静电悬浮转子微陀螺DSP测控技术相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着微电子机械技术被广泛地应用于微机械陀螺之中,静电悬浮转子微陀螺得到国内外的深入研究。静电悬浮转子微陀螺利用高速旋转转子的陀螺效益,来实现对载体运动角速度的测量,并可同时实现线加速度的测量。载体的角速度和线加速度通过陀螺的差分电容结构被转化为相应的电容变化,进而转化为相应的电信号输出。检测陀螺角速度和线加速度被转化为检测相应的差动电容。根据静电悬浮转子微陀螺的差分电容结构特点,本文主要探讨了如何使用数字信号处理技术,在数据处理芯片(DSP)平台下来实现静电悬浮转子微陀螺的检测及控制。
     本文的主要研究内容和成果如下:
     首先,介绍了静电悬浮转子微陀螺的电容结构和工作原理,以及陀螺角运动和线运动的动力学方程。讨论利用数字信号处理技术及DSP处理器来对静电悬浮转子微陀螺进行信号检测和控制。
     其次,介绍了数字解调原理,结合静电悬浮转子微陀螺的结构特点,提出使用自相关算法来实现陀螺信号检测。构建了一个基于DSP的同步幅值解调检测系统,经实验,该系统能够满足静电悬浮转子微陀螺的信号检测要求。
     最后,为了实现对静电悬浮转子微陀螺的闭环控制,设计了一个使用增量式PID算法的控制器,并在VC33DSP开发平台下,使用该控制器算法开发了一个能用于对静电悬浮转子微陀螺进行闭环控制的可视化控制系统。该控制系统主要是对VC33DSP开发系统的外设A/D、D/A和PCI芯片进行编程应用。具体为:使用VC++编写的用于进行数据和命令传递的可视化界面,对CY7C09449PCI芯片编程实现DSP与PC之间通信,使用VC33DSP汇编语言编写增量式PID算法以及对实现数据输入、输出的A/D、D/A的应用编程。经实验,整个系统运行良好,PID控制器的参数可以便捷地修改,且能实时地掌握控制器的效果,这为对静电悬浮转子微陀螺的五路闭环控制提供了一种有效的方法。
     本文的检测和控制系统优点在于:(1)对于信号检测,在DSP中使用自相关算法,避免了模拟幅值解调需要提供同频载波参考信号的难题,同时也避免了使用模拟器件带来的频率误差和相位误差。(2)对于闭环控制,可视化的控制能及时掌握控制效果,并根据需要及时调整控制参数。(3)无论对于信号检测还是闭环控制,通过对检测和控制算法的复制修改就能实现多路检测和控制,方便了静电悬浮转子微陀螺的多路检测和控制。
Recently, with the wide use of micro-electro-mechanical(MEMS) technology in the field of a micromechanical gyroscope, a novel micromachined gyroscope with an electrostatically suspended rotor is being studied deeply at home and abroad. Employing gyroscopic effect of the high speed rotational rotor, a micromachined electrostatically suspended gyroscope can detect the angular rate and the linear acceleration of the carrier.By means of the differential capacitance of the microgyro, the angular rate and acceleration of the carrier are then transferred into the capacitive alteration related, furthermore, into electrical output. According to the differential capacitance of the gyroscope, The thesis mainly discusses the related techniques of detection and control of the microgyro by using the method of the digital signal processing and DSP chip
     The main research content and results of this thesis are as follows:
     Firstly, this paper introduces the capacitive structure and the working principle of the micromachined electrostatically suspended gyroscope. The dynamical equations of microgyro in angular and linear movement are also given .it discusses the detection and control of the microgyro with the technology of digital signal processing. Secondly, it shows the principle of digital demodulation. Given the structure of this microgyro, the algorithm of autocorrelation detection is used to detect its signal.A synchronous amplitude detection system, which is based on DSP, is constructed .Proved by the experiment, this system can meet the demand of the detection of the micromachined electrostatically suspended gyroscope.
     Finally, the incremental PID controller is designed in order to achieve the close loop-control for this microgyro. Based on the development platform of VC33 DSP, a visual control system with the PID control algorithm is developed. To construct the system ,the major tasks are to program application codes about the peripheral chips of VC33 DSP, which are the MAX125 chip、the DAC7724 chip and the CY7C09449PV chip. This system mainly includes the following parts: A visual interface with VC++, which can transfer the data and commands.is Programmed by using VC++, A communication in PC and DSP is attained by programming the application codes to develop CY7C09449 chip . Using the specific Assembly language for VC33, the codes achieving the incremental PID controller is written. It also includes the application codes for A/D chip and D/A chip to obtain the function of input and output of the data processed. Proved by the experiment, this visual control system can run effectively. In this system, parameters of PID controller can changed swiftly and the result of PID controller can be seen in real-time. Consequently, it provides the effective method to complete the five channels close-loop control for the micromachined electrostatically suspended gyroscope.
     The control system discussed in this thesis has some main advantages below:
     (1) About the detection, the difficulty of giving a carrier frequency with the same frequency in the technology of analog amplitude demodulation can be avoided in this detection system which is based on the correlate algorithm using DSP. It also can avoid the frequency error and the phase error brought by analog devices concerned. (2) About the close-loop control system, the visual control can master the control result timely. It also can change the control parameters in time. (3)Both signal detection and close-loop control, it is easier to achieve multiple channels detection and control by copying and modifying algorithms of signal detection and close-loop control concerned.
引文
[1]高国伟.MEMS—压力传感器的革命性新技术.传感器世界,1997., 3,第三期
    [2]董景新等.微惯性仪表-微机械加速度计.清华大学出版社,2003.
    [3]丁衡高,王寿荣等.微惯性仪表的研究与发展.中国惯性技术学报,2001,9(4):46-49,73.
    [4]崔 峰,苏宇锋,张卫平等。静电悬浮转子微陀螺及其关键技术. 中国惯性技术学报, 第13 卷第6 期:61-67.
    [5] http://einstein.stanford.edu
    [6] R. Torti, V. Gondhalekar, H.Tran, et al.. Electrostatically suspended and sensed micromechanical rate gyroscope.SPIE Vol. 2220. Orlando, Apr. 04 - 08, 1994, pp.27-38
    [7] T. Hawkey etal. Eletrostatically controlled micromechanical gyroscope. US Patent , 5353656, 1994.
    [8] Fukatsu K, Murakoshi T, Esashi M. Electrostatically levitated micro motor for inertia measurement system[C].Technical Digest of Transducers' 99,1999,3P2.16: 1558-1561.
    [9] M.Esashi. Saving energy and natural resource by micro-nanomachinng. The 15th IEEE int. conf. on MEMS,2002:220-227.
    [10] Keisuke F, Takao M, Satoshi K. Acceleration detection type gyro device. Europe Patent, EP1275934. 2003-01-15.
    [11] Murakoshi T, Fukatsu K, Nakamura S, et al. Electrostatically levitated ring-shaped rotational gyro/accelerometer.Jpn J Appl Phys, 2003, 42, Pt.1 (4B): 2468-2472.
    [12] Nakamura S, Tochigi Y. MEMS inertial sensor toward higher accuracy & multi-axis sensing [C]. The 4th IEEEConf. on sensors, Irvine, Nov. 2005: 939-942.
    [13] Keisuke F, Takao M, Satoshi K. Acceleration detection type gyro device. Europe Patent, EP1275934. 2003-01-15.
    [14] Murakoshi T, Fukatsu K, Nakamura S, et al. Electrostatically levitated ring-shaped rotational gyro/accelerometer. Jpn J Appl Phys, 2003, 42, Pt.1 (4B): 2468-2472.
    [15] Nakamura S, Tochigi Y. MEMS inertial sensor toward higher accuracy & multi-axis sensing [C]. The 4th IEEE Conf. on sensors, Irvine, Nov. 2005: 939-942.
    [16] Kraft M, Farooqui M M, et al. Modelling and design of an electrostatically levitated disk for inertial sensing applications[J].Journal of Micromech Microeng, 2001, 11(4): 423-427.
    [17]Cui F, Chen W Y, et al. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology[A]. Proceeding of SPIE on MEMS/MOEMS Technologies and Applications II [C]. Nov. 2004, Beijing, SPIE, 5641: 264-275.
    [18] Data sheet for MS3110,Microsensor Ltd.2002
    [19] Data sheet for AD7745/AD7746,Analog Device,2003.
    [20] Boser,Naiyavudhi WongkometandBernhardE. Correlated Double Sampling in Capacitive Position Sensing Circuits for Micromachined Application.1998
    [21]- Jiangfeng Wu, Gary K, Fedder L, Richard Carley. A Low-Noise Low-Offset Chopper Stabilized Capacitive-Readout Amplifier for Cmos Mems Accelerometers. ISSCC2002
    [22] Jiangfeng Wu, Gary K, Fedder L, Richard Carley. A Low-Noise Low-Offset Chopper Stabilized Capacitive-Readout Amplifier for Cmos Mems Accelerometers. ISSCC2002
    [23] Jiangfeng Wu, Gary K, Fedder L, Richard Carley. A Low-Noise Low-Offset Capacitive Sensing Amplifier for a 50-Mu G Root Hz Monolithic Cmos Mems Accelerometer IEEE JOURNAL OF SOLID-STATE CIRCUITS 2004.
    [24] 高钟毓 . 微机械惯性测量组合的技术途径. 惯性与仪表,1997,(1):43-50
    [25]李宏生. 双输入轴微机械陀螺仪的研究与进展.中国惯性技术学报,2002,10(6):76-80.
    [26]李志全,唐旭辉等. 差动式电容加速度传感器.传感器技术,1997.6.
    [27] K. Banerjee, B. Dam, K. Majumdar, R. Banerjee, D. Patranabis*. A carrier peak synchronous direct digital demodulation techniqueand its FPGA implementation. Microprocessors and Microsystems 28 (2004) 37–46
    [28]Kraft, M, Evans, A.System level simulation of an electrostatically levitated disk2000 International Conference on Modeling And Simulation of Microsystem,Technical proceedings: 130-133 ]
    [29]W OOD S R C, KALAM I H , JOHN SON B .Evealuation of a novel su rface acou stic w ave gyro scope [J ]. IEEE T ran saction s on U ltrason ics Ferroelectrics and F requency Con tro l, 2002, 49 (1) : 136 141]。
    [30]黄晓刚,刘武,邵诗逸,等.磁悬浮转子微陀螺电容结构设计.传感器与微系统,2006,25(1):41-43.
    [31]Lotters J C, Olthius J C, Veltnik P H and Bergveld P, A Sensitive Differential Capacitance to Voltage Converter for Sensor Applications, IEEE Trans. Instrum. Meas. Vol 48, pp89-96 , Feb. 1999
    [32]崔峰.基于UV-LIGA 技术的静电悬浮转子微陀螺的相关技术研究.上海交通大学博士学位论文
    [33] Damrongsak B, Kraft M. A micromachined electrostatically suspended gyroscope with digital force feedback [C]. The 4th IEEE Conf. on sensors, Irvine, Nov. 2005: 401-404
    [34] Damrongsak B, Kraft M. Design and simulation of a micromachined electrostatically suspended gyroscope [C]. The IET seminar & exhibition on MEMS sensors & Actuators, Savoy Place, London, 27-28 Apr., 2006: 267-272
    [35] Murakoshi T, Fukatsu K, Nakamura S, et al. Electrostatically levitated ring-shaped rotational gyro/accelerometer.Jpn J Appl Phys, 2003, 42, Pt.1 (4B): 2468-2472.
    [36] Nakamura S, Tochigi Y. MEMS inertial sensor toward higher accuracy & multi-axis sensing [C]. The 4th IEEE Conf. on sensors, Irvine, Nov. 2005: 939-942.
    [37] R. Toda, N. Takeda, T. Murakoshi, S. Nakamura, M.Esashi. electrostatically levitated spherical 3-axis accelerometer.The 15th IEEE int. conf. on MEMS, 2002: 710-713.
    [38]刘 武, 黄晓刚, 邵诗逸, 陈文元, 张卫平. 磁悬浮转子微陀螺的电容检测系统分析和实现,测控技术,2006年第25卷第1期:1-4.
    [39] JIAO Jiwei,Han Ming, Wang Xiangli,etc.A Digital Demodulation Solution to AchieveStable Driving for a Micro-Machined Gyroscope With an AGC Mechanism.2004.
    [40]王克峰,吴森,曹永欣. NI FP-2010 与 DSP 串口通讯的研究.计算机技术与发展,2006,16(7):227-229.
    [41]逯颖.基于 LabVIEW 的串行通信接口设计与实现.现代电子技术,2006,232(17):123-124
    [42]戴逸松. 测量低信噪比电压的数字相敏解调算法及性能分析. 计量学报, 第18卷 第2期1997 年4 月:126-132
    [43] 佘新平,频率误差和相位误差在同步解调中的失真分析.江汉石油学院学报,2003,25(3):131-132.
    [44] 汪安民等.DSP应用开发子程序,北京:人民邮电出版社,2005.
    [45]杜普选,马庆龙.实时DSP技术及浮点处理器的应用.北京-清华大学出版社;北京交通大学出版社,2007.1.
    [46]Data Sheet for MAX125,MAXIM.Inc.
    [47]Data Sheet for DAC7724.
    [48]Data Sheet for CY7C09449PV

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700