光推动差动电容式油罐液位测量系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原油储罐是油田存贮油品的重要设备,储罐液位是原油集输工艺的重要参数之一,精确测量液位是贮运系统信息管理的重要依据。但测量现场环境恶劣,易燃易爆,监测难度大。因此,实现油罐液位的高精度自动化计量具有十分重要的意义。
     本文针对特殊王况下的测量要求,提出一种以差动电容为敏感元件的光推动油罐液位测量系统的设计方案。基于静压法测量液位的原理,利用光功率推动测量探头工作,用光纤将被测信息传输至远离测量现场的二次仪表端进行处理。从根本上解决了防燃防爆问题,使测量系统具有本质安全性。
     采用三只差动电容作为压力的敏感元件,并采用热敏电阻作为温度敏感元件,用于补偿温度变化对电容传感器测量精度的影响。建立了液位测量的数学模型,阐述了差动电容、热敏电阻的工作特性,推导出压力—电容的转换关系,为系统测量和标定提供了理论依据。
     结合基本光电器件的特性分析,合理选择了光纤、光源和光探测器,构成光推动通道和光纤传输通道。设计了光源LD的驱动电路和光电转换器,为测量探头提供稳定、可靠的工作电压。测量探头低功耗工作是实现光推动的关键。因此采用全CMOS数字电路分别实现电容和电阻的脉冲宽度调制—脉冲位置调制,获得表征被测信息的脉冲位置信号,再进行电复合和光脉冲发射。通过光纤将光脉冲信号传输到二次仪表端。
     采用高性能微控制器PIC16C65A,首次实现对脉位信号直接解调。利用CCP部件捕捉被测脉冲,通过软硬件设计有效地实现了各路信号的识别、脉宽测量、比值处理和液位、温度的计算及显示、报警等功能。
     进行了光推动差动电容式油罐液位测量系统的相关实验,如压力—电容关系,液位、温度的标定等。结果表明,本系统具有测量精度高、稳定性好、抗强电磁干扰等优点。
Crude oil tank is important equipment for storing oil in oil field. Oil tank liquid level is one of the important parameters of storing and transmitting crude oil technology. Precise liquid level measurement is the dependence of managing. But the measurement site is inflammable and explosive, it is difficult to detect in such severe site. Therefore high precision and automatic measurement of the oil liquid level play a great role in oil industry.
    Considering the requirements of the measurement site under specific working condition, this paper presents a scheme of oil tank liquid level measurement system based on differential capacitance sensing. In view of hydrostatic tank gauging method, the probe is optically powered, and then the information is transmitted through optical fiber to Micro-control unit far from the site. So the inflammable and explosive problem can be solved, the system is safe in nature.
    Three differential capacitance sensors are used to measure the applied pressure, and one thermistor is used to compensate the effect that the temperature changes have on measuring precision of the capacitance sensors. The mathematical model of measuring liquid level is established, the characteristics of differential capacitance and thermistor are conveyed, and the relationship between pressure and capacitance is deduced in the paper. The theory above is the basis of the system measurement and calibration.
    By analyzing the characteristics of basic photo-electric elements, optical fiber, light source and photo detectors can be proper chosen which construct the optically powered channel and fiber-optic transmission channel. The design of driving circuit of LD and photo detector ensures that stable and reliable operation voltage of the probe can be given. The design of micro power consumption probe is the key technique in the optically powered system. The probe uses complete CMOS circuit to realize pulse-width modulation to pulse-position modulation of differential capacitance and thermistor. The multiplex electric signal can be converted to light pulse and then be
    
    
    
    transmitted to micro control unit (MCU) through a single fiber.
    The pulse signal can be demodulated directly by high performance MCU. The capture and measurement of pulse-width and ratio processing of measured signal, parameters calculation and display, warning are accomplished by hardware and software.
    The experiments of oil tank liquid level measurement system based on differential capacitance sensing are carried out, such as experiments of pressure-capacitance relationship, calibration of temperature and liquid level, etc. The results prove that the system has high accuracy and stability, and is immune to electro-magnetic interference.
引文
1 史锦珊,郑绳楦.光电子学及其应用.北京:机械工业出版社,1991:574-575
    2 B.Culshaw,J.Dakin.光纤传感器.李少慧,宁雅农.武汉:华中理工大学出版社,1997:462-466
    3 B.E. Jones, R. C. Spooncer. Optical Component Limitations to Development of Optical Fiber Sensors. Opt. Acta 1985,32:223-232
    4 M. R. Al-Mohanadi, J. N. Ross, J. E. Brignell. Optically Power and Intelligent Sensors. Sensors and Actuators A, 1997,60:142-146
    5 P. Bjork, J. Lenz, K. Fujwara. Optically Powered Sensors. Optical fiberzzzzzzzzz sensors, 1988(2):336-339
    6 宋士兵,李维来.简述油罐储油自动计量方法及发展前景.管道技术与设备,1997,(5):26-27
    7 贾春阳.谈谈几种储罐测量技术.中国计量,1999,(41):38-39
    8 王宇.高精度静压储罐智能监测与信息管理系统的研制与应用.石油化工自动化.1998,(2):55-59
    9 蓝康孟.蓝玉民.油罐计量技术发展回顾与展望.油气储运,1995.14(6):34-37
    10 刘伟华.油罐测量系统现状及发展趋势.现代化仪表,1992,(1):1-4
    11 张阳.利用 PV 算法实现小量程的液位测量.石油工业自动化,1999,(2):69-71
    12 赵新泽,张甫宽,刘纯天.油液污染检测用电容传感器探头的研究.武汉水利电力大学学报,1999,21(1):65-68
    13 彭黎辉,张宝芬,姚丹亚等.重新评价基于充放电原理的微电容测量电路.计量学报,1998,19(4):304-311
    14 徐广忠,丁艳萍,张阳等.静压式油罐计量技术.仪表技术与传感器,1998,(10):36-37
    15 解怀仁.静压式油罐液位测量系统.化工自动化及仪表,1995,22(3):35-39
    16 龚从容,曹树平,冯磊.差压法检测微泄漏及其检测准确度分析.液压与气动,1998,(1):29-31
    
    
    17 蒋剑跃,刘存.用双电容传感器在线测量原油多相流参数的研究.沈阳工业大学学报,1999,21(6):528-531
    18 戴永寿,雷国江.一种高分辨率大存储量油井生产测控系统.自动化与仪器仪表,1999,(1):33-34
    19 陈佩建.ST3000 智能变速器的通讯、校验及应用.石油化工自动化,1998,(4):59-61
    20 冀士学,张伟光,任铁良.红外光纤液位传感器的设计.哈尔滨师范大学自然科学学报,1996,12(2):32-37
    21 施洪昌,汤更生,戚刚等.油库油品输转自动化系统.测控技术,1998,17(2):26-28
    22 刘桂君,于文江.多级变介电常数电容式液位测量变送器的研究.传感器技术,1991,(1):28-30
    23 金晓丹.光纤油罐计量系统及其在工业实用化中的稳定性研究以及高压罐液位和储量计量的应用研究.[大连理工大学工学博士论文],1993:3-8
    24 燕霞.油罐液位的智能检测方法.仪表技术,1995,(3):26-27
    25 周小林,杨素英,曲良孟.原油储罐静压测量系统.工业仪表与自动化装置,1995,(2):16-18
    26 查开德,王向阳.油罐检测管理自动化的时分光纤传感网络,仪器仪表学报,1996,17(2):132-136
    27 刘铁柱.智能压力式多路液位巡检显示报警仪的研制.电测与仪表,1997,34(10):21-22
    28 李正,陶学文.介绍一种新型的油罐计量系统.中国仪器仪表,1997,(1):7-10
    29 彭伟,戚兵,林钧柚.激光雷达光纤液位传感系统中光学非接触在线测量方法的研究.仪表技术与传感器,1997,(12):19-22
    30 彭勇,肖德福.新型光纤液位传感器的设计和应用.仪表技术与传感器,1999,(10):31-32
    31 罗志勇,刘子勇.液位计标准检测系统设计.现代计量测试,1998,(6):27-29
    32 于斌,李新勤.油罐液位监测管理系统.新疆工学院学报,1998,19(1):45-48
    33 陈国华,何通能,姚明海等.油罐计量的自动化系统.浙江工业大学学报,1998,26(4):330-33
    
    
    34 齐国清,贾欣乐.高精度液位测量雷达系统的设计.大连海事大学学报,1999,25(1):15-19
    35 张爱斌,曹振新,阮捷.CCD光纤液位传感器的研究,仪表技术与传感器,1999,(11):35-36
    36 丁艳萍,张阳.多参数油罐自动计量系统,仪表技术与传感器,1999.(12):26-27
    37 陈玉东,施颂椒.基于神经网络的油罐计量误差修正.化工自动化及仪表,2000,27(3):59-62
    38 陈玉东,施颂椒.基于神经网络预测器的静压式油罐计量系统压力传感器的故障诊断.仪表技术与传感器,2000,(3):28-31
    39 田景文,王学海,崔立宝.超声波油罐液位测量仪.现代电子技术,2000,(7):62-64
    40 张卫,徐洪,刘晓昌等.多功能压力传感器与现场总线技术.仪表技术与传感器,2000,(9):3-5
    41 M. Yamada, K. Watanabe. A Capacitive Pressure Sensor Interface Using Oversampling ⊿-Σ Demodulation Techniques. IEEE Trans. Instru. & Meas.,1997, 46(1):3-7
    42 K. Harada, K. Ikeda, H. Kuwayama, H. Murayama. Various Applications of Resonant Pressure Sensor Chip Based on 3-D Micromachining. Sensors and Actuators, 1999,73:261-266
    43 S. T. Moe, K. Schjolberg-Henriksen, D. T. Wang, etc. Capacitive Differential Pressure Sensor for Harsh Environments. Sensors and Actuators,2000, 83:30-33
    44 K. Mochizuki, K. Watanabe, T. Masuda. A High-Accuracy High-Speed Signal Processing Circuit of Differential-Capacitance Transducers. IEEE Trans. Instr. & Meas. 1998, 47(5): 1244-1247
    45 K. Mochizuki, T. Masuda, K. Watanabe. An Interface Circuit for High-Accuracy Signal Processing of Differential-Capacitance Transducers. IEEE Trans. Instr. & Meas.,1998, 47(4):823-827
    46 K. Mochizuki, K. Watanabe, T. Masuda, M. Katsura. A Relaxation-Oscillator-Based Interface for High-accuracy Ratiometric Signal
    
    Processing of Differential-Capacitance Transducers. IEEE Trans. Instr. & Meas. 1998,47(1) : 11-14
    47 K. Kondo, K. watanabe. A Swithed-Capacitor Interface for Capacitive Sensors with Wide dynamic Range. IEEE Trans. Instr. & Meas. 1989, 38(4) :736-739
    48 F. M. L. van der Goes, G. C. M. Meijer. A Novel Low-Cost Capacitive-Sensor Interface. IEEE Trans. Instr. & Meas. 1996, 45(4) :536-540
    49 X. J. Li, G. C. M. Meijer. Elimination of Shunting Conductance Effects in a Low-Cost Capacitive-Sensor Interface. IEEE Trans. Instr. & Meas., 2000, 49(3) :531-534
    50 N. Hagiwara, M. Yanase, T. Saegusa. A Self-Balance-Type Capacitance-to-DC-Voltage Converter for Measuring Small Capacitance. IEEE Trans. Instr. & Meas., 1998, 36(2) :385-389
    51 J. C. Patra, G. Panda. ANN-Based Intelligent Pressure Sensor in Noisy Environment. Measurement, 1998, 23:229-238
    52 H. Eldin A. Elgamel. A Simle and Efficient Technique for the Simulation of Capacitive Pressure Transducers. Sensors and Actuators, 1999,77: 183-186
    53 G. Betta, L. Ippolito, A. Pietrosanto, A. Scaglione. An Optical Fiber-Based Technique for Continuous-Level Sensing. IEEE Trans. Instru. & Meas., 1995,44(3) :686-689
    54 G. Betta, A. Pietrosanto, A. Scaglione. A Digital Liquid Level Transducer Based on Optical Fiber. IEEE Trans. Instru. & Meas., 1996,45(2) :551-555
    55 G. Betta, L. Ippolito, A. Pietrosanto et al. A Gray-Code-Based Fiber Optic Liquid Level Transducer. IEEE Trans. Instru. & Meas., 1998, 47(1) :174-178
    56 H. K. Whitesel, J. k. Overby, C. P. Nemarich et al. Fiber Optic Liquid Level Sensors for Shipboard Applications. SPIE, 25(10) : 146-157
    57 A. K. Ghosh, N. S. Bedi, P. Paul. Low Cost Optical Liquid Level Sensors. Part of the SPIE Conference on Advanced Photonic Sensors and Applications, Singaporen 1999, 3897:522-533
    58 F. N. Toth, G. C. M. Meijer, M. van der Lee. A Planar Capacitive Precision
    
    Gauge for Liquid-Level and Leakage Detection. IEEE Trans. Instru. & Meas. 1997, 46(2):644-646
    59 J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld. A Sensitive Differential Capacitance to Voltage Converter for Sensor Applications. IEEE Trans. Instr. & Meas.,1999,48(1):89-96
    60 H. Krassow, F. Campabadal, E. Lora-Tamayo. The Smart-Orifice Meter: A Mini Head Meter for Volume Flow Measurement. Flow Measurement and Instrumantation, 1999, 10:109-115
    61 N. Yazdi, A. Mason, K. Najafi, K. D. Wise. A Smart Sensing Microsystem with A Capacitive Sensor Interface. IEEE Journal of Solid-State Circuits, 1996:336-339
    62 P. Wouters, M. D. Cooman, R. Puers. A Multi-Purpose CMOS Sensor Interface for Low-Power Applications. IEEE Journal of Solid-State Circuits, 1994, 29(8):952-956
    63 E. Perraud. Theoretical Model of Performance of a Silicon Piezoresistive Pressure. Sensors and Actuators A, 1996, 57:245-252
    64 D. D. Bruyker, A. cozma, R. Puers. A Combined Piezoresistive/Capacitive Pressure Sensor with Self-test Function Based on Thermal Actuation. Sensors and Actuators A, 1998, 66:70-75
    65 A. Charef, A. Ghauch, P. Baussand, M. Martin-Bouyer. Water Quality Monitoring Using a Smart Sensing System. Measurement, 2000,28: 219-224
    66 P. Pons, G. Blasquez, R. Behocaray. Reasibility of Capacitive Pressure Sensors without Compensation Circuits. Sensors and Actuators A, 1993, 38:112-115
    67 A. J. Jaworski, T. Dyakowski, G. A. Davies. A Capacitance Probe for Interface Detection in Oil and Gas Extraction Plant. Meas. Sci. Technol.,1999,10:L15-L20
    68 牛德芳,庞济,沈月婷等.微机械差动电容压力传感器的研究.仪表技术与传感器,2000:4-5
    69 许金海,冯勇建,卓勇.电容式测压微型传感器.仪表技术与传感器,2000:8-10
    
    
    70 V. M. Artyomov, E. A. Kudryashov, V. A. Shelenshkevich, A. L. Shulga. Silicon Capacitive Pressure Transducer with Increased Modulation Depth. Sensors and Actuators A, 1991, 28(3):223-230
    71 W. Baney, D. Chilcott, X. Huang, etc. Comparison Between Micromachined Piezoresistive and Capacitive Pressure Sensors. SAE Special Publications, 1997, 1311:61-64
    72 K. Takeshi, S. Shuichi, E. Masayoshi. Integrated Miniature Capacitive Pressure Sensor. Sensors and Actuators, 1991, 29(3): 185-193
    73 D. Crescini, V. Ferrari, D. Marioli, A. Taroni. Thick-Film Capacitive Pressure Sensor with Improved Linearith due to Electrode-Shaping and Frequency Conversion. Measurement Science & Technology, 1997, 8(1): 71-77
    74 M. L. Frank, D. Jong, C. Paul, X. J. Li, F. N. Toth. Integrated Interfaces for Low-Cost Multiple-Sensor Systems. Journal of Intelligent Material Systems and Structures, 2000, 10(2): 105-115
    75 肖文,崔瑜.光纤传感器系统中的功能光纤.光子学报.1997,29(1):41-45
    76 彭吉虎,吴伯瑜.光纤技术及应用.北京:北京理工大学出版社,1995:35-37 53-60 108-111
    77 孙圣和,王廷云,徐影.光纤测量与传感技术.哈尔滨:哈尔滨工业大学出版社,2000:8-10
    78 刘德明,向清,黄德修.光纤光学.北京:国防工业出版社,1995:60-63
    79 杨祥林.光纤通信系统.北京:国防工业出版社,2000:103-105 98-100
    80 颐畹仪,李国瑞.光纤通信系统.北京:北京邮电大学出版社,1999:116-117 144-148
    81 廖延彪.光纤光学.北京:清华大学出版社,2000:95-100
    82 单成祥.传感器的理论与设计基础及其应用.北京:国防工业出版社,1999:140-141 156-157
    83 R. Puers. Capacitive Sensors: When and How to Use Them. Sensors and Actuators A, 1993,37:93-105
    84 王莉田.光纤传输光推动油罐多参数测量系统理论与实验研究.[燕山大学工学博士论文].2000:44 48
    85 虞学犬,马以武.厚膜电容式集成压力传感器感压元件研究.仪表技术与传感器.2001,(3):1-3
    
    
    86 杨荫彪,穆云书.特种半导体器件及其应用.北京:电子工业出版社,1991:161-165
    87 王玉田.光纤传输光功率推动传感技术及其应用的研究.[哈尔滨工业大学工学博士论文].1995:74
    88 苏铁力,关振海,孙立仁.传感器及其接口技术.北京:中国石化出版社,1998:246-250
    89 窦振中.PIC 系列单片机原理和程序设计.北京:北京航空航天大学出版社,1998:54-56 108-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700