and Propagation Society,28 June-2 July 1993, vol.2, pp.712-715
    [227]K. Chen, Z. He, and C. Han, A modified real GA for the sparse linear array synthesis with multiple constraints, IEEE Trans. Antennas and Propapgation,2006,54 (7):2169-2173
    [228]Y. Chen, S. Yang, and Z. Nie, The application of a modified differential evolution strategy to some array pattern synthesis problems, IEEE Trans. Antennas and Propagation,2008,56 (7): 1919-1927
    [229]金荣洪,袁智皓,耿军平等.基于改进粒子群算法的天线方向图综合技术,电波科学学报,21(6):873-878
    [230]V. Murino, A. Trucco, and C. S. Regazzoni, Synthesis of unequally spaced arrays by simulated annealing, IEEE Trans. Signal Processing,1996,44 (1):119-122
    [231]C. Lin, A. Qing, and Q. Feng, Synthesis of unequally spaced antenna arrays by a new differential evolutionary algorithm, Int. J. Communication networks Information Security,2009, 1 (1):20-25
    [232]C. Lin, A. Qing, and Q. Feng, Position-only synthesis of antenna arrays using effectively informed Gaussian particle swarm algorithm, Asia-Pacific Microwave Conf, Singapore,7-10 Dec.2009, Accepted
    [233]杨林.阵列天线综合方法研究,博士学位论文,哈尔滨工程大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700