陕西宝鸡市渭滨区地质灾害风险评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质灾害风险评估与管理一直是近年来的研究热点与难点,尽管在研究方法、内容和程序上,国内外一直有着不同争论与差异,但是,不断在实践中改进完善、并逐步推广应用地质灾害风险评估管理技术方法成为主流和共识。陕西省宝鸡市是西北黄土高原地质灾害发育严重的地区之一,特别是宝鸡市城区周围和铁路干线地质灾害潜在危害大,是进行地质灾害风险评估研究的良好试验基地。为了结合实例探索区域地质灾害不同层次风险评估技术方法,本文以陕西省宝鸡市渭滨区地质灾害风险评估为例,依托国家科技支撑项目课题“地质灾害风险评估技术研究”和中国地质调查局项目“陕西宝鸡地区地质灾害详细调查”,在渭滨区地质灾害详细调查编录和数据库建设的基础上,简要分析地质灾害风险评估国内外研究现状和进展,系统研究宝鸡市渭滨区地质灾害发育条件、地质环境背景、分布规律及其主要影响因素,利用面上统计分析与典型滑坡解剖研究相结合,野外调查、勘察与室内测试、模拟计算相结合,定性分析与定量模型评价相结合的方法,分区域(1:5万调查资料)、重点地段(1:1万调查资料)和单体(1:2000勘察资料)3个层次进行渭滨区地质灾害易发性、危险性和风险评估区划,取得了下列主要进展和成果:
     1、初步揭示宝鸡市渭滨区地质灾害类型及分布特征:
     ①受秦岭山脉和渭河谷地控制,渭滨区地质灾害总体上呈东西向—北西向带状展布,大多数地质灾害集中分布于秦岭山脉北坡中低山丘陵—黄土梁峁过渡地段:
     ②地质灾害二级分带明显受渭河支流控制呈南北向群带分布,渭滨区大多数地质灾害主要沿秦岭山脉南北向冲沟两侧分布,即主要沿渭河支流岸坡发育,而不是沿渭河岸坡发育,宏观上类似于“立交桥”式分布特征:
     ③渭滨区地质灾害分布密度最大地段是八渔镇清水河的支沟—滩家洼沟两侧。在不到2km的长度内分布9个黄土滑坡,小冲沟流域最大面密度达到20%。这主要是由于滩家洼沟紧临南部的秦岭基岩山前断裂,黄土覆盖厚度较大,沟谷狭窄、流程短,纵坡降大,使得水流冲蚀作用强烈,造成两侧斜坡自然坡度和坡高大,易于形成滑坡。
     ④地质灾害发育类型以滑坡为主(中小型黄土滑坡),崩塌、泥石流次之,潜在危害较大的灾害是中小滑坡和居民房屋周围的黄土崩塌,易于发生滑坡灾害的斜坡是黄土斜坡(包括纯黄土斜坡、黄土+红层斜坡、黄土+基岩斜坡等)。
     2、初步揭示渭滨区地质灾害分布的主要控制因素是构造地形地貌与工程岩土体组合特征,90%左右的滑坡、崩塌集中发生在秦岭山脉与渭河河谷斜坡中下部地带。秦岭北缘断裂带控制秦岭北坡地形地貌特征,断裂带两盘的差异升降,使秦岭北坡中下部斜坡基岩表层分布薄层黄土,秦岭北坡南北向冲沟水系冲蚀下切,造成渭河高阶地和黄土塬边及支流河谷两侧斜坡陡峻,沟谷发育,为滑坡、崩塌的形成提供了有利的地形条件。
     3、通过对典型滑坡的大比例尺调查、工程勘察、室内测试分析和稳定性模拟计算,初步揭示潜在多级叠置滑坡和对冲黄土滑坡群形成演化过程:
     ①夏呀河滑坡和高家河滑坡分别是4级和3级潜在滑面的大型黄土-粘土砂砾石混层滑坡,是多期活动形成的。目前仍然存在局部变形滑动的危险性,它们属于典型的分层扩展式滑坡。利用蒙特卡罗模拟法对滑坡进行可靠性分析,初步认为:可靠性分析可以实现定量表达滑坡的安全度,它给出了滑坡的可靠度和失稳概率,可以为单体滑坡定量风险评估提供基础参数,有利于对比分析滑坡的危险性,揭示其滑动风险的概率。
     ②通过对夏呀河滑坡和高家河滑坡的数值模拟分析,研究表明:夏呀河四级滑坡在天然状态下均处于稳定状态,而在降雨条件下,一二级滑坡则出现失稳可能。三维数值模拟图显示其滑面上的剪切应变率一级滑面最高,其次为二级,而三四级滑面基本没有剪切应变,说明一二级滑坡稳定性差,三四级滑坡处于稳定状态。高家河滑坡二维模拟结果显示:在降雨状态下,压应力、拉应力最大值均明显增大,塑性应变变化值要比在天然条件下增大约一倍以上。塑性变化趋势是一级滑坡在降雨条件下有整体变形破坏的趋势,三级滑坡后缘有变形破坏趋势。
     ③渭滨区密度最大的滩家洼滑坡群是由9个滑坡组合而成,属于典型对冲黄土滑坡群,滑坡叠次毗邻发生,相互影响,构成冲沟两侧密集分布的滑坡群;其中,4、5和7号滑坡是对滑式滑坡,最早是左岸7号滑坡下滑,冲击对岸边坡,使冲沟沿对岸坡脚冲刷,经长期切割冲蚀,临空面加大,对岸斜坡堆积体坡脚松动,在降雨等触发因素的作用下引起了4、5号滑坡的下滑。4、5号滑坡下滑撞击对岸,由于同样的原因,引起7号滑坡局部再次的下滑,造成7-1滑坡前缘河流向对岸弯曲。目前,4、5号滑坡存在局部活动的可能性,属于高危险区,应注意加强监测预警。
     4、运用定性分析和综合信息量模型、因子权重叠加模型相结合的评价方法,完成3个层次渭滨区地质灾害易发性、危险性和风险评估区划,结果显示:
     ①渭滨区地质灾害高易发区占14.96%,主要分布在渭滨区南部的基岩山区到黄土台原的过渡区内及神农镇附近的清姜河两岸;中易发区占27.02%,主要分布在渭滨区西南部清姜河两岸以及其支流深沙河、李家河一带,西部晁峪乡沿渭河两岸以及渭滨区南部基岩山地,渭河南岸的黄土台塬、梁、峁的中部地区:其余为低易发区和不易发区,分别占31.57%和26.45%。
     ②渭滨区地质灾害极高危险区和高危险区分别占10.34%和16.99%,主要分布在晁峪乡甘峪村—高家镇堡子山一带,神农镇东峪口—陈家村一带的清姜河两岸,石鼓镇至八渔镇的高家河村—燃灯寺—张家岭—带的黄土梁峁区;其余为中等危险区、低危险区和极低危险区,分别占25.69%、30.79%和16.18%。
     ③渭滨区地质灾害极高风险区和高危险区分别占3.65%、9.10%,主要分布于晁峪乡和高家镇的孔柯槽—黑山湾—寺沟岭—带,神农镇的东峪口—偏桥—石家营一带的清姜河两岸以及晁峪乡渭河北岸的北嘴村附近;在这些极高—中等风险区,应对沿线的公路、铁路加强监测预报,采取风险减缓措施。其余为中等危险区、低危险区和极低危险区,分别占21.61%、34.04%和31.41%。
     ④渭滨区重点地段地质灾害风险评估结果揭示,极高风险区、高风险区合计占5.92%,主要分布神农镇大湾堡—朱家沟—益门堡一带的清姜河两岸。在这一地区需要引起注意和加强监测预报、采取风险减缓措施。
     总体分析,渭滨区区域地质灾害总体危险和风险不是很高,需要注意居民房屋周围和重要铁路、公路干线两侧的单体灾害危险性和风险。
     5、通过对夏呀河单体四级滑坡的定量风险评估的探讨分析,初步揭示:
     ①初步估算了夏呀河4级潜在滑面滑坡在不同工况条件下潜在的经济损失和人员伤亡的总风险值及其存在的差异,提出了沿不同滑面滑动滑坡所具有的潜在威胁,可以为当地政府对该滑坡进行灾害风险管理提供科学依据。
     ②夏呀河2级潜在滑面滑坡属于高风险滑坡,与国际上暂定的社会容许标准相比,其总风险值处于不可接受范围内,应该采取风险减缓措施,或者是滑坡防治措施降低滑坡风险。
     6、根据国内外地质灾害风险管理的一些经验和做法,初步探索渭滨区地质灾害风险管理体系和风险减缓措施,有针对性地提出渭滨区滑坡、崩塌、泥石流防治的一般方法。
In recent years, geo-hazard risk assessment and management has been a hot and difficult topic in research field. Although there are still many different views on the research methods, content, procedures home and abroad nowadays, the geo-hazard risk assessment techniques and management methods became the mainstream because of its improving in practice and gradual promoting in use. Baoji City in Shaanxi Province is one of the serious geological hazards regions in the northwest loess plateau, especially the potential geo-hazards are very serious around Baoji City and along railway, and it is a good testing field for studying the geohazard risk assessment. In order to explore different levels risk assessment technique method on geological hazard in the combination of examples, taking geological hazard risk assessment in Weibin district of Baoji City in Shaanxi Province as example in this paper, relying on the national science and technology support project" Geo-hazards risk assessment technology research" and on the China Geological Survey Project" Geo-hazard detailed investigation in the region of Baoji City in Shaanxi Province ", based on detailed catalog and database construction of geological hazard investigation in Weibin district, the status and progress of research on geo-hazard risk assessment at home and abroad was analyzed briefly and geological hazard development conditions, geo-environmental background, distribution regularity and the main impact factors in Weibin Disrict of Baoji City were systematically studied. Geo-hazard susceptibility, hazard and risk assessment zone in Weibin district were finished by three levels such as region (1:5 million survey data), the key area (1:1 million survey data) and monomer (1:2000 reconnaissance data) by using statistical analysis of the surface in combination of anatomy research of typical landslides, field survey and reconnaissance in combination of simulated calculation, qualitative analysis and in combination of quantitative model. Through these studies, the major progress and conclusions are obtained in this thesis as follows:
     1) The main types and distribution characteristics of geological hazard in Weibin district were preliminarily revealed as below:
     ①Distribution of geological hazard was generally east to west - northwest to the zonal distribution controlled by Qingling Mountains and the Weihe River valley in Weibin district. The majority of geo-hazards are concentrated between the hilly - loess hilly beam hillside in the northern slope of Qingling Mountain.
     ②Sub-band of geo-hazards was significantly affected by controlling of the tributary of the Weihe River and was a distribution of the North-South bands. The majority of geo-hazards in Weibin district are concentrated along the north-south gullies in Qingling Mountain. That is, geo-hazards are mainly developed along banks of Weihe River branches and not developed along banks of Weihe River.
     ③The most dense area of geo-hazards in Weibin district is the branch of Qingshuihe River in Bayu town—both banks of Tanjiawa gully. There are nine loess landslides lying in less than 2km length of the gully and the largest surface density is up to 20% in the small gully basin. This area was easy to form landslides mainly due to Tanjiawa gully is close to Qingling southern bedrock piedmont fault, covered by thick loess, narrow valley, short process, longitudinal big drop, which lead to a strong role in water erosion , result in the natural slope angle and slope height of both gully sides tall.
     ④The main type of geo-hazard is landslide (small and medium-sized loess landslides) and the second is landfalls and debris flows. The potential hazards that are more harmful are small and medium-sized landslides and loess collapse around the resident houses. The slope that is prone to landslide hazards is loess slope (including pure loess slopes, loess and red bed slope, loess and bedrock slope, etc.).
     2) The main factors which control the distribution of geo-hazards in Weibin area are structure terrain geomorphic and characteristics of rock and soil composition. About 90% of the landslides, landfalls occurred in the mid-lower slope zone between Qingling Mountains and the Weihe River valley. The terrain features of Qingling Mountains northern slope is controlled by the northern margin fault zone of the Qingling Mountains. Thin layer loess covered bedrock surface in the mid-lower part of the northern slope of Qingling because of the differential uplift between two side of the fault. The north-south gullies of the Qingling northern slope is incised by water which resulted in the steep slopes on both sides of the tributary valley of Weihe River high-terrace and the side of the loess plateau and gully development. These formations of the terrain conditions are a favorable environment for landslides, landfalls development
     3) The formation and evolution of the process of multi-levels overlay landslide and opposed loess landslides are initial revealed by the large-scale surveys, engineering investigations, indoor testing analysis, and stability simulation of typical landslide:
     ①Xiayahe landslide and Gaojiahe landslide are large-scale loess - clay -sand mixed-layer landslide which have 4-level and 3-level potential sliding surfaces respectively and they are multi-period formation. By yet, they are still deforming and sliding somewhere. They belong to typical landslides with extended stratification. By reliability analysis for the landslide by using Monte-Carlo simulation method, the preliminary view is as follows:
     Landslide safety can be quantitative expressed by reliability analysis and the landslide reliability and its instability probability can be obtained by reliability analysis, which can provide basis parameters for quantitative risk assessment of monomer landslide and is conducive to comparative analysis of landslides hazard, revealing risk probability of landslide slide. At the same working conditions, the stability of landslide (Safety) and its reliability value (or failure probability) does not have one-to-one relationship.
     ②Through numerical simulation analysis for Xiayahe landslide and Gaojiahe landslides, the research shows that: in natural conditions, 4 levels landslide of Xiayahe landslide are all in steady state, in the rain conditions , instability possibility of the 1, 2 level landslide may occur. 3-dimension numerical simulation shows that the shear strain rate of the first sliding surface is the highest, followed by the second sliding surface, and there are little shear strain on the third, fourth sliding surface. The poor stability of 1, 2 level landslide and 3,4 level landslide in steady state are confirmed. 2-dimension simulation results of Gaojiahe landslide show that maximum value of compressive stress and tensile stress in the rain state was significantly increased and changes value of plastic strain was more than double level of plastic changes in natural conditions.1 level Landslide in the rain conditions would be failure of the overall trend and the back margin of 3 level landslide would be failure of the trend.
     ③Tanjiawa landslide group with largest density in Weibin area is a combination of nine landslides, which belongs to a typical hedge loess landslide group. Landslides occurred in the adjacent and mutual influence, which constitute landslide-intensive group lying on both sides of the gully. 4, 5 and 7 landslides in the group are hedge landslide, and 7 landslide on the left bank first slid down to impact the slope foot of the other side, and then accumulated at the bottom of the gully to form accumulation dam. Water diffuse above the dam to wash the slope foot on the other side of the gully which leads to invading face up through the long-term cutting erosion and leads to slope foot loose of the previous accumulation body on the opposite banks.4,5 landslide slid down due to the role of triggering factors such as rainning.4,5 landslide slid down to hit the other side, for the same reason, causing portion of 7 landslides sliding again, which result in river bend to the other side in front of 7-1 landslide. Other hedge landslides have similar characteristics, too. At present, 4, 5 landslides have the possibility of local activities, belong to high-risk areas, should be paid attention to strengthening the monitoring and early warning.
     4) Geological hazard susceptibility zoning, hazard zoning and risk assessment zoning were respectively completed at 3 levels in Weibin areas by using evaluation methods in combination of qualitative analysis, synthesis information model and factor right overlap model. The results showed that:
     ①The geo-hazard high susceptibility zones in Weibin area accounted for 14.96 %, and the geo-hazards mainly distributed in the districts from the southern bedrock mountain zones to the loess plateau, and at the two sides of Qingjianghe River nearby Shengnong Town; The middle susceptibility zones accounted for 27.02%, which were mainly distributed at the two sides of Qingjianghe River in the south-west of Weibin district and its affluent, such as Shenshahe River, Lijiahe River, etc., and at the two banks of Weihe River in Chaoyu Town and the southern bedrock mountain zones, and in the middle of the loess plateau, the loess ridges and loess knolls at the southern bank of Weihe River; others were low susceptibility zones and non-susceptibility zones, accounting for 31.57% and 26.45%, respectively.
     ②The geo-hazard extremely high and high dangerous zones in Weibin area accounted for 10.34 % and 16.99 %, respectively. And they mainly distributed in the zone of Gangu Village, Chaoyu Country -Puzishan, Gaojia Town, at the banks of Qingjianghe River from Dongyukou to Chenjia Village, Shennong Town, in the area of the loess ridges and loess knolls along the zones of Gaojiahe Village - Randengsi Temple - Zhangjialing Village in Shugu Town and Bayu Town; and others were middle dangerous zone, low dangerous zones and non-dangerous zones, accounting for 25.69 %, 30.79% and 16.18 %, respectively.
     ③The extremely high risk zones and the high risk zones accounted for 3.65 % and 9.10 % respectively in Weibin district. And they mainly distributed in the zones of Kongkecao -Heishanwan -Sigouling in Chaoyu Country and Gaojia Town, at the two banks of Qingjianghe River from Dongyukou -Pianqiao -Shijiaying in Shengnong Town and nearby Beizui Village at the north bank of Weihe River in Chaoyu Country. The geo-hazard forecast along the road and railway should be strengthened in these extremely high and high risk areas and some slowing up measures should be taken. Others were the middle risk areas, low risk areas and extremely low risk areas, accounting for 21.61 %, 34.04% and 31.41%, respectively.
     ④The geo-hazard risk assessment results of the key area in Weibin district showed that, the extremely high risk and high risk areas totally accounted for 5.92%, mainly distributed along the two banks of Qingjianghe River from Dawanbu -Zhujiagou -Yimenbu in Shengnong Town, These extremely high and high risk areas should be paid more attention, the forecast should be strengthened and some slowing up measures should be taken.
     In a word, the geo-hazard hazard and risk in Weibin district were not very high, but the areas around domestic architectures and the single geo-hazard risk at the two sides of important railways and highways should be paid attention.
     5) According to the discussion and analysis on the qualitative risk evaluation of the four layers landslide in Xiayahe monomer landslide, the followings could be indicated:
     ①The total values of potential economy loss and personal casualty of each level potential sliding surface of Xiayahe landslide under different working conditions were preliminarily quantitatively calculated and different. The latent risk of different potential sliding surface of Xiayahe landslide was proposed, which could supply scientific gist of geo-hazard risk management for the local government.
     ②The landslide with the second level potential sliding surface of Xiayahe landslide belongs to the high riskone, comparing with the international tentative society tolerable risk criterion. Its risk value lies in the non- acceptable range. Therefore, the slowing up measures should be taken or the prevention measures should be strengthened so as to decrease the landslide risk.
     6) According to some experiences and methods of geo-hazards risk management home and abroad, the geo-hazard risk management system and some slowing up measures for risk of Weibin district were preliminary studied. Meanwhile, the general method for decreasing and preventing the landslide, landfall and debris flow in Weibin district was put forward.
引文
[1]罗元华,张粱,张业成.地质灾害风险评估方法[M].北京:地质出版社.1998.
    [2]江见鲸,徐志胜.防灾减灾工程学[M].北京.机械工业出版社.2005.259-265.
    [3]傅鹤林,周中,卜翠松等.地质灾害预测预报国内外现状[J].湘南学院学报 2006.27(5):43-48.
    [4]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘.2001.vol.8 No.2.279-283.
    [5]中华人民共和国国土资源部.中国地质环境公报.2001.2002.2003.2004.2005.
    [6]中华人民共和国国土资源部.中国地质环境公报,2006.2007
    [7]吴树仁,石菊松,王涛.突发地质灾害预测评价概论[J].地质通报,2008.27(11):1753-1763.
    [8]Nilsen T.H.Brabb E.E.Slope stability studies in the San Francisco Bay region,California,Geol.Soc.America,Reviews in Eng.Geol.,1977,235-243
    [9]Sheko A.E.,Theoretical principles of regional temporary prediction of landslide activation,Bulletin of IAEG Prague,No.16,1997,69-72
    [10]Carrara A.,Multivariate models for landslide hazard evaluation,Math.Geol.,1983,15:403-426
    [11]Brabb E.E.,Innovation approaches to landslide hazard and risk mapping Proc.of 4th ISL,Toronto,1984,307-323
    [12]Brand E.W.,Landslide risk assessment in Hong Kong,Landslide,1988,1059-1074
    [13]Cross M.,Landslide susceptibility mapping using two matrix assessment approach,Geohazards in engineering geology,edited by J.G Maund and M.Eddleston,Geological society engineering geology special publication No.15,London,1998,247-264
    [14]Takashi.Japan-China joint symposium on slope stability and their control[Z].1995.114-118.
    [15]Michael-leiba M.Quantitative landslides risk assessment of Cairns Australia[Z].
    [16]Aleotti P.,Baldelli P.,Polloni G,et al.Hydrogeological risk assessment of the Po river basin(Italy)[Z].Landslides in research,theory and practice,13-18,Thomas Teiford,London,2000
    [17]张春山,张业成,马寅生.黄河上游地区崩塌、滑坡、泥石流地质灾害区域危险性评价[J].地质力学学报 2003,9(2):143-153.
    [18]胡金,李波,杨艳锋.GIS在云南鲁甸县地质灾害易发性分区中的应用[J].灾害学.2008.23(1):73-75
    [19]皇甫行丰,李坷凌.古维善河南红旗渠沿线地质灾害易发性评价[J].中国地质灾害与防治学报.2004.15(3):30-33
    [20]张业成,胡景江,张春山.中国地质灾害危险性分析与灾变区划[J].海洋地质与第四纪地质.1995.15(3):55-67.
    [21]谢晓娟.地质环境条件及诱发因素在地质灾害易发分区中定量化评价初探[J].探矿工程.2003(增刊):93-95.
    [22]褚洪斌,母海东等.层次分析法在太行山区地质灾害危险性分区中的应用[J].中国地质灾害与防治学报.2003.14(3):125-129.
    [23]伏永朋,常宏,李逵.湖北省谷城县地质灾害易发程度分区评价.地质调查与研究[J].2007.30(1):70-75
    [24]向喜琼,黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J].中国地质灾害与防治学报.2000.11(3)23-27.
    [25]黄润秋,许强,沈芳等.基于GIS的地质灾害区域评价与危险性区划系统研究[A].第三届海峡两岸三地环境灾害研讨会论文集[C].台北.2001.177-182.
    [26]朱良峰,吴信才,殷坤龙,刘修国.基于信息量模型的中国滑坡灾害风险区划研究[J].地球科学与环境学报.2004.26(3):52-56.
    [27]张桂荣,殷坤龙,刘传正等.基于GIS的陕西省旬阳地区滑坡灾害危险性区划[J].中国地质灾害与防治学报.
    [28]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报.2001.28(1):89-92.
    [29]石菊松,张永双,董诚,等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报.2005.26(3):275-282.
    [30]王轶,王慧玲.地质灾害危险性评价与区划及GIS应用研究[J].勘察科学技术.2004(6):38-40.
    [31]晏同珍,杨顺安,方云.滑坡学[M].武汉.中国地质大学出版社.2000.
    [32]晏同珍,白晓辉,殷坤仑等.江汉河谷安康段滑坡分布规律及空间预测[A].滑坡文集.1990.第7集
    [33]刘传正等.长江三峡库区地质灾害成因与评价研究[M].北京.地质出版社.2007
    [34]朱阿兴,裴韬,乔建平,陈永波,周成虎,蔡强国.基于专家知识的滑坡危险性模糊评估方法[J].地理科学进展.2006.25(4):1-12.
    [35]曾忠平,汪华斌。张志,薛重生.地理信息系统/遥感技术支持下三峡库区青干河流域滑坡危险性评价[.『].岩石力学与工程学报.2006.25(suupl):2777-2784.
    [36]丛威青,潘懋,李铁锋,吴自兴,吕广宪,基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J].地学前缘(中国地质大学(北京);北京大学).2006.13(1):185-190.
    [37]张桂荣,殷坤龙.区域滑坡空间预测方法研究及结果分析[J].岩石力学与工程学报.2005.24(23):4297-4302.
    [38]Guzzctti,F.,ctal.,Estimating the quality of landslide susceptibility models.Gcomorphology,2006.81(I-2):166-184.
    [39]Gorscvski,P.V.,et al.,Spatially and temporally distributed modeling of landslide susceptibility.Geomorphology,2006.80(3-4):178-198.
    [40]Stefanini,M.C.,Spatio-temporal analysis of a complex landslide in the Northern Apennines(Italy) by means of dendrochronology.Geomorphology,2004.63(3-4):191-202.
    [41]Ayalcw,L.and H.Yamagishi,The application of GIS-bascd logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,Central Japan.Genmorphoiogy,2005.65(1-2):15-31.
    [42]Ayalcw,L.,ctal.,Landslides in Sado Island of Japan:Part Ⅱ.GIS-based susceptibility mapping with comparisons of results from two methods and verifications.Engineering Geology,2005.81(4):432-445.
    [43]Clerici,A.,ctal.,A procedure for landslide susceptibility zonation by the conditional analysis method.Geomorphology,2002.48(4):349-364.
    [44]Ermini,L.,F.Catani,and N.Casagli,Artificial Neural Networks applied to landslide susceptibility assessment.Geomorphology,2005.66(1-4):327-343.
    [45]Fall,M.,R.Azzam,and C.Noubactep,A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping.Engineering Geology,2006.82(4):241-263.
    [46]Lan,H.X.,et al.,Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed,Yunnan,China.Engineering Geology,2004.76(1-2):109-128.
    [47]Dai,EC.,C.F.Lee,and Y.Y.Ngai,Landslide risk assessment and management:an overview.Engineering Geology,2002.64(1):65-87.
    [48]刘传正,李嫒,杨冰,长江三峡库区地质灾害空间评价预警研究[J].水文地质工程地质.2004.31(4):9-19.
    [49]吴树仁.突发地质灾害研究某些新进展[J].地质力学学报.2006.12(2):265-273.
    [50]赵建华,陈汉林,杨树锋,滑坡灾害危险性评价模型比较[J].自然灾害学报.2006.15():128-134
    [51]L.Picareli,EO.,S.GEvans,GMostyn,R.Fell.Hazard characterization and quantification in The International Conference on Landslide Risk Management 2005.Vancouver,Canada:A.A.Balkema Publishers.
    [52]Guzzetti,E,et al.Probabilistic landslide hazard assessment at the basin scale.Geomorphology,2005.72(I-4):272-299.
    [53]Hungr,J.C.,E.Eherhardt.Estimating landslide motion mechanism,travel distance and velocity.The International Conference on Landslide Risk Management 2005.Vancouver,Canada:A.A.Balkema Publishers.
    [54]Hungr,O.,et al.,Magnitude-frequency relationships of debris flows and debris avalanches in relation to slope relief.Geomorphology.In Press,Corrected Proof:238.
    [55]Guzzetti,E,et al.,Power-law correlations of landslide areas in central Italy.Earth and Planetary Science Letters,2002.195(3-4):169-183.
    [56]Malamud,B.D.and D.L.Turcotte,The applicability of power-law frequency statistics to floods.Journal of Hydrology,2006.322(1-4):168-180.
    [57]Okura,Y.,et al.,Topography and volume effects on travel distance of surface failure.Engineering Geology,2003.67(3-4):243-254.
    [58]Claessens,L.,et al.,Reconstructing high-magnitude/low-frequency landslide events based on soil redistribution modelling and a Late-Holocene sediment record fi'om New Zealand.Geomorphology,2006.74(1-4):29-49.
    [59]Claessens,U,J.M.Schoorl,and A.Veldkamp,Modelling the location of shallow landslides and their effects on landscape dynamics in large watersheds:An application for Northern New Zealand.Geomorphology,2007.87(1-2):16-27.
    [60]殷坤龙,柳源.滑坡灾害区划系统研究[J]冲国地质灾害与防治学报.2000.II(4):28-32.
    [61]张梁,殷坤龙,雷明堂,等.全国地质灾害风险区划研究报告(送审稿).2002.
    [62]吴树仁,张永双,石菊松,等.三峡库区重庆市丰都县滑坡灾害危险性评价[J].地质通报.2007.26(5):575-581.
    [63]沈芳,黄润秋,苗放,罗文强.区域地质环境评价与灾害预测的GIS技术[J].山地学报.1999.17(4):338-342.
    [64]沈芳,黄润秋,苗放,许强.几地理信息系统与地质环境评价[J].地质灾害与环境保护.2000.11(1)6-10.
    [65]沈芳.山区流域地质环境评价与地质灾害预测的GIS系统[D].2000.成都理工大学学位论文
    [66]许强,黄润秋.非线性科学理论在地质灾害评价预测中的应用.地质灾害系统分析原理[J].山地学报.2000.18(3):272-277.
    [67]许强,黄润秋,向喜琼.地质灾害发生时问和空间的预测预报[J].山地学报.2000.18(增刊):112-117.
    [68]向喜琼.金沙江溪洛渡水电站近坝库岸地质灾害区域评价与预测的GIS系统[D].2000.成都理工大学学位论文.
    [69]向喜琼,黄润秋,许强.区域地质灾害危险性评价系统的实现[J].地理学与国土研究.2002.18(3)76-78.
    [70]王文俊。向喜琼,黄润秋,曹修定.区域崩塌滑坡的易发性评价.以四川省琪县为例[J].中国地质灾害与防治学报.2003.14(2):31-34.
    [71]王文俊,刘志军,向喜琼.四川省琪县地质灾害特征及其防治措施分析[J].灾害学.2003.16(2):38-42
    [72]张梁,张业成,罗元华.地质灾害灾情评估理论与实践[M].北京.地质出版社.1998.
    [73]William J.Pink,Arthur A.Atkission著,向立云,程晓陶等译.自然灾害风险评价与减灾对策[M].1993.北京:地震出版社.
    [74]柳源.中国山地地质灾害风险区划研究[D].2000.中国地质大学博士学位论文.
    [75]Van Westen,C.J.,A.C.Seijmonsbergen,F.Mantovan.Comparing Landslide Hazard Evaluation:Three Case Support System for Landslide Hazard Monitoring.Natural hazards.1999.20(2/3).
    [76]Arattano M.On the Use of Seismic Detectors as Monitoring and Warning System for Debris Flows.Natural hazards.1999.20(2/3).
    [77]Arnould M.Geological Hazards-insurance and Legal and Technical Aspects.Bulletin of the International Association of Engineering Geology.1976.No.14:263-274.
    [78]Besson L.,Tacher Y.The Regulation of Map-making of Natural Hazards in Isere,France.Landslides,Ch.Bonaard.1988:1497-1498.
    [79]Blaikei,P.T.Cannon,I.Davis and B.Wisher.At Risk:Natural Hazards.People's Vulnerability,and Disasters,Rontledge,,London.1994.
    [80]Brabb E.E.,Panpeyan E.H,Bonilla M.G Mmap of Landslide Susceptibility in San Mateo Country,California.US Geological Survey.1972.
    [81]Brand E.W.Landslide Risk Assessment in Hong Kong.Landslide.1988.1059-1074.
    [82]Busoni,E.P.S.Scnchis,C.Calzolari and A.Romagnoli.Mass Movement and Erosian Hazard Patterns by Multivariate Analysis of Landscape Integrate data:The Upper Orcia River Valley(Siena,Italy) case.Catena.1995.
    [83]Carrara,A.,F.Guzzetti,M.Cardinali,P.Reichenbach.Use OfGIS Technoloty in the Prediction and Monitoring of Landslida Hazard Natural Disaster.Natural hazards.1999.(2/3).
    [84]Carrara.Multivariate Models for Landslide Hazard Evaluation.Math.Geology.1983.(15):403-426.
    [85]Charles E.Glass,Ray Klimmek.Routing debris flows.Environmental & Engineering Geoscience.2001.Vol.7.No.2.177-191.
    [86]Christopher S.Hitchcock.Mapping Liquefaction Hazards in Simi Vally,Veutura County California.Environmental &Engineering Geoscience.1999.Vol.5.No.4.441-458.
    [87]Chung,R.M.Natural disaster studies.Natural Academy Press,Washington D.C.1994.
    [88]Flanklin J.Predictive Vegetation Mapping:Geographic Modelling of Biospatial Patterns in Relation to Environment Gradients.Progress in Physical Geography.1995.19(2).
    [89]G F.Wiecaorek,B.A.Morgan,R.H.Campbell.Debris Flow Hazards in The Blue Ridge of Central Virginia.Environmental & Engineering Geoscience.2000.Vol.6.No.1.3-23.
    [90]Hongey Chert.Initiation of the Tungraen Debris Flow,Eastern Taiwan.Environmental & Engineering Geoscience.1999.Vol.5.No.4.459-473.
    [91]Lucio Lirer,Livia Vitelli.Volcanic Risk Assessment and Mappping in the Vesuvian Area Using GIS.Natural hazards.1998.17(1).
    [92]Marco Lazzari,Paolo Salvaneschi.Embedding a Geographic Information System in a Decision Support System for Landslide Hazard Monitoring.Natural hazards.1999.20(2/3).
    [93]Mccall,G.J.HI,Laming,K.J.C.And S.C.Scott.Geohazards-natural and Man-made.Chapman Hall,London.1992.
    [94]Ronald B.Chase,Karl E.Chase,Alan E.Kehew et al.Determining the Kinematics of Slope Movement Using Low-cost Monitoring and Cross Section Balancing.Environmental & Engineering Geoscience.2001.Vol.7.No.2.193-203.
    [95]Rossi,G N.Harmancioglu and V.Yevjevich.Coping With Floods,Kluwer Acadmic pulishers,Dordrecht,Boston,London.1994.
    [96]Scott B.Miles,David K.Keeper.Evoluat/on of Seismic Slop-performance Models Using a Regional Case Study.Environmental & Engineering Geoscience.2000.Vol.6.No.1.25-39.
    [97]Sevtap A.,M.Semith Yucemen.Reliability of Lifeline Networks with Multiple Sources under Seismic Hazard.Natural bazards.2000.21(1).
    [98]Turcker B.A.M.Erdik,C.N.Hwang.Issues in Urban Earthquake Risk.Kluwer Academic Publishers,Dordrecht,Boston,London.1994.
    [99]Turner D.P.,Koerper,H.Gucinski,and C.Peterson.Monitoring Global Change Comparison of Forest Cover Estimates Using Remote Sensing and Inventory Approaches.Environmental Monitoring and Assessment.1993.(26).
    [100]Van Dijke J J,Van Wesetn C J.Rockfail hazdar.A geomorphological application of neighbourhood analysis with IL WIS.ITC Journal,1990,(I):40-44.
    [101]GuPta P,Anbalgana R.Slope stability of Their Dam Reservoir Area,India,using landslide hazard zonation(LHZ) mapping.Quarterly Journal of Eng Geology,! 997,30:27-36.
    [102]A.K.Pachauri,P.V.GuPta,R.Chander.Lnadslide zoning in a part of the Garhwal Himalayas.Environmental Geology.1998,36(3-4).
    [103]P.Aleotti,R.Chowdhury.1999.Landslide hazard assessment:summary review and new perspectives.Bull Eng Geol Env,1999.58:21-44.
    [104]A.Uromeihy,M.IL Mahdavifar.Lnadslide hazard zonation of the Khorshrostam area,lran.Bulletin of Engineering Geology and the Environment 2000,58:207-213.
    [105]B.Uormeihy,M.R.Mahdavifar.Reply to Discussion on "Landslide hazard zonation of the Khorshrostam area,lran" by A.Uromeihy and M.R.Mahdavifar Bull Eng Geol Environ 58:207-213.Bulletin of Engineering Geology and the Environment,2001,60:81.
    [106]Candan Gokceoglu.Discussionon"Lnadslide hazard zonation of the Khorshrostam area,Irma" by A.Uromeihy and M.R.Mahdavifar,Bull Eng Geol Environ58:207-213.Builetin of Engineering Geology and the Environment,2001,60:79-80.
    [107]国家地震局.《中国地震动参数区划图》(GB 18306-2001),[S].北京:地震出版社.2001.
    [108]国家地震局震害防御司.地震灾害预测与评估手册[M]..北京:地震出版社.1993
    [109]高文学等.中国自然灾害史(总论)[M].北京:地震出版社.1996.
    [110]国家科委国家计委国家经贸委自然灾害综合研究组编著.中国自然灾害区划研究进展[M].北京:海洋出版社.1998.
    [111]张业成,张春山,张梁等.中国地质灾害系统层次分析与综合灾度计算[J].中国地质科学院院报.北京:地质出版社.1993.(27、28):139-154.
    [112]张业成,张梁.正在兴起的地质灾害风险评价[J].当代地质科学进展.北京:中国地质大学出版社.1996.
    [113]黄崇福.以历史灾情资料为依据的农业自然灾害风险评估方法[J].自然灾害学报,1998.7(2).
    [114]黄崇福.自然灾害风险分析的基本原理[J].自然灾害学报.1999.8(2).
    [115]于庆东.灾害经济损失评估理论与方法探讨[J].灾害学.1999.8(2).
    [116]樊运晓.区域承灾体脆弱性综合评价研究[D].2000.中国地质大学博士学位论文.
    [117]罗元华.泥石流堆积数值模拟及泥石流灾害风险评估方法研究[D].1998.中国地质大学博士学位论文.
    [118]向喜琼,黄润秋.地质灾害风险评价与风险管理[J].地质灾害与环境保护 2000..11(1):38-41.
    [119]刘希林.泥石流风险评价中若干问题的讨论[J]-山地学报.2000.(4).
    [120]刘希林.泥石流危险性评价[M].1995.北京.科学出版社.
    [121]胡瑞林.地质灾害计算机预测系统与应用[M].1998.北京:地质出版社.
    [122]黄润秋。林峰,陈德基等.岩质高边坡卸荷带形成及其工程性状研究[J].工程地质学报.2001.9(3):227-232.
    [123]黄润秋.岩石高边坡的时效变形分析及其工程地质意义[J].工程地质学报..2000.8(2):148-153.
    [124]雷明堂,蒋小珍,李瑜,等.城市岩溶塌陷地质灾害风险评估--以贵州六盘水市为例[J].中国地质灾害与防治学报.2000.11(4):23-27.
    [125]程凌鹏.三峡库区地质灾害空间预替研究.以重庆市渝北区为例[D].2001.中国地质大学(北京)学位论文.
    [126]宋光齐.四川省地质灾害危险性评价与对策研究[D].2002.成都理工大学.[学位论文.
    [127]唐川,JogrGurnert.滑坡灾害评价原理和方法研究[J].地理学报.1998.53(增刊):149-157.
    [128]张业成,张梁.论地质灾害风险评价[J].地质灾害与环境保护.1999.7(3):1-6.
    [129]唐川,朱静,张翔瑞.GIS支持下的地震诱发滑坡危险区预测研究[J].地震研究.2001.24(1):73-81.
    [130]李雪梅.滑坡影响因素的效果测度分析[J].中国地质灾害与防治学报.2001.12(1):82-85.
    [131]胡新丽,唐辉明.GIS支持的斜坡地质灾害空间预测系统框架设计[J].地质科技情报.2002.21(1):99-103.
    [132]马志江,陈汉林,杨树锋.基于支持向量机理论的滑坡灾害预测-以浙江庆元地区为例[J].浙江大学学报(理学版).2003.30(5):592-596.
    [133]刘传正,李铁锋,杨冰.长江三峡库区地质灾害空间评价预警研究[J].水文地质工程地质.2004.31(4):9-19.
    [134]石菊松,石玲,吴树仁.滑坡风险评估的难点和进展[J].地质论评.2007.53(60):797-806.
    [135]韩恒悦,张逸,袁志祥.渭河断陷盆地带的形成演化及断块运动[J].地震研究.2002.25(4):362-368
    [136]张国伟,董云鹏,姚安平.秦岭造山带基本组成与结构及其构造演化[J].陕西地质,1997,15(2):1-14
    [137]张国伟,孟庆任,于在平,孙勇等.秦岭造山带的造山过程及其动力学特征[J].中国科学,D辑,1996.26(3):193-200
    [138]侯建军,韩慕康,张保增.秦岭北麓断裂带晚第四纪.活动的地貌表现[J].地理学报.1995.50(2):138-146
    [139]汪万红,张慧,苏鹤军.秦岭北缘断裂带温泉水循环深度与地震活动性的关系研究[J].西北地震学报.2008.30(1):36-41
    [140]陕西省地质环境监测总站.陕西省宝鸡市区及宝鸡县地质灾害调查与区划报告[R].2001.4
    [141]朱传刚.边坡稳定分析的萨尔玛模式及其应用[J].公路工程.2007.32(4):174-177
    [142]苏永堂.斜坡稳定性不平衡推力分析模式的可靠度计算方法[J].中南公路工程.2007.32(3):72-75
    [143]陈新民,罗国煜,夏佳.边坡稳定性类比评价的定量实现[J].工程地质学报.2000.8(2):244-248
    [144]黄润秋,吴礼舟.非饱和膨胀土边坡稳定性分析[J].地学前缘.2007.14(6):129-133
    [145]李承海,罗庆锋.降雨对土质边坡稳定性影响分析[J].岩土工程技术.2007.2I(6):313-314
    [146]徐青,陈士军,陈胜宏.滑坡稳定性分析与安全系数取值研究[J].中国地质灾害与防治学报.2006.17(3):58-62
    [147]吴树仁,张永双,石菊松,等.地质灾害[泥石流、滑坡)预警[R].中国地质科学院地质力学研究所.2003.12.28
    [148]陈祖煜.土质边坡稳定分析.原理、方法、程序[M].中国水利水电出版社,2003.
    [149]Takuo Yamagami,Progressive Failure Analysis Based on a Method of Non-vertical Slices.In:Yagi and Norio(Eds.).Slope Stability Engineering(I).Rotterdam:Balkema.1999.299-304.
    [150]Duncan,J.M.State of the Art:Limit Equilibrium and Finite Element Analysis of Slopes.Journal of Geotechnical Engineering [J].1996.122(7):577-596.
    [151]朱大勇,钱七虎,周早生,等.基于剩余推力法的边坡临界滑动场[J].岩石力学与工程学报.1999.18(6):667-70.
    [152]徐青,陈士军,陈胜宏.滑坡稳定分析剩余推力法的改进研究[J].岩土力学.2005.26(3):465-470.
    [153]YANG H.HUANG著.包承纲等译.土坡稳定分析[M].清华大学出版设,1988.
    [154]祝玉学.边坡可靠性分析[M].冶金工业出版设.1993.
    [155]高大钊.土力学可靠性原理[M]冲国建筑工业出版社,1989.
    [156]赵寿刚,兰雁,沈细中,等.蒙特卡罗法在土质边坡可靠性分析中的应用[J].人民黄河.2006.28(5):65-66、73
    [157]许英姿,余宏明,唐辉明.蒙特卡罗法在某厂区土坡稳定性评价中的应用[J].水文地质工程地质.2002(2):49-52
    [158]《岩土工程勘察规范》(GB50021-2001)[S].中华人民共和国国家标准.中国建筑工业出版社.2002
    [159]程谦恭,彭建兵.高速岩质滑坡动力学[M].成都:西南交通大学出版社,1999:85-86.
    [160]卫宏,靳晓光,王兰生.滑坡碰撞作用及其岸坡环境效应[J].山地学报,2000,18(5):435-439
    [161]易顺华,李华亮,杨丽娟等.群体滑坡的地质结构类型与发育特征[J].地质通报.200827(11):1832-1836
    [162]杨为民,吴树仁,谭成轩等.陕西宝鸡地区对滑式黄土滑坡的特征及其碰撞诱发机理[J].地质通报.200827(11):1854-1861
    [163]吴树仁,董诚,石菊松等.地质灾害信息系统研究一以重庆市丰都县为例[J].第四纪研.2003.23(6):683-691.
    [164]Wong,H,N.,Landslide risk assessment for individual facilities.Landslide Risk Management,Proceedings of the International Conference on Landslide Risk Management,Vancouver,Canada,2005:237-296.
    [165]WU Shuren,SHI Ling,WANG Ruijiang,TAN Chengxuan and HU Daogong.,Zonation of the landslides Hazards in the forerservoir rogion of the Three Gorges Project on the Yangtze River,Engineering Geology,2001,59:51-58.
    [166]Van Westen,C.J.,R.Soeters,and K.Sijmons,Digital geomorphological landslide hazard mapping of the Alpago area,Italy.International Journal of Applied Earth Observation and Geoinformation,2000.2(1):51-60.
    [167]WU Shuren,JIN Yimin,ZHANG Yongshuang,et al.,Investigations and assessment of the landslide hazards of Fengdu country,in the reservoir region of the Three Gorges Project on the Yangtze River.Environmental Geology,2004(45):560-566
    [168]Fell R,H.K.,Lacasse S,Leroi E.A framework for landslide risk assessment and management.In The International Conference on Landslide Risk Management 2005.Vancouver,Canada:A.A.Balkema Publishers.
    [169]L.Cascini,C.B.,Landslide hazard and risk zoning for urban planning and development.Landslide Risk Management,ed.R.F.Oldrieh Hungr.2005:A.A.BALKEMA 199-235.
    [170]C.J.van Westen.T.W.J.van Asch.R.Soeters.Landslide hazard and risk zonation-why is it still so difficult?[J]Bull.Eng.Geol.Env.,2005.64:5-23.
    [171]Guzzetti,F.,et al.Probabilistic landslide hazard assessment at the basin scale.Geomorphology,2005.72(1-4):262-299.
    [172]Guzzetti,F.,et al.,Estimating the quality of landslide susceptibility models.Geomorphology,2006.81(I-2):166-184.
    [173]Metternicht,G,L.Hurni,and R.Gogu,Remote sensing of landslides:An analysis of the potential contribution to geo-spatial systems for hazard assessment in mountainous environments.Remote Sensing of Environment,2005.98(2-3):284-303.
    [174]黄崇福启然灾害风险评价理论与实践[M].北京.科学出版社.2005.
    [175]R.Rell,K,K.S.Ho,E.Leroi滑坡风险评估与管理框架.《滑坡风险管理》中国地质调查局水环部编译,国际滑坡风险管理会议(温哥华、加拿大2005.5.31-6.3)论文集选译
    [176]何淑军,张春山,吴树仁等.基于蒙特卡罗法的多级黄土滑坡可靠性分析[J].地质通报.2008.27(11):1822-1831.
    [177]殷跃平,张作辰,黎志恒等.兰州皋兰山黄土滑坡特征及灾度评估研究[J].第四纪研究.2004.24(3):302-310
    [178]中国地质调查局发展研究中心译.美国国家滑坡灾害减灾战略评估(2004).2003
    [179]高速摘编.日本减灾科技研究概况.中国地质环境信息网.2004
    [180]ChaPman,C.B.&CooPer,D.R.Risk Analysis For Lagre Projects..Models,Methods and Cases[MI.John Wiley & Sons Publishers,1987
    [181]冯文凯.库岸公路边坡稳定性风险分析[D].成都理工大学博士学位论文,2004
    [182]张桂荣.基于webGIS的滑坡灾害预测预报与风险管理[D].中国地质大学(武汉)博士论文,2006
    [183]罗文强,黄润秋,张悼元著.斜坡稳定性概率分析的理论与应用[M].北京.中国地质大学出版社,2003
    [184]谢全敏,夏元友.边坡治理多层次多目标优化决策方法研究[(J].武汉理工大学学报,2002:24(10):21-24
    [185]Tobutt D.C,Richards E.A.The reliability Numerical and Analytical Methods in Geomechanics of earth slopes.International Journal for1979,3:325-354
    [186]Fell R.Landslide risk assessment and acceptable risk.Canadian Geotechnical Journal,1994,(31):261-272
    [187]Whitman,R.V Evaluating Calculated Risk in Geotechnical Engineering.Journal of Geotechnical Engineering,ASCE,1984,110(2):145-188
    [188]谢全敏,滑坡灾害风险评价及其治理决策方法研究[D].武汉理工大学博士论文 2004
    [189]李嫒,策颖,杨旭东,孟晖,等.542个县市地质灾害调查综合研究报告[R].北京:中国地质环境监测院,2004
    [190]李嫒,陈君,杨旭东,等.542个县市地质灾害调查综合研究图集[R].北京:中国地质环境监测院,2004
    [191]李嫒,孟晖,等.中国地质灾害类型及其特征.一基于全国县市地质灾害调查成果分析[J].中国地质灾害与防治学报,2004,15(2):29-34
    [192]刘传正,唐灿,等.全国地质灾害气象预报预警实施方案[R].北京:中国地质环境监测院,2003
    [193]刘鑫等.陕西陇县李家下滑坡风险评价[J]地质通报2008,27(6):895-903
    [194]S.GEvans,D.M.Cruden,PTBobrowsky.加拿大滑坡风险评估近期研究成果回顾.《滑坡风险管理》.中国地质调查局水环部编译国际滑坡风险管理会议(温哥华、加拿大2005.5.31-6.3)论文集选译

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700