含有岩浆囊的浅部地壳应力场的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂结构地壳非均匀介质的非弹性构造变形是近年构造物理研究的一个热点。地震和火山喷发等地质灾害除了浅部地壳活动外,也涉及深部岩石的粘弹性变形在时间过程中应力松弛并传递给浅部地壳弹性层的结果,除了考虑岩石圈纵向的不均匀还必须考虑横向的不均匀。
     火山区地壳(包括岩浆囊、通道、围岩等)介质是一种最典型的复杂结构的非均匀地球介质,岩浆囊是地球内部活跃的低粘滞性体,其围岩是粘弹性转换带,在应力传递过程中扮演重要角色,岩浆通道和裂隙的形成及火山区的地震是应力传递和释放的结果。长白山火山2002年至2004年出现了一个扰动期,火山区震群频发,GPS结果也显示出上拱膨胀的特点。火山的活动不仅与深部的活动有关,还受到浅部的构造变形的影响,因此除了理解岩浆活动的作用,还需要理解区域应力场和局部应力场共同作用下的火山区浅部地壳的活动特性。
     本论文以长白山天池火山地区为例,研究水平方向和垂直方向结构与介质不均匀的局部应力场特征。从概念模型出发,用低粘滞系数体代替岩浆囊,把火山区浅部地壳看作为非均匀粘弹性组合,分析含有岩浆囊的浅部地壳的粘弹性结构的应力分布、传递及其物理机制;同时模拟断层与低粘滞性体共同存在的条件下应力的调整;用粘弹性三维有限元模型,在区域性构造应力和局部岩浆的共同作用下,模拟火山区应力场特征,探讨粘滞性差异导致的局部应力异常以及与火山地震发生机制的关系,说明岩浆粘滞性在火山活动和区域应力调整中的重要影响。
     1、首先分析在没有岩浆活动情况下,横向粘弹性结构对应力场的影响。含有低粘滞性体的分层粘弹性组合的模型分析表明,在常速度条件下,应力传递不仅在垂向不均匀,而且在水平向也不均匀,它是由低粘滞性体与周围相对刚性的介质间的应变差异产生的,这种内部的不均匀性最终会在地表弹性层体现出来。由于介质粘弹性分层,弹性层中应力可以更快地集中,而低粘滞系数体的存在除了影响了局部应力分布外,还加快了局部弹性层中的应力积累速度。模拟结果说明在深度一定的情况下,低粘滞性体横纵比越大,对局部形变及应力场的影响就越小,反之,这种影响就越大。距地表越近的低粘滞性体引起区域应力场显著变化的可能性就越大,在浅部地壳,低粘滞性体赋存深度对局部区域的影响较之低粘滞性体形状大。低粘滞性体上方刚性壳体厚度影响着应力在其中的积累,厚度越小应力积累效果越明显,积累速度也越快。同时发现低粘滞性体达到一定深度以下时在上部壳体中的应力积累就基本没有差别,即对局部应力场和地表变形的影响趋于稳定。
     2、分析断层对含有低粘滞性体的地壳应力场的影响。模拟了具有不同的断层和低粘滞性体组合方式(断层分别位于低粘滞性体上方,低粘滞性体单侧和两侧)的模型的应力分布,发现断层对构造背景应力场的传递具有一定的阻隔作用,多数情况下断层的存在会减弱低粘滞性体对周围应力场的影响;当低粘滞性体两侧存在断层时,在距离低粘滞性体一定范围之外时,这种削弱作用较大;随着断层与低粘滞性体距离的缩短,这种削弱作用反而逐渐变小;另外,与没有断层存在的情况相比,断层的存在不仅会使局部应力场弱化,而且这种弱化作用会随着断层数量的增多而增强。
     3、利用火山区浅部地壳模型研究了岩浆活动时(岩浆压力作用下)的应力分布与变形特征。分析了2002年以来长白山固定台站以及流动台监测到的Ms≥1的地震数据,根据震级与时间的关系将长白山火山地震震群划分为了四个震群类型,同时发现长白山火山震群有周期发生的特点,大约每隔半年左右都会有一次大的震群。然而地震活动并没有持续活跃,2005至今长白山地震活动又趋于平静。因此推测2002年至2004年的地震活动可能是由于2002年6月29日汪清M7.2深震触发作用引发的一个较短时间的岩浆压力扰动过程,这种岩浆压力扰动过程与地壳和地幔介质的粘滞性应力传递活动有关,因为这种应力传递过程会通过耦合变形引起了上地壳应力场的调整,加上岩浆囊周围的差异应力,导致浅部地壳中形成网状裂隙,导致震群的发生。用三维粘弹性耦合模型模拟了在岩浆压力增大条件下,周围地壳应力场的变化特征,得到地表最大剪应力集中在岩浆囊上部以及岩浆囊端部对应上方表壳,这也解释了长白山地区火山地震发生在岩浆囊上方以及火山侧翼有很多喷泉(该区域最大剪应力大,易形成裂隙、通道)。
     4、考虑长白山火山地震是岩浆囊膨胀和区域(挤压)应力场的共同作用的结果,设计两个对比模型:只考虑区域应力场和考虑区域应力场与岩浆囊膨胀共同作用。模拟结果发现岩浆囊膨胀过程中考虑区域应力场的最大剪应力比不考虑岩浆囊膨胀应力场的大,这是由于岩浆囊膨胀过程中岩浆囊上方的区域东西向挤压应力场受到了抑制,而与垂直方向的挤压力却增大很多,即岩浆囊膨胀导致的局部应力与区域应力的共同作用会导致更大的剪切应力,这是岩浆压力扰动阶段火山地震多数为剪切型地震的一种解释。
     5、讨论了地壳与岩浆粘滞性比的影响及其在火山区变形过程中的作用。火山喷发的形式以及地表的隆起量都受粘滞性比的影响,地壳与岩浆粘滞性比值越小,岩浆上涌过程中地表的隆升就越显著,达到一定临界条件时大规模喷发的可能性就越大。通过粘弹性模型计算出了火山区变形的特点:上拱膨胀。同时用有限元模型与Mogi模型进行了对比:Mogi点源模型无法体现不同形状岩浆囊的结果,无法进行应力场分析,强调等效体积的作用弱化了其他参数的作用,而有限元模型可以完善这些不足。通过模拟,认为岩浆的活动与上地壳的形变关系可以分为三个阶段:①岩浆上涌在岩浆囊积累(压力积累,但此时囊内压力不能使上部地壳发生形变)→②压力大于外部压力时地表开始隆起→③囊内压力等于或小于外部压力时停止隆升,①~③阶段可视为一个周期。
     本论文的主要创新点在于:
     利用三维粘弹性有限元模型研究了岩浆压力作用下长白山火山区的非均匀地壳应力分布,并用以解释长白山天池火山区地震的时空分布及其机制特征,探讨了岩浆粘滞性、岩浆囊、岩浆活动在火山区域构造中的作用。
     研究了局部低粘滞性体对区域构造的重要影响,在分层粘弹性模型的基础上加入了横向非均匀结构的影响,通过模拟低粘滞性体和一些构造元素(断层以及不同边界条件)的组合,说明组合体内的应力分布不均匀以及差应力的突变可能是引发板内局部区域地震的动力因素。
Non-elastic tectonic deformation of heterogeneous crustal media with complicated structure is a research subject attracting much attention in recent years. In addition to activities in the shallow crust, earthquakes and volcanic eruptions are associated with stress relaxation of visco-elastic deformation at depth with time and its transfer to the elastic upper crust. On this issue, heterogeneities of the lithosphere in both vertical and horizontal directions should be considered.
     A volcanic system, including magma chambers, country rocks, magma channels, fissures, and other media, represents a complicated earth material. Magma chambers are active low-viscosity bodies in the earth, and their surroundings are visco-elastic transitions which are important in the stress transfer. Generation of magma channels and fissures as well as earthquakes in the volcanic area are resulted from stress transfer and release. The Tianchi volcanic area of the Changbaishan Mountains has an activity period from 2002 to 2004, and many earthquake swarms occurred in the area. The GPS result also showed the volcano inflates. Volcano activity not only is related with deep activity in earth, but also comes under the influence of the shallow structure deformation. Therefore, besides understanding magmatic activity, we needs to understand the characteristic of upper crust activity in the volcanic area under the joint action of the dominate stress field and the secondary stress fields.
     This thesis chooses the Tianchi volcanic area in the Changbaishan Mountains as the target of the case study. The primary purpose is to analyze features of the stress and deformation fields in a medium which is inhomogeneous in both horizontal and vertical directions. Based on a conceptual model, upper crust of the volcanic area is modelled by an inhomogeneous combination of viscous and elastic materials. This work analyzes the stress distribution, transfer and its physical mechanism in the shallow crust containing a magma chamber. Meanwhile, stress adjustment in the condition of an existing fault is simulated. Using a 3D visco-elastic finite element model, and combined conditions of the regional tectonic stress and local magma force, the stress field of the study area is simulated. The result indicates that the viscidity difference can produce local anomalies of stress, which are related with the earthquakes in the volcanic area. It means that the viscidity of magma plays an important role in the process of the regional stress accommodation.
     1、This thesis analyzes the influence of inhomogeneous combination of viscous and elastic materials on the stess field in horizontal direction in the situation without magmatic activity. With the condition of constant velocity, the analysis of a model containing a low-viscosity body shows that the stress transfer is non-uniform in both vertical and horizontal directions. It is generated by the strain difference between the low-viscosity body and its surrounding elastic medium. Such a heterogeneity of stress will exhibit in the elastic layers near the surface. Because of visco-elastic coupling, stress can concentrate rapidly in the elastic layers, while existence of the low- viscosity body has effect on the distribution of the stress in the elastic layer. The modelling result indicates that the low-viscosity body close to the surface can produce notable change of the stress field, while the low-viscosity body at depth far from the surface has little impact on the stress field. Besides, the effect of depth on the stress is larger than that of the shape of the low-viscosity body. Many times of model tests reveal that a smaller depth of the low-viscosity body can make the relaxation time of the crust longer, hence the thickness above the low-viscosity body determines the relaxation time of the crust.
     2、The relationship between the low-viscosity body and stress field is influenced by faults. With models of faults and low-viscosity, which are combined in different manners, i.e. the fault lies above, on one side, and both sides of the low-viscosity body, respectively, this work performs numerical modelling of stress distribution. The result shows that the fault can weaken the stress field. When the faults lie on the both sides of the low-viscosity body, outside range of a distance from the low-viscosity body, the weakening effect is very large; and with increasing distance between the faults and low-viscosity body, it becomes small. In addition, more faults will produce stronger weakening on the stress field.
     3、A frequency spectrum analysis is made to the Ms>l earthquake data recorded by permanent and temporary stations in the Changbaishan Mountains area since 2002. The result shows that the principal frequencies of earthquakes are 2Hz and 5Hz, with b values 0.84 in the summer of 2002, and 0.93 in the summer of 2003. Usually earthquakes in volcanic areas are of a dilatation type, while the observed events of the study area is of shear mechanism, implying that these shocks are tectonic events rather than volcanic earthquakes. The relationship between the magnitude and time shows that there are four types of seismic swarms in the Changbaishan Mountains area, and the seismic swarms occurred about every half year. But these earthquakes did not continue very long. Since 2005, the seismicity of this area tended to be quite. It is speculated that the earthquakes in the period 2002-2004 is likely a short process which was triggered by the M7.2 deep-focus earthquake at Wangqing on 29 June 2002. Such triggering is associated with the viscid stress relaxation in the crust and upper mantle. Because stress relaxation can produce redistribution of stress through coupling deformation, in conjunction with differential stress around the magma chamber, triggering fault slips and earthquakes.
     4、This work designs two models, one with regional stress field, and another without it. The modelling result shows that the maximum shear stress of the first model is larger than that of the second model, meaning the joint action of the regional stress and local secondary stress can produce larger shear stress, which is a partial reason for the earthquakes of the volcanic area.
     5、Viscidity of magma can influence volcanic processes, such as its eruption forms and uplift of the surface. The larger the viscidity of magma, the more obvious the surface uplift by magma upwelling, and more possible of large-scale eruption when a critical condition is reached. This thesis uses a 3D visco-elastic model to simulate the stress field under the condition of dilatation of a magma chamber, and makes comparison with Mogi's model. The resulting maximum shear stress on the surface appears above the flank of the magma chamber.
     6、This model can also simulate the sudden change of pressure in the magma chamber which is related with deformation of the upper crust. It can be divided into three stages: (1) Magma rises and accumulates in the magma chamber, pressure increasing but unable to deform the upper crust. (2) The surface begins to uplift when the pressure exceeds the strength of crust. and (3) Uplift stops as soon as the pressure within the chamber is no larger than the outside pressure. These three stages consist a cycle. The effect of depth of the magma chamber on vertical displacement of the surface is larger than that of the radius of the chamber.The innovative points of this thesis are summed up below:
     It studies the stress distribution in inhomogeneous crust under the pressure of magma by using 3D finite element model, and explains the temporal-spatial distribution and mechanism of earthquakes in the Tianchi volcanic area of the Changbaishan Mountains. It discusses the role of magma viscidity, magma chamber and magma activity, in the tectonics of the volcanic area. With a visco-elastic model containing low-viscosity bodies, faults and other structural elements, numerical simulation is made to demonstrate that the non-uniform distribution of stress and abrupt change of differential stress can trigger intraplate earthquakes.
引文
樊祺诚,隋建立,孙谦,李霓,王团华,2005,天池火山千年大喷发的岩浆混合作用与喷发机制初步探讨,岩石学报,11(21):1703-1708
    洪汉净,1989,岩石圈脱层失稳与华北地台的活化,现代地壳运动研究,4:26-34
    洪汉净,1990,中国及邻区地块运动的数值模拟,地震地质,4,319-331
    洪汉净,1994,我国地震活动的主导构造,地震,增刊,102-109
    洪汉净,2006,“中国主要火山活动监测研究”项目成果介绍,国际地震动态,333:38-41
    洪汉净,于泳,郑秀珍,刘培洵,陶玮,2003,全球火山活动分布特征,地学前缘,10:11-16
    洪汉净,于泳,陶玮,刘培洵,郑秀珍,2003,我国大陆强震区的形成及其动力学分析,地震地质,25(1):11-22
    洪汉净,刘辉,2007,火山活动状态及其机理的初步探讨,地震地质(待刊)
    胡亚轩,王庆良,崔笃信,2004,长白山火山区几何形变的联合反演,大地测量与地球动力学,24(4):90-94
    赖绍聪,1999,岩浆作用的物理过程研究进展,地球科学进展,14(2):153-158
    李霓,2007,长白山天池火山全新世爆炸喷发的岩浆脱气作用研究,博士学位论文
    刘辉,洪汉净,2007,火山区地表形变及应力分布的有限元模拟—以长白山天池火山为例,地震地质(待刊)
    刘若新,樊祺诚,魏海泉,李霓,1999,中国活火山研究,地质论评,45(增刊):3-15
    刘若新,魏海泉,李继泰,杨清福,许东满,1995,长白山天池火山,见:刘若新主编,火山作用与人类环境,北京:地震出版社,1-13
    马宗晋,杜品仁,洪汉净,2003,地球构造与动力学,广东科技出版社
    汤吉,邓前辉,赵国泽等,2001,长白山天池火山区电性结构和岩浆系统,地震地质,23(2):191-200
    汤吉,刘铁胜,江钊,赵国泽,王继军,詹艳,1997,长白山天池火山区大地电磁测深初步观测,地震地质,19(2):164-170
    陶玮,2003,强震活动主体地区形成机理的数值模拟研究,博士学位论文
    陶玮,洪汉净,刘培洵,于泳,郑秀珍,2002,板内变形快速积累的一种机制,地震地质,24(3):368-376
    陶玮,洪汉净,刘培洵,于泳,郑秀珍,2003,中国大陆与邻区强震分区活动性及其随时间演化,地震,23(2):48-57
    陶玮,洪汉净,刘培洵,于泳,郑秀珍,2003,中国大陆东部大洋板块俯冲的三维粘弹性有限元模型,地震地质,2003,25(1):39-51
    吴建平,明跃红,2003,2002年8月20日长白山天池火山小震震群研究,地震地磁观测与研究,29:1-8
    吴建平,明跃红,苏伟,2004,长白山天池火山的深部结构及地震活动特征研究,见中国大陆地球深部结构与动力学研究,科学出版社,859-871
    吴建平,明跃红,张恒荣等,2005,2002年夏季长白山天池火山区的地震活动研究,地球物理学报,48(3):621-628
    尹京苑,梅世蓉,1999,邢台强震区的深部构造对强震孕育影响的三维数值试验,地球物理学报,42(增刊):131-140
    于泳,2002,地块变形与断层地震的耦合数值模拟,博士学位论文
    于泳,洪汉净,刘培洵,陶玮,郑秀珍,2003,粘弹性有限元与弹簧滑块耦合模型:断层与地块相互作用的数值模拟,中国科学,33(增刊):82-90
    于泳,洪汉净,刘培洵,陶玮,郑秀珍,2003,卫星遥感技术在火山监测中的应用,地球物理学进展,(1):79-84
    于泳,洪汉净,刘培洵,陶玮,郑秀珍,2003,全球大地震时空分布与动力学机制的初步研究,地学前缘,10(特刊):5-10
    曾融生,朱露培,何正勤等,1991,华北盆地强震震源模型兼论强震和盆地成因,地球物理学报,34,288-301
    张恒荣,刘国明,武成智,2003,长白山天池火山监测与火山活动状态的初步研究,地震地质,25(5):109-120.
    赵海玲,1995,岩浆物理性质和流体动力学,北京:地震出版社,1-122
    Arce, J. L., Macias, J. L., Gardner, J. E ,et al. 2006. A 2.5 ka History of Dacitic Magmatism at Nevado de Toluca, Mexico: Petrological, 40Ar/39Ar Dating, and Experimental Constraints on Petrogenesis. J. Petrology 47, 457-479
    Balmforth, N. J., Craster, R. V., Rust, A. C. 2004. Instability in flow through elastic conduits and volcanic tremor under consideration for publication in J. Fluid Mech.
    Baker, D. R. 1992. Trace diffusion of network formers and multicomponent diffusion in dacitic and rhyolitic melts. Geochim Cosmochim Acta 56, 617-631
    Bottinga, Y., Weill, D. F. 1970. Densities of liquid silicate systems calculated from partial molar volums of oxide components. Am J Sci 267(2), 169-182
    Bottinga, Y., Weill, D. F. 1982. Density calculations for silicate liquids: Revised method for aluminosilicate composition. Geochimica et Cosmochemica Acta 46, 909~919
    Bourne, S. J., England, P. C., Parsons, B. 1998. The motion of crustal blocks driven by flow of the lower lithosphere and implications for slip rates of continental strike-slip faults. Nature 391, 655-659
    Chen, W. P., Molnar, P. 1983. Focal depths of intracontinental and intraplate earthquake and their implication for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. 88, 4183-4214
    Chouet B. 1996. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309-316
    Corsaro, R. A., Pompilio, M. 2004. Buoyancy-controlled eruption of magmas at Mt Etna. Terra Nova 16, 16-22
    Crampin, S. Zatsepin, S. V. 1997. Modeling the comiance of crustal rock Ⅱ: Response to temporal changes before earthquake. Geophys J Int 129, 495-506
    Deng, J., Gurnis, M., Kanamori, H., Hauksson, E. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake. Science 282, 1689-1692
    Dieterich, J., Decker, R. 1975. Finite element modeling of surface deformation associated with volcanism. J. Geophys. Res. 80, 4094-4102
    Dingwell, D. B., Webb, S. L. 1990. Relaxation in silicate melts. Eur J Mineral 2, 427-449
    Dragoni, M., Magnanensi, C. 1989. Displacement and stress produced by a pressurized, spherical magma chamber, surrounded by a viscoelastic shell. Phys Earth and Planet Int 56, 316-328
    Hanyk, L., Matyska, C. Yuen, D. A. 2000. Rapid way of determining the eigenspectrum of the Maxwellian viscoelastic Earth, Geophysical Research Abstracts 2,
    Hieronymus, C. F., Bercovici, D. 1999. Discrete alternating hotspot islands formed by interaction of magma transport and lithospheric flexure. Nature 397, 604-607
    Hill, D. P. 1977. A model for earthquake swarms. J. Geophys. Res. 82, 1347-1352
    Hill, D. P., Ellsworth, W. L., Johnston, M. J. S., et al. 1990. The 1989 earthquake swarm beneath Mammoth Mountain, California: An initial look at the 4 May through 30 September activity. Bull. Seismol. Soc. Am. 80, 325-339
    Hill, D. P., Langbein, J. O., Prejean, S. 2003. Relations between seismicity and deformation during unrest in Long Valley caldera, California, from 1995 through 1999. J. Volcanol. Geotherm. Res. 127, 175-193
    Hong, H. J., Kadlec, B. J., Yuen, D. A., et al. 2004. Fast timescale phenomena at Changbaishan volcano as inferred from recent seismic activities. AGU 2004 fall meeting, San Francisco, USA
    Hong, H. J., Zheng, Y. Q., Li, K., Wu, J. P., et al. 2005. Analysis on newly active of Changbaishan Volcano. Geophysical Research Abstracts, 7:02984
    Jaeger, J. C., Cook, N. G. W. 1979. Fundamentals of Rock Mechanics. Chapman & Hall.
    Jellinek, A. M., DePaolo, D. J. 2003. A model for the origin of large silicic magma chambers precursors of caldera forming eruptions. Bull.Volcanology 65,363-381
    Kirby, S. H., Kronenberg, A. K. 1987. Rheology of the lithosphere: Selected topics. Rev Geophys 25, 1219-1244
    Kusznir, N. J., Bott, M. H. P. 1977. Stress concentration in the upper lithosphere caused by underlying visco-elastic creep. Tectonophysics 43, 247-256
    Liebske, C., Schmickler, B., Terasaki, H., et al. 2005.Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities. Earth and Planetary Science Letters 240, 589-604
    Maeda, I. 2000. Nonlinear visco-elastic volcanic model and its application to the recent eruption of Mt. Unzen. Journal of Volcanology and Geothermal Research 95, 35-47
    Manga, M. Loewenberg, M. 2001, Viscosity of magmas containing highly deformable bubbles. Journal of Volcanology and Geothermal Research 105, 19-24
    Maruyama, T. 1964. Statical elastic dislocations in an infinite and semi-infinite medium. Bull. Earthquake Res. Inst. Tokyo Univ. 42, 289-368
    McKenzie D P, Nimmo F, Jackson J A,et al. 2000.Characteristics and consequences of flow in the lower crust. J. Geophys. Res. 105: 11029-11046.
    Mogi, K. 1958. Relations between the eruptions of various volcanoes and the deformations of ground surfaces around them. Bull Earthquake Res Inst Univ Tokyo 36, 99-134
    Newman, A. V., Dixon, T. H. 2006. A four-dimensional viscoelastic deformation model for Long Valley Caldera, California, between 1995 and 2000. Journal of volcanology and geothermal research 150, 1-31-3,244-269
    Perfit, M. R., Davidson, J. P. 2000. Plate Tectonics and Volcanism. in Encyclopedia of Volcanoes, H. Sigurdsson ed.. Academic Press, San Diego, CA. 89-113
    Persikov, E. S., Zharikov, V. A., Bukhtiyarov, P. G., et al.1990. The effect of volatiles on the properties of magmatic melts. Eur J Mineral 2, 621-642
    Pollitz, F. F., Rgmann, R. B., Segal,l P. 1998. Joint estimation of afterslip rate and postseismic relaxation following the 1989 Loma Prieta earthquake. J Geophys Res 103, 26 975-26992
    Poe, B. T., McMillan, P. F., Austen, A. C., et al. 1992. Al and Si coodination in SiO_2-Al_2O_3 glasses and liquids:A study by NMR and IR spectroscopy and MD simulations. Chemical Geology 96, 333-349
    Robin, A. M. 1995. Getting granite dikes out of the source region. J. Geophys. Res. 100, 5911-5929
    Robin, A. M. 1995. Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287-336
    Robin, A. M., Gillard, D. 1998. Dike-induced earthquakes: Theoretical considerations. J. Geophys. Res. 103, 10,017-10,030
    Robin, A. M., Pollard, D. D. 1987. Origins of blade-like dikes in volcanic rift zones, in Volcanism in Hawaii, edited by Decker, R. W., Wright, T. L., Stauffer, P. H. U. S. Geol. Surv. Prof. Pap. 1350, 1449-1470
    Robin, A. M., Gillard, D., Got, J. L. 1998. A reinterpretation of seismicity associated with the January 1983 dike intrusion at Kilauea Volcano, Hawaii. J. Geophys. Res. 103, 10,003-10,015
    Rymer, H., Williams-Jones, G. 2000. Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements. Geophysical research letters 27, 1616, 2389-2392
    Shaw, H. R. 1972. Viscosity of magmatic silicate liquids:an empirical method of prediction.Amer J Sci 272, 870-893
    Sisson, T. W., Grove, T. L. 1993. Experimental investigations of the role of the H_2O in calc-alkaline differentiation and subduction zone magmatism.Contrib Mineral Petrol, 143-166
    Stebbins, J., Farnan, F. I., Xue, A. 1992. The structure and dynmaics of alkali silicate liquids:A review from NMR spectroscopy. Chemical Geology 96, 371-385
    Takeo, M. 1992. The Rupture Process of the 1989 Offshore Ito Earthquakes Preceding a Submarine Volcanic Eruption. J. Geophys. Res. 97(B5), 6613-6627
    Toda, S., Stein, R. S., Sagiya,V. T. 2002. Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity. Nature 419, 58-61
    van der Wal, W., H. H. A. Schotman, and L. L. A. Vermeersen,2004, Geoid heights due to a crustal low viscosity zone in glacial isostatic adjustment modeling: A sensitivity analysis for GOCE,Geophys. Res. Lett., 31, L05608, doi: 10.1029/2003GL019139.
    Wada. 1994. On the relationship between dike width and magma viscosity. Journal of Geophysical Research 99, 17,743-17,756
    Wylie, J. J., Voight, B., Whitehead, J. A. 1999. Instability of magma flow from volatile-dependent viscosity. Science 285, 1883-1885
    Yu, Y., Hong, H., Wei, H., et al. 2004. Modeling of potential lahars motivated by the landslides in Crater Lake of Baitoushan volcano. AGU 2004 fall meeting, San Francisco, USA
    Zhang, Y. 1999. A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402, 648-650
    Zoback, M. L. 1992. First-and second-order patterns of stress in the lithosphere: the worid stress map project. J Geophys Res 97(B8), 11703-11728

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700