hUC-MSC_S/hHGF基因修饰的hUC-MSC_S移植在心肌损伤修复中的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本实验选用广西巴马小型猪,通过外科手术建立急性心肌梗死模型,将体外培养的人脐带间充质干细胞(Human umbilical cord mesenchymal stem cells, hUC-MSCs)经心外膜植入心肌梗死区,观察hUC-MSCs移植对缺血性心肌损伤的修复作用并探讨其机制。同时比较人肝细胞生长因子(Human hepatocyte growth factor, hHGF)基因修饰的hUC-MSCs移植与单纯的hUC-MSCs移植在同一急性心肌梗死模型中的心肌损伤修复作用有无差别并探讨其可能的机制。
     方法:
     无菌条件下采集足月儿的脐带后,hUC-MSCs经体外分离、培养、扩增至第五代。用携带hHGF基因的重组腺病毒基因表达载体以150的感染强度转染hUC-MSCs,获得hHGF基因修饰的hUC-MSCs。两种干细胞均在术前以CM-Dil标记备用。采用外科手术方法于中、远端1/3交界处结扎冠状动脉前降支制成小型猪急性心肌梗死模型。随机将实验动物分为4组,每组6只。A组空白对照组(只造模而不做任何干预);B组PBS组;C组hUC-MSCs移植组;D组hHGF基因修饰的hUC-MSCs移植组。C组与D组中每只动物分别接受总计2×107的hUC-MSCs或(?)hHGF基因修饰的hUC-MSCs,分成9-10个点经心外膜注入梗死后缺血的心肌;PBS组则注入同等体积的无菌PBS。6周后,采用静息核素心肌灌注显像与经胸超声心动图评价梗死区血流灌注与局部收缩功能的变化。实验动物处死后采集梗死区域的心肌标本,采用RT-PCR、免疫荧光与免疫组化、Masson和TUNEL染色的方法观察干细胞的植入、增殖及分化,血管新生,存活心肌、细胞凋亡的情况,以揭示可能的作用机制。
     结果:
     (1)术后6周与空白对照组和PBS组相比,hUC-MSCs移植组与hHGF基因修饰的hUC-MSCs移植组经静息核素心肌灌注显像检测的灌注质量缺损百分率变化显著改善(P<0.001);经胸超声心动图观察到的局部梗死区室壁舒张末期厚度与收缩期增厚率显著改善(P<0.001)。免疫荧光检查发现hUC-MSCs与hHGF基因修饰的hUC-MSC这两种干细胞移植后6周,原梗死区域仍可见所移植的干细胞存活,其中部分向心肌和血管内皮细胞分化。同时亦可见固有心脏干细胞的募集与分化。与空白对照组和PBS组相比,hUC-MSCs移植组与hHGF基因修饰的hUC-MSCs移植组的vWF免疫组化染色结果显示新生血管密度显著增加(P<0.001), Masson染色结果显示存活心肌明显增多而纤维组织明显减少(P<0.001), TUNEL染色结果显示细胞凋亡明显减少(P<0.001),血管内皮生长因子(Vascular endothelial growth factor, VEGF)、肝细胞生长因子(Hepatocyte growth factor, HGF)、转化生长因子β3(Transforming growth factor-β3, TGF-β3)、血管性血友病因子(Von Willebrand Factor, vWF)、基质细胞衍生因子(Stromal cell-derived factor-1, SDF-1)和CXC族细胞因子受体4(CXC chemokine receptor4, CXCR4) mRNA的表达明显上调(P<0.001)。
     (2)干细胞移植后6周,hUC-MSCs移植组与hHGF基因修饰的hUC-MSCs移植组经静息核素心肌灌注显像检测的灌注质量缺损百分率变化和经胸超声心动图观察到的局部梗死区室壁舒张末期厚度与收缩期增厚率之间的差别均无统计学意义(P>0.05)。但是与hUC-MSCs移植组相比,hHGF基因修饰的hUC-MSCs移植组在局部缺血心肌中HGF的mRNA的表达明显上调(P<0.05),vWF免疫组化染色结果显示新生血管密度显著增加(P=0.011), Masson染色结果显示存活心肌明显增多(P=0.007)。
     结论:
     (1) hUC-MSCs与hHGF基因修饰的hUC-MSCs,经心外膜直接注射植入后可在小型猪急性心肌梗死模型的梗死区域内部分存活并分化为心肌和血管组织,同时也促进了固有心脏干细胞的募集和分化;可能通过外源性和内源性再生以及旁分泌三个方面的机制参与心梗后心肌与血管的新生,同时减少细胞凋亡和心肌纤维化,提高心肌存活和抑制心室重塑,改善梗死后心肌灌注和心室功能。
     (2)与单纯的hUC-MSCs移植疗法相比,hHGF基因修饰的hUC-MSCs移植疗法具有更强的促进血管新生和保护存活心肌的能力。以干细胞为基础的血管新生基因疗法将成为治疗严重缺血性心血管疾病的新策略。
Objective:In this study, transplantation of human UC-MSCs (hUC-MSCs) cultured in vitro into infarct area was applied surgically on the Guangxi Bama miniswine model of AMI. The reparative effects of this therapy on ischemic myocardial injury were observed. Furthermore, whether a new strategy that combines hUC-MSCs transplantation and ex vivo human hepatocyte growth factor (hHGF) gene transferring with recombinant adenoviral vectors was more therapeutically efficient than hUC-MSCs cell therapy alone in the same AMI model was investigated, too.
     Methods:The hUC-MSCs isolated from human umbilical cord were cultured and expanded to passage5, and subsequently transfected by high titer adenoviral stocks expressing hHGF (Ad-HGF). The hUC-MSCs or hHGF genetically modified hUC-MSCs were labeled with CM-Dil before transplantation. The mid-third of LAD was ligated surgically to establish miniswine AMI model. The miniswines were randomly divided into four groups (n=6in each):(Group A) control group (without any treatment),(Group B) PBS group (PBS injection),(Group C) hUC-MSCs group (hUC-MSCs transplantation),(Group D) HGF-hUC-MSCs group (hHGF genetically modified hUC-MSCs transplantation). A total of2×107hUC-MSCs, HGF-hUC-MSCs or PBS of same volume were injected into the myocardial infarct area at9-10different points in the latter three groups. Six weeks later, cardiac perfusion and function were evaluated by SPECT and echocardiography in each group. The animals were euthanized and the tissues in infarct area were analyzed for the engraftment, proliferation and differentiation of stem cells, capillary density, viable myocardium, apoptosis and the expression of cytokines and growth factors to explore the underlying mechanisms.
     Results:(1) Six weeks later, the changes in MDP were significantly improved (P<0.001), EDWT and△WT%were increased significantly (P<0.001) in the hUC-MSCs and HGF-hUC-MSCs group compared with the control and PBS groups. Immunofluorescence results confirmed that the transplanted hUC-MSCs or HGF-hUC-MSCs were still alive and part of them appeared to have differentiated into cardiomyocytes and vascular endotheliums six weeks after transplantation. Meantime, it was also observed that resident cardiac stem cells (CSCs) differentiated into neonatal cardiomyocytes and vascular endotheliums, too. Angiogenesis was significantly enhanced by both hUC-MSCs group and HGF-hUC-MSCs group, which capillary density was higher than the control and PBS groups (P<0.001).The hUC-MSCs and HGF-hUC-MSCs groups showed more viable myocardial tissue in Masson's trichrome staining (P<0.001), less cell number of apoptosis in the TUNEL analysis (P<0.001) than the control and PBS groups. The mRNA expression of cytokines and growth factors like VEGF、HGF、TGF-β3、vWF、SDF-1and CXCR4in local ischemic myocardium undergoing intramuscular cell transplantation was more abundant in hUC-MSCs and HGF-hUC-MSCs groups than the other two groups (P<0.001).(2) Six weeks after transplantion, there is no statistically difference in△MDP、EDWT and△WT%(P>0.05). However, the mRNA expression of HGF in local ischemic myocardium was up-regulated in HGF-hUC-MSCs group compared with hUC-MSCs group (P<0.05). It was also demonstrated that vWF staining analysis showed an enhanced angiogenesis (P=0.011) and Masson's trichrome staining analysis showed an improvement in viable myocardium (P=0.007) in HGF-hUC-MSCs group relative to hUC-MSCs group.
     Conclusions:(1) hUC-MSCs and HGF-hUC-MSCs transplanted by direct injection into the infarct area could not only survived and differentiated, but also promoted CSCs recruitment and differentiation. The mechanisms may be involved exogenous and endogenous regeneration as well as paracrine action. In addition, hUC-MSCs and HGF-hUC-MSCs transplantation reduced apoptosis and fibrosis. enhanced viable myocardium and suppressed the ventricular remodeling, and thus improved myocardial perfusion and ventricular function.(2) The study shows that hHGF genetically modified hUC-MSCs transplantation therapy induced more potent angiogenesis and more viable myocardium than hUC-MSCs therapy alone. Stem cell-based angiogenic gene therapy may be a new therapeutic strategy for the treatment of severe ischemic cardiovascular disease.
引文
[1]Weir RA, McMurray JJ. Epidemiology of heart failure and left ventricle dysfunction after acute myocardial infarction [J]. Curr Heart Fail Rep,2006, 3(4):175-180.
    [2]Cleland JG, Torabi A, Khan NK. Epidemiology and management of heart failure and left ventricular systolic dysfunction in the aftermath a myocardial infarction [J]. Heart,2005,91(Suppl II):ii7-13.
    [3]Torabi A, Cleland JG, Khan NK, et al. The timing of development subsequent clinical course of heart failure after myocardial infarction [J]. Eur Heart J,2008,29(7): 859-870.
    [4]Fox KA, Dabbous OH, Goldberg RJ, et al. Prediction of risk of death and myocardial infarction in six months after presentation with acute coronary syndrome: prospective multinational observational study (GRACE) [J]. BMJ,2006, 333(7578):1091-1096.
    [5]Velagaleti RS, Pencina MJ, Murabito JM, et al. Long-term trends in incidence of heart failure after myocardial infarction [J]. Circulation,2008,118(20):2057-2062.
    [6]K(?)rbling M, Estrov Z. Adult stem cells for tissue repair-a new therapeutic concept [J]. N Engl J Med,2003,349(4):570-582.
    [7]Muller P, Beltrami AP, Cesselli D, et al. Myocardial regeneration by endogenous adult progenitor cells [J]. J Mol Cell Cardiol,2005,39(2):377-387.
    [8]Goldman BI, Wurzel J. Evidence that human cardiac myocytes divide after myocardial infarction [J]. N Engl J Med,2001,345(15):1750-1757.
    [9]Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells:at the heart of regeneration [J]. J Mol Cell Cardiol,2011,50(2):296-303.
    [10]Frangogiannis NG The immune system and cardiac repair [J]. Pharmacol Res, 2008,58(2):88-111.
    [11]Mirotsou M, Jayawardena TM, Schmeckpeper J, et al. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart [J]. J Mol Cell Cardiol,2011, 50(2):280-289.
    [12]Madonna R, De Caterina R, Willerson JT, et al. Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration [J]. Eur Heart J,2011,32(10):1190-1196.
    [13]Vassalli G, Moccetti T. Cardiac repair with allogeneic mesenchymal stem cells after myocardial infarction [J]. Swiss Med Wkly,2011,141:w13209.
    [14]刘玲英,柴家科,韩焱福,等.脐带Wharton胶来源MSCs生物学特性及其优越性的研究进展[J].中国修复重建外科杂志,2011,25(6):745-749.
    [15]Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord [J]. Stem Cells,2004,22(7):1330-1337.
    [16]何红燕,林晓波,应文娟,等.人脐带间充质干细胞经体内定植并向心肌样细胞分化的研究[J].中国输血杂志,2009,22(3):188-191
    [17]Wu KH, Mo XM, Zhou B, et al. Cardiac potential of stem cells from whole human umbilical cord tissue [J]. J Cell Biochem,2009,107(5):926-932.
    [18]Latifpour M, Nematollahi-Mahani SN, Deilamy M, et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells [J]. Cardiology,2011,120(1):9-18.
    [19]Wei H, Ooi TH, Tan G, et al. Cell delivery and tracking in post-myocardial infarction cardiac stem cell therapy:an introduction for clinical researchers [J]. Heart Fail Rev,2010,15(1):1-14.
    [20]Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo [J]. Exp Hematol,2002,30(1):42-48.
    [21]Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells [J]. Stem Cells,2008,26(11):2865-2874.
    [22]Bergmann O, Bhardwaj RD, Bernard S, et al. Evidence for cardiomyocyte renewal in humans [J]. Science,2009,324(5923):98-102.
    [23]Laflamme MA, Murry CE. Heart regeneration [J]. Nature,2011,473(7347): 326-335.
    [24]Kajstura J, Gurusamy N, Ogorek B, et al. Myocyte turnover in the aging human heart [J]. Oirc Res,2010,107(11):1374-1386.
    [25]Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart [J]. N Engl J Med,2002,346(1):5-15.
    [26]Bostrom P, Mann N, Wu J, et al. C/EBP β controls exercise-induced cardiac growth and protects against pathological cardiac remodeling [J]. Cell,2010,143(7): 1072-1083.
    [27]Bersell K, Arab S, Haring B, et al. Neuregulinl/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury [J]. Cell,2009,138(2):257-270.
    [28]Kiihn B, del Monte F, Hajjar RJ, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair [J]. Nat Med,2007,13(8): 962-969.
    [29]Torella D, Ellison GM, Karakikes I, et al. Resident cardiac stem cells [J]. Cell Mol Life Sci,2007,64(6):661-673.
    [30]Rasmussen TL, Raveendran G, Zhang J, et al. Getting to the heart of myocardial stem cells and cell therapy [J]. Circulation,2011,123(16):1771-1779.
    [31]Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium [J]. Nature,2001,410(6829):701-705.
    [32]Loffredo FS, Steinhauser ML, Gannon J, et al. Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair [J]. Cell Stem Cell,2011,8(4):389-398.
    [33]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration [J]. Cell,2003,114(6):763-776.
    [34]Oh H, Bradfute SB, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium:homing, differentiation, and fusion after infarction [J]. Proc Natl Acad Sci U S A,2003,100(21):12313-12318.
    [35]Matsuura K, Nagai T, Nishigaki N, et al. Adult cardiac Sea-1-positive cells differentiate into beating cardiomyocytes [J].J Biol Chem,2004,279(12):11384-11391.
    [36]Messina E, De Angelis L, Frati G, et al. Isolation and expansion of adult cardiac stem cells from human and murine heart [J]. Circ Res,2004,95(9):911-921.
    [37]Martin CM, Meeson AP, Robertson SM, et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart [J]. Dev Biol,2004,265(1):262-275.
    [38]Laugwitz KL, Moretti A, Lam J, et al. Postnatal isll+cardioblasts enter fully differentiated cardiomyocyte lineages [J]. Nature,2005,433(7026):647-653.
    [39]Moretti A, Caron L, Nakano A, et al. Multipotent embryonic isll+progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification [J]. Cell, 2006,127(6):1151-1165.
    [40]Kattman SJ, Huber TL, Keller GM. Multipotent flk-1+cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages [J].Dev Cell,2006,11(5):723-732.
    [41]Wu SM, Fujiwara Y, Cibulsky SM, et al. Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart [J]. Cell,2006, 127(6):1137-1150.
    [42]Smart N, Bollini S, Dube KN, et al. De novo cardiomyocytes from within the activated adult heart after injury [J]. Nature,2011,474(7353):640-644.
    [43]Ellison GM, Torella D, Karakikes I, et al. Myocyte death and renewal:modern concepts of cardiac cellular homeostasis [J]. Nat Clin Pract Cardiovasc Med,2007, 4(Suppl 1):S52-S59.
    [44]Ellison GM, Waring CD, Vicinanza C, et al. Physiological cardiac remodelling in response to endurance exercise training:cellular and molecular mechanisms [J]. Heart, 2012,98(1):5-10.
    [45]Hatzistergos KE, Quevedo H, Oskouei BN, et al. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation [J]. Circ Res, 2010,107(7):913-922.
    [46]Suzuki G, Iyer V, Lee TC, et al. Autologous mesenchymal stem cells mobilize cKit+and CD 133+bone marrow progenitor cells and improve regional function in hibernating myocardium [J]. Circ Res,2011,109(9):1044-1054.
    [47]Luan Y, Liu XC, Zhang GW, et al. Mid-term effect of stem cells combined with transmyocardial degradable stent on swine model of acute myocardial infarction [J]. Coron Artery Dis,2010,21(4):233-243.
    [48]Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model:engraftment and functional effects [J]. Ann Thorac Surg,2002,73(6):1919-1925.
    [49]Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity [J]. Proc Natl Acad Sci U S A,2009,106(33):14022-14027.
    [50]Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction [J]. Proc Natl Acad Sci U S A,2005,102(32):11474-11479.
    [51]Makkar RR, Price MJ, Lill M, et al. Intramyocardial injection of allogenic bone marrow-derived mesenchymal stem cells without immunosuppression preserves cardiac function in a porcine model of myocardial infarction [J]. J Cardiovasc Pharmacol Ther,2005,10(4):225-233.
    [52]Gnecchi M, Zhang Z, Ni A, et al. Paracrine mechanisms in adult stem cell signaling and therapy [J]. Circ Res,2008,103(11):1204-1219.
    [53]Mirotsou M, Jayawardena TM, Schmeckpeper J, et al. Paracrine mechanisms of stem cell reparative and regenerative actions in the heart [J]. J Mol Cell Cardiol,2011, 50(2):280-289.
    [54]Kinnaird T, Stabile E, Burnett MS, et al. Marrow-derived stromal cells express genes encoding a broad pectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms [J]. Circ Res,2004,94(5):678-685.
    [55]Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms [J]. Circulation,2004,109(12):1543-1549.
    [56]Kubal C, Sheth K, Nadal-Ginard B, et al. Bone marrow cells have a potent anti-ischemic effect against myocardial cell death in humans [J]. J Thorac Cardiovasc Surg,2006,132(5):1112-1118.
    [57]Lai VK, Linares-Palomino J, Nadal-Ginard B, et al. Bone marrow cell-induced protection of the human myocardium:Characterization and mechanism of action [J]. J Thorac Cardiovasc Surg,2009,138(6):1400-1408.
    [58]Balasubramanian S, Venugopal P, Sundarrai S, et al. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells [J]. Cytotherapy,2012,14(1):26-33.
    [59]Meirelles Lda S, Fontes AM, Covas DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells [J]. Cytokine Growth Factor Rev, 2009,20(5-6):419-427.
    [60]Bridges RS, Kass D, Loh K, et al. Gene expression profiling of pulmonary fibrosis identifies Twistl as an antiapoptotic molecular "rectifier" of growth factor signaling [J]. Am J Pathol,2009,175(6):2351-2361.
    [61]Nakamura T, Mizuno S, Matsumoto K, et al. Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF [J]. J Clin Invest, 2000,106(12):1511-1519.
    [62]Penn MS. Importance of the SDF-1:CXCR4 axis in myocardial repair [J]. Circ Res,2009,104(10):1133-1135.
    [63]Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1 alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury [J]. Circulation,2004,110(21): 3300-3305.
    [64]Morishita R. Recent progress in gene therapy for cardiovascular disease [J]. Circ J,2002,66(12):1077-1086.
    [65]Baumgartner I, Rauh G, Pieczek A, et al. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor [J]. Ann Intern Med,2000,132(11):880-884.
    [66]Rissanen TT, Markkanen JE, Arve K, et al. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model [J]. FASEB J,2003,17(1):100-102.
    [67]Nakamura Y, Morishita R, Nakamura S, et al. A vascular modulator, hepatocyte growth factor, is associated with systolic pressure [J]. Hypertension,1996,28(3):409-413.
    [68]Morishita R, Nakamura S, Hayashi S, et al. Therapeutic angiogenesis induced by human recombinant hepatocyte growth factor in rabbit hind limb ischemia model as cytokine supplement therapy [J]. Hypertension,1999,33(6):1379-1384.
    [69]Xin X, Yang S, Ingle G, et al. Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo [J]. Am J Pathol, 2001,158(3):1111-1120.
    [70]Ono K, Matsumori A, Shioi T, et al. Enhanced expression of hepatocyte growth factor/c-Met by myocardial ischemia and reperfusion in a rat model [J]. Circulation, 1997,95(11):2552-2258.
    [71]Uruno A, Sugawara A, Kanatsuka H, et al. Hepatocyte growth factor stimulates nitric oxide production through endothelial nitric oxide synthase activation by the phosphoinositide 3-kinase/Akt pathway and possibly by mitogen-activated protein kinase kinase in vascular endothelial cells [J]. Hypertens Res,2004,27(11):887-889
    [72]Nakamura Y, Morishita R, Higaki J, et al. Hepatocyte growth factor is a novel member of the endothelium-specific growth factors:additive stimulatory effect of hepatocyte growth factor with basic fibroblast growth factor but not with vascular endothelial growth factor [J]. J Hypertens,1996,14(9):1067-1072.
    [73]Reinders ME, Sho M, Izawa A, et al. Proinflammatory functions of vascular endothelial growth factor in alloimmunity [J]. J Clin Invest,2003,112(11):1655-65.
    [74]Lucerna M, Zernecke A, de Nooijer R, et al. Vascular endothelial growth factor-A induces plaque expansion in ApoE knock-out mice by promoting de novo leukocyte recruitment [J]. Blood,2007,109(l):122-129.
    [75]Van Belle E, Witzenbichler B, Chen D, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor:the case for paracrine amplification of angiogenesis [J]. Circulation,1998, 97(4):381-390.
    [76]Hamanoue M, Takemoto N, Matsumoto K, et al. Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro [J]. J Neurosci Res,1996,43(5):554-564.
    [77]Zhang L, Himi T, Morita I, et al. Hepatocyte growth factor protects cultured rat cerebellar granule neurons from apoptosis via the phosphatidylinositol-3 kinase/Akt pathway [J]. J Neurosci Res,2000,59(4):489-496.
    [78]Forte G, Minieri M, Cossa P, et al. Hepatocyte growth factor effects on mesenchymal stem cells:proliferation, migration, and differentiation [J]. Stem Cells, 2006,24(l):23-33.
    [79]Rosu-Myles M, Stewart E, Trowbridge J, et al. A unique population of bone marrow cells migrates to skeletal muscle via hepatocyte growth factor/c-met axis [J]. J Cell Sci,2005,118(Pt 19):4343-4352.
    [80]Sakon M, Kita Y, Yoshida T, et al. Plasma hepatocyte growth factor levels are increased in systemic inflammatory response syndrome [J]. Surg Today,1996,26(4): 236-241.
    [81]Gong R, Rifai A, Dworkin LD. Anti-inflammatory effect of hepatocyte growth factor in chronic kidney disease:targeting the inflamed vascular endothelium [J]. J Am Soc Nephrol,2006,17(9):2464-2473.
    [82]Li H, Jiang T, Lin Y, et al. HGF protects rat mesangial cells from high-glucose-mediated oxidative stress [J]. Am J Nephrol,2006,26(5):519-530.
    [83]Azuma J, Taniyama Y, Takeya Y, et al. Angiogenic and antifibrotic actions of hepatocyte growth factor improve cardiac dysfunction in porcine ischemic cardiomyopathy [J]. Gene Ther,2006,13(16):1206-1213.
    [84]Reiser J, Zhang XY, Hemenway CS, et al. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases [J]. Expert Opin Biol Ther,2005,5(12):1571-1584.
    [85]Duan HF, Wu CT, Wu DL, et al. Treatment of myocardial ischemia with bone marrow-derived mesenchymal stem cells overexpressing hepatocyte growth factor [J]. Mol Ther,2003,8(3):467-474.
    [86]Yang ZJ, Ma DC, Wang W, et al. Experimental study of bone marrow-derived mesenchymal stem cells combined with hepatocyte growth factor transplantation via noninfarct-relative artery in acute myocardial infarction [J]. Gene Ther,2006,13(22): 1564-1568.
    [87]张艳.急性心肌梗死患者血液中GF、TNF-α、IL-1β的动态变化及意义[J].中国医学工程,2010,18(3):2-14
    [88]Jayasankar V, Woo YJ, Piroll T, et al. Induction of angiogenesis and inhibition of apoptosis by hepatocyte growth factor effectively treats postischemia failure [J]. Card Surg,2005,20(1):93-101.
    [89]Yasuda S, GotoY, Baba T, et al. Enhanced secretion of cardiac hepatocyte growth factor from an infarct region is associated with less severe ventricular enlargement and improved cardiac function [J]. J Am Coll Cardiol,2000,36(1):115-121.
    [90]边莉,郭子宽, 艾辉胜,等.HGF基因修饰增强人间充质干细胞的免疫抑制作[J].军事医学科学院院刊,2006,30(4):323-328
    [91]Cai L, Johnstone BH, Cook TG, et al. Suppression of hepatocyte growth factor production impairs the ability of adipose-derived stem cells to promote ischemic tissue revascularization [J]. Stem Cells 2007,25(12):3234-3243
    [92]Neuss S, Becher E, Woltje M, et al. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing [J]. Stem Cells,2004,22(3):405-414.
    [1]Phinney DG. Building a consensus regarding the nature and origin of mesenchymal [J]. Stem cells, J Cell Biochem Suppl,2002,38:7-12.
    [2]Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells [J]. Cell Tissue Kinet,1970,3(4):393-403.
    [3]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science,1999,284(5411):143-7.
    [4]Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow [JJ. Blood,2001,98(8):2396-402.
    [5]in't Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential [J]. Haematologica,2003,88(8):845-52.
    [6]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies [J]. Tissue Eng,2001,7(2):211-28.
    [7]Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells [J]. Mol Biol Cell,2002,13(12):4279-95.
    [8]Kuznetsov SA, Mankani MH, Gronthos S, et al. Circulating skeletal stem cells [J]. J Cell Biol,2001,153(5):1133-40.
    [9]Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp [J]. J Bone Miner Res,2003,18(4):696-704.
    [10]Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci USA,2000,97(25):13625-30
    [11]Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp [J]. Transplantation,2005,80(6):836-42.
    [12]Igura K, Zhang X, Takahashi K, et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta [J]. Cytotherapy, 2004,6(6):543-53.
    [13]Fukuchi Y, Nakajima H, Sugiyama D, et al. Human placentaderived cells have mesenchymal stem/progenitor cell potential [J]. Stem Cells,2004,22(5):649-58.
    [14]You Q, Cai L, Zheng J, et al. Isolation of human mesenchymal stem cells from third-trimester amniotic fluid [J]. Int J Gynaecol Obstet,2008,103(2):149-52.
    [15]Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol [J]. Hum Reprod,2004,19(6):1450-6.
    [16]Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood [J]. Br J Haematol,2000,109(1):235-42.
    [17]Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells:candidate MSC-like cells from umbilical cord [J]. Stem Cells,2003,21(1):105-10.
    [18]Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord [J]. Stem Cells,2004,22(7):1330-7.
    [19]Weiss ML, Medicetty S, Bledsoe AR, et al. Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease [J]. Stem Cells,2006,24(3):781-92.
    [20]Sarugaser R, Lickorish D, Baksh D, et al.Human umbilical cord perivascular (HUCPV) cells:a source of mesenchymal progenitors [J]. Stem Cells,2005, 23(2):220-9.
    [21]Hu Y, Liao L, Wang Q, et al. Isolation and identification of mesenchymal stem cells from human fetal pancreas [J]. J Lab Clin Med,2003,141(5):342-9.
    [22]Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC:The International Society for Cellular Therapy position statement [J]. Cytotherapy,2005,7(5):393-5.
    [23]Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy,2006,8(4):315-7.
    [24]Chamberlain G, Fox J, Ashton B, et al. Concise review:mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing [J]. Stem Cells,2007,25(11):2739-49.
    [25]da Silva Meirelles L, Fontes AM, Covas DT, et al. Mechanisms involved in the therapeutic properties of mesenchymal stem cells [J]. Cytokine Growth Factor Rev, 2009,20(5-6):419-27.
    [26]Phinney DG, Prockop DJ. Concise review:mesenchymal stem/multipotent stromal cells:the state of transdifferentiation and modes of tissue repair--current views [J]. Stem Cells,2007,25(11):2896-902.
    [27]Caplan AI, Bruder SP. Mesenchymal stem cells:building blocks for molecular medicine in the 21st century [J]. Trends Mol Med,2001,7(6):259-64.
    [28]Sakaguchi Y, Sekiya I, Yagishita K, et al. Comparison of human stem cells derived from various mesenchymal tissues:superiority of synovium as a cell source [J]. Arthritis Rheum,2005,52(8):2521-9.
    [29]Rebelatto CK, Aguiar AM, Moretao MP, et al. Dissimilar differentiation of mesenchymal stem cells from bone marrow,umbilical cord blood, and adipose tissue [J]. Exp Biol Med(Maywood),2008,233(7):901-13.
    [30]Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue [J]. Stem Cells,2006, 24(5):1294-301.
    [31]Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow [J]. Stem Cells,2007,25(6):1384-92.
    [32]Vaananen HK. Mesenchymal stem cells [J]. Ann Med,2005,37(7):469-79.
    [33]Horwitz EM, Prockop DJ, Fitzpatrick LA, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfect [J]. Nat Med,1999,5(3):309-13.
    [34]Le Blanc K, Gotherstrom C, Ringden O, et al. Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfect [J]. Transplantation,2005,79(11):1607-14.
    [35]Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators [J]. J Cell Biochem,2006,98(5):1076-84.
    [36]Salgado AJ, Oliveira JT, Pedro AJ, et al. Adult stem cells in bone and cartilage tissue engineering [J]. Curr Stem Cell Res Ther,2006, 1(3):345-64.
    [37]McElreavey KD, Irvine AI, Ennis KT, et al. Isolation,culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord [J]. Biochem Soc Trans,1991,19(1):29S.
    [38]Karahuseyinoglu S, Cinar O, Kilic E, et al. Biology of stem cells in human umbilical cord stroma:in situ and in vitro surveys [J]. Stem Cells,2007, 25(2):319-31.
    [39]Ding DC, Shyu WC, Chiang MF, et al. Enhancement of neuroplasticity through upregulation of betal-integrin in human umbilical cord-derived stromal cell implanted stroke model [J]. Neurobiol Dis,2007,27(3):339-53.
    [40]Weiss ML, Anderson C, Medicetty S, et al. Immune properties of human umbilical cord Wharton's jelly-derived cells [J]. Stem Cells,2008,26(11):2865-74.
    [41]Ishige I, Nagamura-Inoue T, Honda MJ, et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton's jelly explants of human umbilical cord [J]. Int J Hematol,2009,90(2):261-9.
    [42]Yoo KH, Jang IK, Lee MW, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues [J]. Cell Immunol,2009, 259(2):150-6.
    [43]Prasanna SJ, Gopalakrishnan D, Shankar SR,et al. Proinflammatory cytokines, IFNgamma and TNFalpha, influence immune properties of human bone marrow and Wharton jelly mesenchymal stem cells differentially [J]. PLoS One,2010, 5(2):e9016.
    [44]Sarugaser R, Hanoun L, Keating A, et al. Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy [J]. PLoS One, 2009,4(8):e6498.
    [45]Covas DT, Siufi JL, Silva AR, et al. Isolation and culture of umbilical vein mesenchymal stem cells [J]. Braz J Med Biol Res,2003,36(9):1179-83.
    [46]Panepucci RA, Siufi JL, Silva WA Jr., et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells [J]. Stem Cells, 2004,22(7):1263-78.
    [47]Koh SH, Kim KS, Choi MR, et al. Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats [J]. Brain Res,2008,1229:233-48.
    [48]Secco M, Moreira YB, Zucconi E, et al. Gene expression profile of mesenchymal stem cells from paired umbilical cord units:cord is different from blood [J]. Stem Cell Rev,2009,5(4):387-401.
    [48]Weiss ML, Mitchell KE, Hix JE, et al. Transplantation of porcine umbilical cord matrix cells into the rat brain [J]. Exp Neurol,2003,182(2):288-99.
    [50]Medicetty S, Bledsoe AR, Fahrenholtz CB, et al. Transplantation of pig stem cells into rat brain:proliferation during the first 8 weeks [J]. Exp Neurol,2004,19(1): 32-41.
    [51]Ennis J, Gotherstrom C, Le Blanc K, et al. In vitro immunologic properties of human umbilical cord perivascular cells [J]. Cytotherapy,2008,10(2):174-81.
    [52]Salgado AJ, Fraga JS, Mesquita AR, et al. Role of Human Umbilical Cord Mesenchymal Progenitors Conditioned Media in Neuronal/Glial Cell Densities, Viability and Proliferation [J]. Stem Cells Dev,2010,19(7):1067-74.
    [53]Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells [J]. Br J Haematol,2005,129(1):118-29.
    [54]Liao W, Xie J, Zhong J, et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke [J]. Transplantation, 2009,87(3):350-9.
    [55]Wu KH, Zhou B, Yu CT, et al. Therapeutic potential of human umbilical cord derived stem cells in a rat myocardial infarction model [J]. Ann Thorac Surg,2007, 83(4):1491-8.
    [56]Li G, Zhang XA, Wang H, et al. Comparative proteomic analysis of mesenchymal stem cells derived from human bone marrow, umbilical cord, and placenta:implication in the migration [J]. Proteomics,2009,9(1):20-30.
    [1]Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells [J]. J Cell Biochem Suppl.2002,38:7-12.
    [2]da Silva ML.Chagastelles PC.Nardi NB.Mesenchymal stem cells reside in virtually all post-natal organs and tissures [J]. J Cell Sci,2006,119(Pt 11):2204-2213.
    [3]Troyer DL, Weiss ML. Wharton's jelly-derived cells are a primitive stromal sell population [J]. Stem Cells,2008,26(3):591-599.
    [4]Wang XY, Lan Y, He WY, et al. Identification of mesenchymal stem cells in aorta-gonad-mesonephros and yolk sac of human embryos [J]. Blood,2008,111(4): 2436-2443.
    [5]Salehinejad P, Alitheen NB, Ali AM, et al. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly [J]. In Vitro Cell Dev Biol Anim,2012,48(2):75-83.
    [6]De Bruyn C, Najar M, Raicevic G, et al. A rapid, simple, and reproducible method for the isolation of mesenchymal stromal cells from Wharton's jelly without enzymatic treatment [J]. Stem Cells Dev,2011,20(3):547-557.
    [7]Nekanti U, Rao VB, Bahirvani AG, et al. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells [J]. Stem Cells Dev,2010,19(1):117-130.
    [8]Nekanti U, Mohanty L, Venugopal P, et al. Optimization and scale-up of Wharton's jelly-derived mesenchymal stem cells for clinical applications [J]. Stem Cell Res,2010,5(3):244-254.
    [9]Nekanti U, Dastidar S, Venugopal P, et al. Increased proliferation and analysis of differential gene expression in human Wharton's jelly-derived mesenchymal stromal cells under hypoxia [J]. Int J Biol Sci,2010,6(5):499-512.
    [10]周建,葛宝丰,王家琪,等.不同处理时间50Hz3.6mT的正弦交变磁场对人脐带干细胞增殖与成骨性分化的研究[J].重庆医科大学学报,2012,37(1):51-55.
    [11]朱少芳,何援利,付霞霏.人脐带间充质干细胞的生物学特性和超微结构[J].中国医学科学院学报,2011,33(4):382-386.
    [12]陈丽,吴本清,朱华民.原子力显微镜观察人脐带间充质干细胞:生物学特性与超微结构的关系[J].中国组织工程研究与临床康复,2010,14(6):996-1001.
    [13]Garzon I, Perez-Kohler B, Garrido-Gomez J, et al. Evaluation of the Cell Viability of Human Wharton's Jelly Stem Cells for Use in Cell Therapy [J]. Tissue Eng Part C Methods,2012,18(6):408-419.
    [14]Kim MJ, Shin KS, Jeon JH, et al. Human chorionic-plate-derived mesenchymal stem cells and Wharton's jelly-derived mesenchymal stem cells:a comparative analysis of their potential as placenta-derived stem cells [J]. Cell Tissue Res,2011, 346(1):53-64.
    [15]Nekanti U, Rao VB, Bahirvani AG, et al. Long-term expansion and pluripotent marker array analysis of Wharton's jelly-derived mesenchymal stem cells [J]. Stem Cells Dev,2010,19(1):117-130.
    [16]Balasubramanian S, Venugopal P, Sundarraj S, et al. Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells [J]. Cytotherapy,2012,14(1):26-33.
    [17]Hsieh JY, Fu YS, Chang SJ, et al. Functional module analysis reveals differential osteogenic and sternness potentials in human mesenchymal stem cells from bone marrow and Wharton's jelly of umbilical cord [J]. Stem Cells Dev,2010,19(12): 1895-1910.
    [18]Angelucci S, Marchisio M, Di Giuseppe F, et al. Proteome analysis of human Wharton's jelly cells during in vitro expansion [J]. Proteome Sci,2010,8:18.
    [19]Chen H, Zhang N, Li T, et al. Human umbilical cord Wharton's jelly stem cells: Immune property genes assay and effect of transplantation on the immune cells of heart failure patients [J]. Cell Immunol,2012,276(1-2):83-90.
    [20]Zhou C, Yang B, Tian Y, et al. Immunomodulatory effect of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on lymphocytes [J]. Cell Immunol,2011,272(l):33-38.
    [21]Valencic E, Piscianz E, Andolina M, et al. The immunosuppressive effect of Wharton's jelly stromal cells depends on the timing of their licensing and on lymphocyte activation [J]. Cytotherapy,2010,12(2):154-160.
    [22]Najar M, Raicevic G, Boufker HI, et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets:Combined comparison of adipose tissue, Wharton's Jelly and bone marrow sources [J]. Cell Immunol,2010, 264(2):171-179.
    [23]Najar M, Raicevic G, Boufker HI, et al. Adipose-tissue-derived and Wharton's jelly-derived mesenchymal stromal cells suppress lymphocyte responses by secreting leukemia inhibitory factor [J]. Tissue Eng Part A,2010,16(11):3537-3546.
    [24]Fong CY, Chak LL, Biswas A, et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells [J]. Stem Cell Rev,2011,7(1):1-16.
    [25]Gauthaman K, Fong CY, Suganya CA, et al. Extra-embryonic human Wharton's jelly stem cells do not induce tumorigenesis, unlike human embryonic stem cells [J]. Reprod Biomed Online,2012,24(2):235-246.
    [26]Wang HS, Hung SC, Peng ST, et al. Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord [J]. Stem Cells,2004,22(7):1330-1337.
    [27]阮忠宝,杨向军,陈各才,等.5-氮杂胞苷诱导人脐带间充质干细胞向心肌样细胞的分化[J].中国组织工程研究与临床康复,2011,15(36):6705-6708.
    [28]唐欣,王岩,易海波,等.不同浓度5-氮胞苷体外诱导人脐带间充质干细胞向心肌样细胞的分化[J].中国组织工程研究与临床康复,2011,15(40):7459-7462.
    [29]Pereira WC, Khushnooma I, Madkaikar M, et al. Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation [J]. J Tissue Eng Regen Med,2008,2:394-399.
    [30]Lupu M, Khalil M, Andrei E, et al. Integration properties of Wharton's jelly-derived novel mesenchymal stem cells into ventricular slices of murine hearts [J]. Cell Physiol Biochem,2011,28(1):63-76.
    [31]何红燕,林晓波,应文娟,等.人脐带间充质干细胞经体内定植并向心肌样细胞分化的研究[J].中国输血杂志,2009,22(3):188-191.
    [32]Wu KH, Mo XM, Zhou B, et al. Cardiac potential of stem cells from whole human umbilical cord tissue [J]. J Cell Biochem,2009,107(5):926-932.
    [33]Latifpour M, Nematollahi-Mahani SN, Deilamy M, et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells [J]. Cardiology,2011,120(1):9-18.
    [34]Madonna R, De Caterina R, Willerson JT, et al. Biologic function and clinical potential of telomerase and associated proteins in cardiovascular tissue repair and regeneration [J]. Eur Heart J,2011,32(10):1190-1196.
    [35]Vassalli G, Moccetti T. Cardiac repair with allogeneic mesenchymal stem cells after myocardial infarction [J]. Swiss Med Wkly,2011,141:w13209.
    [36]Liu L, Chai J, Han Y, er al. Research progress of biological characteristics and advantages of Wharton's jelly-mesenchymal stem cells [J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2011,25(6):745-749.
    [37]Fong CY, Subramanian A, Biswas A, et al. Derivation efficiency, cell proliferation, freeze-thaw survival, stem-cell properties and differentiation of human Wharton's jelly stem cells [J]. Reprod Biomed Online,2010,21(3):391-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700