磁控形状记忆合金特性及其执行器应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁控形状记忆合金(Magnetically Controlled Shape Memory Alloy简称MSMA)是近几年出现的一种新型功能材料,该材料在马氏体条件下外加磁场可以使其有较大的变形率,并具有形状记忆功能,力能密度大,响应频率高,有望成为新一代智能驱动器和传感器的关键材料。目前国内外对其研究主要集中在微观结构、温度和材料组成成分、磁感生应变等方面,对其应用研究较少。本文主要在对MSMA材料特性实验研究的基础上,进行了该种材料在执行器中的应用基础研究。
     首先研究了MSMA的变形机理、马氏体择优取向的过程,分析了MSMA样品的微观结构和物理特性。然后根据相界面摩擦理论,推导了MSMA系统热力学参量的表达式,计算了不同样品马氏体相变过程中界面摩擦所消耗的能量。结果表明相界面运动消耗的能量仅占相变潜热的很小部分,且相变潜热越大,相界面运动的摩擦耗能越小,正是相变过程中的界面摩擦导致了相变的热滞后。
     由于MSMA材料的温度、压力、磁场和变形率之间是一个复杂的非线性多变量系统,目前难以对其特性进行定量分析,为此利用自行设计的实验装置,对MSMA材料在不同温度、磁场、预压力下的外特性进行了系统的实验研究,提出了一种测量MSMA材料相对导磁率的方法,研究了利用弹簧恢复形变的静、动态变化规律,并对导磁率的非线性关系进行了实验研究。在实验研究的基础上,建立了忽略温度变化的执行器系统的数学模型。
     尽管MSMA的变形率较大,但直接用以制造大行程的直线驱动器比较困难,一是需要用较多的MSMA材料,成本较高;二是体积大所需励磁功率较大。因此利用仿生学蠕动原理设计了MSMA直线驱动器,将MSMA小步距的位移累加形成直线驱动器所需要的大行程。设计制作了样机,实现了大步距的双向运动,对励磁电流、位移和通电频率之间的关系进行了探讨。
     提出了一种采用永磁体产生偏磁磁场的MSMA差动控制策略,可以减小励磁功率、消除温度影响和提高控制精度。研制了首台差动式MSMA执行器实验样机,进行了交、直流实验研究,验证了控制策略和设计方法的可行性。
Magnetically controlled shape memory alloy (MSMA) is a new functional material which is found in recent years. MSMA has characteristics of large deformation rate and high response frequency in the martensite state. It is an important potential material for the next generation of intelligent actuators and sensors. So far, researches on MSMA are mainly concentrated on its properties under the changes of microstructure, temperature and components, while few researches are done on its application. The main contribution of this dissertation is the deep experimental study of an MSMA actuator.At first, the deform principle and the preferred orientation process of MSMA are studied, the microstructure and physical characteristics of the MSMA sample have been analyzed. According to the theory of phase interface friction, the expression of the thermodynamics parameter of MSMA has been deduced. The friction loss on the interface of different samples in the course of the martensite phase transformation has been calculated. The results show that the loss energy in the movement of the phase interface only occupies a little part of the latent heat of phase transformation. The larger the latent heat of phase transformation is, the less the friction loss of phase interface movement will be. By the analysis, just the interface friction during the phase transformation causes the thermal hysteresis of phase transformation.Because the relationships of temperature, magnetic field, pre-press and deformation are nonlinear, it is difficult to analyze quantitavely its characteristics. So an experimental device for study of the MSMA was designed and built. The characteristics of MSMA under different temperature, magnetic field and pre-press were studied. A measurement method for MSMA relative permeability was advanced, too. In addition the method of recovery deformation was discussed and the dynamic variation rules of recovery deform by spring was studied, the nonlinear relationship of magnetic permeability of MSMA has been studied. Neglecting the temperature change, the mathematic model of the system has been established.Although the deformation rate of MSMA is high, it is difficult to realize the linear actuator with large pace. The first reason is that the production cost is high because it needs a mounts of material. The second is that the exciting power is large with the large bulk. By utilizing bionic inchworm principle, a MSMA linear actuator has been developed successfully, the prototype and the control system have been designed, which has been realized bidirectional movement with large pace. Relationships of exciting current, displacement and power frequency are also studied.At last, using permanent magnetic generates bias magnetic field, a differential control strategy was put forward which can decrease exciting power, eliminate temperature influence and improve control precision. The designed of prototype and the analysis of magnetic field have been finished, which verified the feasibility of this method.
引文
[1] 苏海东.执行器的分类与发展.机械工程与自动化,2004,1:17~18
    [2] 袁月峰.形状记忆合金驱动器设计及控制研究.辽宁工程技术大学硕士学位论文,2003:1~2
    [3] 杨大智.智能材料与智能系统.天津:天津大学出版社,2000,3
    [4] 赵连城,蔡伟,郑玉峰.合金的形状记忆效应与超弹性.北京:国防工业出版社,2002,1-5
    [5] Kajiwara S, Owen W S. Substructure of Austenite Formed by a Paritial reverse Martensitic Transformation in an Fe-Pt Alloy[J]. Metall.Trans. 1973, 4: 1988~1992
    [6] Sato A.Sunaga Y, Mori T. Contribution of the γ→εTransformation to the Plastic Deformation of Stainless Steel Single Crystal [J]. Acta Metail, 1977, 25: 627~634
    [7] 陶宝祺,智能材料结构.北京:国防工业出版社,1997,4
    [8] 余声明.智能磁性材料及其应用.磁性材料及器件,2004,35(5):1~4
    [9] 李扩社,徐静等.稀土超磁致伸缩材料发展概况.稀土,2004,25(4):51~56
    [10] 韦光辉,陈道炯等.压电陶瓷驱动器控制模型建立与仿真.昆明理工大学学报,2004,29(6):50~53
    [11] 荆阳,杨文言等.压电陶瓷微制动器的制作及驱动行为研究.兵工学报,2005,26(1):77~81
    [12] 徐祖耀.铁基形状记忆合金[J].上海会属,1993,2(15):1~10
    [13] Wuttig. M, Li J, Craciunescu C. Anew ferromagnetic shape memory alloy system, Scripta Mater. 2001, 44 (10), 2393-2397
    [14] V.A.Chernenko and I.N.Vitenko, Structural character and properties of Ni_2MnGa ribbon transforming martensitically, Materials Science Forum, 1994, 166-169
    [15] E.Cesari, V.A.Chernenko, V.V.Kokonn et al., Internal friction associated with the structural phase transformations in Ni-Mn-Ga alloys, Acta Mater., 1977, 45, 999-1004
    [16] S.Wirth, A.Leithe-Jasper, A.N.Vasil'ev and J.M.D.Coey, Structural and magnetic properties of Ni_2MnGa, J. Magn. Magn. Mater., 1997, 167:7-11
    [17] 李明东,奚汉达,储金荻,等.一种正方体型管内仿生机器人.上海交通大学学报,2001,35(1):64~67
    [18] Tellinen J.,"A Simple Scalar Model for Magnetic Hysteresis",IEEE Trans.On Magnetics,Vol.34(1998)No.4,pp.2200-2206.
    [19] 林伟,叶虎平,叶梅,冯海.一种新型压电陶瓷控制器的研究.压电与声光,2005,27(3):247~249
    [20] 孙宝玉,林洁琼,梁淑卿,等.压电式微定位机构极其控制系统的研究.压电与声光,2005,27(2):139~141
    [21] 朱子健,陈仁文等.智能材料在微机械中的应用及发展.航空精密制造技术,2003(3):4~8
    [22] 霍永忠,陈远富等.NiTi形状记忆合金拉伸实验及数值模拟.功能材料,1999,30(1):71~73
    [23] 杨凯,辜承林.形状记忆合金电机研究与应用中的若干新发展.微电机,2000,33(2):32~35
    [24] 朱伟国,吕和祥等.一个新的形状记忆合金模型.应用数学和力学,2002,23(9).896~902
    [25] Gen Feng, Chengbao Jiang, Huibin Xu. Magnetic and structural transition of Ni_(50+X)Mn_(25-X/2)Ga_(25-X/2) (X=2~5) alloys, J.Magn.Magn.Mater, 2002, 248:312~314
    [26] Chengbao Jiang, Gen Feng, Huibin Xu. Co-occurrence of magnetic and structural transitionsin Heusler Ni_(53)Mn_(25)Ga_(22) alloy, Appl. Phys. Lett, 2002, 80 (10),1619-1621
    [27] T. Liang, C.B. Jiang, G. Feng, S.K. Gong, H.B. Xu, Influence of Ni excess on structure and shape memory effect in polycrystalline NiMnGa alloys, Mater. Sci. Forum, 2002, 394-395, 561-564
    [28] V.A. Chernenko, Compositional instability of β-phase in Ni-Mn-Ga alloys, Script Mater., 1999, 40 (5), 523-527
    [29] Madden J. , "Properties of electroactive polymer actuators", Proc. of Actuator 2004 conference, 14-16 June 2004, Bremen, Germany, pp. 338-343.
    [30] Sozinov A., Likhachev A.A. , Lanska N., Ullakko K., "Giant magnetic-field-induced strain in NiMnGa seven layered martensite phase", Applied Physics Letters, Vol. 80 (2002) , pp. 1746-1748.
    [31] Ullakko K. , EzerY. , Sozinov A, Kimmel G, Yakovenko P. , Lindroos V. K. , "Magnetic-Field-Induced Strains in Polycrystalline Ni-Mn-Ga at room temperature", Scripta Materialia, Vol. 44(2001)No. 3, pp. 475-480.
    [32] 柳祝红,胡凤霞等.哈斯勒合金 NiMnGa 的马氏体相变和磁增加双向形状记忆效应.物理学报,2001,50(2):233~238
    [33] 韩志勇,周寿增等.铁基磁致伸缩材料的制备、应用及最新进展.金属功能材料,2004,11(4):38~41
    [34] Ullakko K et al. Magnetic shape memory (MSM) -a new way to generate motion in electromechanical devices. Proceedings of International Conference on Electrical Machines2000, 28~30 August 2000, Espoo, Finland
    [35] Ullakko K et al. Magnetically Controlled Shape Memory Alloys: A New Class of Actuator Materials. Journal of Materials Engineering and Performance, Vol5 (3), pp. 405~409, 1996
    [36] Sozinov A. , Likhachev A. A. , Ullakko K. , "Crystal structures and magnetic anisotropy properties of Ni-Mn-Ga martensitic phases with giant magnetic-field-induced strain", IEEE Trans. Magnetics, Vol. 38(2002)No. 5, pp. 2814-2816. 69
    [37] Sozinov A. , Likhachev A. A. , Ullakko K. , "Magnetic and magnetomechanical properties of Ni-Mn-Ga alloys with easy axis and easy plane of magnetization", Proc. SPIE 2001, Vol. 4333(July 2001), pp. 189-196.
    [38] Straka L. , Hetzko O. , Lanska N. , "Magnetic properties of various martensitic phases in Ni-Mn-Gaalloy", IEEE Trans. on Magnetics, Vol. 38 (2003)No. 5, pp. 2835-2837.
    [39] Ullakko K. , Huang J. K. , Kokorin V. V. and O'Handley R. C. , "Magnetically Controlled Shape Memory Effect in Ni2MnGa Intermetallics", Scripta Materialia, Vol. 36(1997)No. 10, pp. 1133-1138.
    [40] K Ullakko, J K Huang, V V Kokorin and R C O'Handley. Magnetically Controlled Shape Memory Effect in Ni_2MnGa Intermetallics. Scripta Mater, 1997, 36 (10): 1133~1138
    [41] Yuanchang Liang, Hiroyuki Kato et al. Straining of Ni-Mn-Ga by stress and magnetic Fields. Scripta Materialia, 2001 (45): 569~574
    [42] A A Likhachev, K Ullakko, Quantitative model of large magnetostrain effect in ferromagnetic shape memory alloys. Eur. Phys. J, 2000, B 14, 263~267
    [43] http: //www. adaptamat, com
    [44] Chernenko V. A. , Cesari E. , Kokorin V. V. , Vitenko I. N. , "The development of new ferromagnetic shape memory alloys in Ni-Mn-Ga system", Scripta Metallurgica et Materialia, Vol. 33 (1995) No. 8, pp. 1239-1244.
    [45] 高智勇,陈枫等.外磁场对NiMnGa磁性形状记忆合金相变及显微组织的影响.功能材料,2003,34(3):284~285
    [46] 高淑侠,王文洪等.铁磁形状记忆合金Ni_(52.2) Mn_(23.8)Ga_(24)的马氏体相变及其物理表征.物理学报,2002,51(2):332~336
    [47] A. Gonzalez-Comas, E. Obrado, L. Manosa, A. Planes, V.A.Chernenko, Jan Hattink, A. Labarta, Premartensitic and martensitic phase transitions in ferromagnetic Ni_2MnGa, Phys. Rev. B, 1999, 60: 7085-7090
    [48] 金学军,彭志明等. Ni_2MnGa 铁磁形状记忆材料.世界科技研究与发展, 2003,25(1): 55~65
    [49] Du Plessis A, Jessiman A. , Muller G. , van Schoor M. , "Latching valve control using ferromagnetic shape memory alloy actuators", Proc. of SPIE 2003, Vol. 4333 (August 2003) , pp. 320-331.
    [50] Wuttig M. , Li M. , Craciunescu C. , "A new ferromagnetic shape memory alloy system", Scripta materialia, Vol. 44(2001)No. 10, pp. 2393-2397.
    [51] 李健靓,张羊换等.磁性形状记忆合金Ni_2MnGa的研究现状及发展.金属功能材料,2003,10(5):25~30
    [52] 柳祝红,吴光恒等.内应力对铁磁性形状记忆合金NiMnGa马氏体相变路径的影响.物理学报,2002,51(3):640~644
    [53] J. Pons, V. A. Chernenko, R. Santamarta and E. Cesari, Crystal structure of martemsitic phases in Ni-Mn-Ga shape memory alloys [J], Acta. Mater., 2000, 48: 3027-3038.
    [54] Likhachev A. A, Sozinov A, Ullakko K, "Influence of external stress on reversibility of magnetic-field-controlled shape memory effect in Ni-Mn-Ga", Proc. of SPIE 2001, Vol. 4333(2001) , pp. 197-206.
    [55] 崔玉亭,朱亚波等.Ni_2MnGa单晶马氏体相变过程摩擦耗能的热力学计算.物理学报,2004,53(3):861~866
    [56] 王文洪,柳祝红等.铁磁形状记忆合金Ni52.5Mn23.5Ga24马氏体相变热滞后的研究.物理学报,2002,51(3):636~639
    [57] 崔玉亭,王万录,廖克俊.Ni_(50.5)Mn_(26.5)Ga_(23)单晶磁感生应变的温度依赖性.材料研究学报,2004,18(2):123~129
    [58] 赵容斌,周红光,陈世朴,徐祖耀.磁场热处理后多晶Ni_2MnGa铁磁形状记忆合金组织的变化.理化检验—物理分册,2003,39(4):171~174
    [59] 李养贤,孟儿斌,刘何燕,等.单晶Ni2MnGa中取向内应力对变体分布规律的研究.物理学报,2003,52(2):672~676
    [60] Likhachev A. A. and Ullakko K. , "Magnetic-field-controlled twin boundary motion and giant magneto-mechanical effects in Ni-Mn-Ga Shape memory alloy", Physics Letters A, Vol. 275(2000)No. 1-2, pp. 142-151.
    [61] Likhachev A.A. and Ullakko K., "Quantitative Model of Large Magnetostrain Effect in Ferromagnetic Shape Memory Alloys", European Physical Journal B, 14 (2000) No. 263, pp. 263-267.
    [62] Tickle R. , James R. D. , "Magnetic and magnetomechanical properties of Ni2MnGa", Journal of Magnetism and Magnetic Materials, Vol. 195 (1999) No. 3, pp. 627-638.
    [63] 柳祝红,吴光恒,王文洪,陈京兰,敖玲,会重勋.内应力对铁磁性形状记 忆合金Ni-Mn-Ga马氏体相变路径的影响[J],物理学报,2002,51(3):640-644.
    [64] V.A.Chernenko, E. Cesari, V.V. KoKorin, I.N. Vitenko, The development of new ferromagnetic shape memory alloys in NiMnGa system, Scripta Matall. Mater, 1995, 33 (8), 1239-1244
    [65] 冯根,NiMnGa铁磁形状记忆合金的制备及相变特性和磁性能的研究,北京航空航天大学硕士学位论文,2002
    [66] 周杨,Ni_2MnGa合金传输及光、磁光性能研究,北京航空航天大学博士学位论文,2001.
    [67] 彭德明,金学军,徐祖耀.Ni_2MnGa合金结构及磁控形状记忆机制的研究进展.功能材料,2004,35(2):135~138
    [68] Heczko O. and Straka L. , "Temperature dependence and temperature limits of magnetic shape memory effect", Journal of Applied Physics, Vol. 94 (2003) No. 11, pp. 7139-7143.
    [69] Heczko O. and Ullakko K. , "Effect of temperature on magnetic properties of Ni65 Mn-Ga magnetic shape memory (MSM) alloys", IEEE Trans. on Magnetics, Vol. 37(2001)No. 4, pp. 2672-2674.
    [70] Heczko O. , Jurek K. , Ullakko K. , "Magnetic properties and domain structure of magnetic shape memory Ni-Mn-Ga alloy", Journal of Magnetism and Magnetic Materials, Vol. 226-230(2001), pp. 996-998.
    [71] Heczko O. , Sozinov A. , Ullakko K. , "Giant field-induced reversible strain in magnetic shape memory NiMnGa alloy", IEEE Trans. Magnetics, Vol. 36 (2000) No. 5, pp. 3266-3268.
    [72] K. Ullakko, Large magnetic-field-induced strains in Ni_2MnGa single crystals, Appl. Phys. Lett., 1996, 69 (13) 1966-1968
    [73] A. Sozinov, A. A. Likhachev, N. Lanska, K. Ullakko, Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase, Appl. Phys. Lett., 2002, 80 (10), 1746-1748
    [74] T Jokinen, K Ullakko, I Suorsa. Magnetic Shape Memory Materials-New Possibilities to Create Force and Movement by Magnetic Fields. Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang, China, 2001, 1:20~23
    [75] Likhachev A. A. and Ullakko K. , "The model development and experimental investigation of giant magneto-mechanical effects in Ni-Mn-Ga", Journal of Magnetism and Magnetic Materials, Vol. 226-230 (2001) , pp. 1541-1543.
    [76] R C O'Handley. Model for strain and magnetization in magnetic shape-memory Alloys. Journal of Applied Physics, 1998, 83 (6), 3263~3270
    [77] R Tickle, R D James, T Shield, M Wuttig, V V Kokorin. Ferromagnetic Shape Memory Effect in the NiMnGa System [J]. IEEE Trans. on Magnetics, 1999, 35 (5): 4301~4310
    [78] 高智勇,王中等.磁性形状记忆材料Ni-Mn-Ga研究现状.功能材料.2001,32(1):22~26
    [79] 李健靓,张羊换等.磁性形状记忆合金Ni_2MnGa的研究现状及发展.金属功能材料,2003(5):25~30
    [80] J Tellinen, I uorsa, A Jaaskelainen, I Aaltio, K Ullakko. Basic properties of magnetic shape memory actuators [C]. 8th international conference ACTUATOR 2002, Bremen, Germany, 2002:566~569
    [81] Tickle R. , James R. D. , Shield T. , Wuttig M. , Kokorin V. V. , "Ferromagnetic shape memory in NiMnGa system", IEEE Trans. on Magnetics, Vol. 35 (1999) No. 35, pp. 4301-4310.
    [82] 姚康德,智能材料.天津:天津大学出版社,1996,6
    [83] Murray S. J. , Marioni M. , Allen S. M. and O'Handley R. C. , "6% magnetic-field induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga", Applied Physics Letters, Vol. 77 (2000)No. 6, pp. 886-888.
    [84] A.Sozinov, A.A.Likhachev. K.Ullakko, Crystal Structures and Magnetic Anisotropy Properties of Ni-Mn-Ga Martensitic Phases With Giant Magnetic-Field-Induced Strain, IEEETrans. on Magn., 2002, 38 (5), 2814-2816.
    [85] Murray S. J. , O'Handley R. C. , Allen S. M. , "Model for discontinious actuation of ferromagnetic shape memory alloy", Journal of Applied Physics, Vol. 89(2001)No. 2, pp. 1295-1301.
    [86] O'Handley R. C. , "Modern magnetic materials principles and applications", John Wiley & Sons, New York, USA, 2000, pp. 740.
    [87] Pan Q. and James R. D. , "Micromagnetic study of Ni2MnGa under applied field (invited)", Journal of Applied Physics, Vol. 87(2000)No. 9, pp. 4702-4706.
    [88] Paul D. I. , Marquiss J. , Quattrotchi D. , "Theory of magnetization: Twin boundary interaction in ferromagnetic shape memory alloys", Jounal of Applied Physics, Vol. 4699 (July 2002) No. 8, pp. 4561-4565.
    [89] Quandt E. , Wuttig M. , "Comparison of joule and twin induced magnetostriction", Proc. of Actuator 2004 conference, 14-16 June 2004, Bremen, Germany, pp. 359-362.
    [90] Sakamoto T. , Fukuda F. , Kakeshita T. , Takeuchi T. , Kishio K. , "Magnetic induced strain in iron-based ferromagnetic shape memory alloys", Journal of Applied Physics, Vol. 93 (2003) No. 10, pp. 8647-8649.
    [91] 宫峰飞.铁磁NiMnGa形状记忆合金研究的新进展.材料导报,2003,17(8):1~4
    [92] 郭世海,张羊换等.Ni_(48)Mn_(33)Ga_(19)合金的马氏体相变和磁性形状记忆效应.金属功能材料,2002,9(2):29~32
    [93] 王文洪,柳祝红等.铁磁形状汜忆合金Ni_(52.5)Mn_(23.5)Ga_(24)马氏体相变热滞后的研究.物理学报,2002,51(3):635~639
    [94] Wang F E, Buehler W J, Pichart S J. Crystal Structure and Unique "Martensitic" Transition in TiNi[J]. J.Appl.Phs, 1963, 36: 3232~3239
    [95] Henry C. P. , FeuchtwangerJ. , Bono D. , Marioni M. , Tello P. G. et al. , "AC performance and modelling of ferrmomagnetic shape memory actuators", Proc. of SPIE2001, Vol. 4333(2001) , pp. 151-162.
    [96] Hirsinger L. , Lexcelent C. , "Modelling detwinning of martensite platelets under magnetic and stress actions on Ni-Mn-Ga alloys", Journal of Magnetism and Magnetic Materials, Vol. 254-255 (2003) , pp. 275-277.
    [97] James R. D. and Wuttig M. , "Magnetostriction of martensite", Philosophical Magazine A, Vol. 77(1998)No. 5, pp. 1273-1299.
    [98] Jeong S. , Inoue K. , Inoue S. , Koterazawa K. , Taya M. , Inoue K. , "Effect of magnetic field on martensite transformation in a polycrystalline Ni2MnGa", Materials Science & Engineering A, Article in Press.
    [99] L'vov V. A. , Gomonaj E. V. , Chernenko V. A. , "A phenomenological model of ferromagnetic martensite", Journal of Physics: Condensed Matter, Vol. 10 (1998) No. 21, pp. 4587-4596.
    [100] R N Couch, I Chopra. Experimental characterization of NiMnGa ferromagnetic shape memory alloy bars under variable Loading Conditions[C]. Proceedings of SPIE, 2002, 4701: 29~39
    [101] 卢秋红,颜国正.基于粘-滑摩擦力模型的微型压电驱动器力学分析.上海交通大学学报,2004,38(8):1328~1330
    [102] 王嵩,曹志奎.一种基于SMA的管道蠕动机器人及其反馈控制.传动技术,2005,19(1):29~32
    [103] 秦昌骏,马培荪,姚沁.基于MSA的仿昆虫蠕动微型车.功能材料与器件学报,2004,10(2):239~244
    [104] A.Likhachev,K.Ullakko,Quantitative model of large magnetostrain effect in ferromagnetic shape memory alloys,Eur.Phys.J.,2000,B 14,263-267
    [105] 王金辉,徐峰等.SMA弹簧驱动器驱动机理及实验.清华大学学报,2003,43(2).188-191
    [106] Yue Zhufeng, Wan Jiansong, et al. Constitutive Relationship and Shape-memory Alloys.稀有金属材料与工程,2003,32(4):246~249
    [107] 李欣欣,卢全国等.蠕动式精密直线驱动器.吉林大学学报,2003,33(2):20~24
    [108] 程良伦,杨宜民.新型精密直线驱动器极其控制器的研究.计算技术与自动 化,2000,19(1):19~21
    [109] 杨斌堂,陶华,Bonis M,Prelle C.Terfenol-D磁致伸缩微小驱动器磁路设计.机械科学与技术,2005,24(3):293-295
    [110] 林青,张国贤,何青纬,虞兰.超磁致伸缩材料驱动器的数字模型.机电一体化,2001,6:26~29
    [111] Aaltio I. and Ullakko K., "Magnetic Shape Memory Actuators", Proc. of Actuator 2000 conference, 19-21 June 2000, Bremen, Germany, pp. 527-530.
    [112] I Suorsa, J Tellinen, E Pagounis, I Aaltio, K Ullakko. Applications of magnetic shape memory actuators. 8th international conference ACTUATOR 2002, Bremen, Germany, 2002:158~161
    [113] Jokinen T. , Suorsa I. , Ullakko K. , "Magnetic Shape Memory Materials-New Actuator Materials for Electromechanical Devices", Proc. Speedam 2000 conference, 13-16 June 2000, Ischia, Italy, pp. B4-5-B4-12.
    [114] Kajaste J. , Kauranne H. , Suorsa I. , ietola M. , "Magnetic shape memory (MSM) actuator as linear motor in proportional control valves", Proc. of IFK2004 conference, 25-26 March 2004, Dresden, Germany,
    [115] Yellinen J. , Suorsa I. , Jaaskelainen A. , Aaltio I. , Ullakko K. , "Basic Properties of Magnetic Shape Memory Actuators", Actuator 2002 confence, 12-14 June 2002, Bremen, Germany, 527-530.
    [116] Ullakko K. , "Magnetically controlled Shape Memory Alloys: A New Class of Actuator Materials", Journal of Material Engineering and Performance, Vol. 5 (1996) , 405-409. 70
    [117] LeAnn E. Faidley, Marcelo J. Dopino, Gregory N. Washington, etc. Analytical and experimental issues in Ni-Mn-Ga transducers. Preprint-SPIE Smart structures and Materials 2003:504901~504912
    [118] Yue Zhufeng, Wan Jiansong, Zhang Qingnan. Constitutive Relationshape and Applications of Shape-memory Alloys. 稀有金属材料与工程, 2003, 32 (4): 246~249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700