基于多元统计分析的遥感影像变化检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于遥感影像的变化检测就是从不同时间获取的遥感影像中,定量地分析和确定地表变化的特征和过程的技术。利用不同时相获取的卫星遥感影像进行变化检测,是开展资源调查、环境监测、基础地理数据库更新等对地观测技术应用中的关键技术,具有迫切的科学应用需求和广泛的应用领域。例如,如何从遥感影像中提取地表覆盖变化信息,近年来已成为遥感应用领域的重要研究课题,其中基于多时相、多通道(多波段或多极化等)的遥感影像的变化检测更是一大研究热点。本论文主要围绕着如何从多时相的中分辨率星载多光谱遥感影像以及合成孔径雷达影像中快速有效地自动提取变化信息来展开研究,重点解决不同时相之间的差异影像的构造和变化区域的提取这两方面的关键技术。
     论文首先研究了从多时相多通道遥感影像构造差异影像的问题。多通道遥感影像由于通道之间相关性的影响,相对于单通道影像的变化检测更为困难,需要有效地集中分布在各个通道上的变化信息,构造出不同时相之间的差异影像,以便于变化信息的分析解译。本文针对多通道变化信息集中的难点,从多元统计分析的角度出发,在以下三个方面进行了深入研究:
     (1)针对通道之间相关性的影响难以消除的问题,引入多元统计分析中的典型相关分析方法,将两个时相的多通道遥感影像视作两组多元随机变量,采用Multivariate Alteration Detection(MAD)变换,对多个波谱通道上的所有差异信息或变化信息进行重组,分配到一组互不相关的结果变量中,最大限度地消除通道间相关性对变化检测的不利影响,初步解决了差异影像构造的问题。
     (2)针对MAD方法难以完全有效地集中变化信息的问题,提出以信噪比作为衡量变化信息分布的测度,引入最小噪声比率变换MNF,实现MAD结果中包含的变化信息与噪声最大限度的分离,解决了有效集中变化信息和构造差异影像的问题。
     (3)探讨了利用来自不同传感器的遥感影像,进行直接比较像元灰度特征的变化检测的可行性。提出了采用MNF/MAD方法来从多源多通道遥感影像构造差异影像的方案,在Landsat7 ETM+与SPOT5 HRG影像上进行的变化检测实验结果证实了该方案的有效性。
     多个试验区的实验结果表明,基于典型相关分析的MNF/MAD多元变化检测方法,能够有效地从多时相的多通道遥感影像中分离出变化信息,并集中到差异影像的少数分量中,这些分量通常能够表现出较为明晰的物理意义。同时,这种方法具有对量测尺度不一致、量测设备增益变化、线性辐射畸变等不敏感的优点,因而对辐射特性归一化的要求很低,降低了数据预处理的难度。
     然后,论文研究了从变化检测得到的差异影像中提取变化区域的问题。变化
Change detection in remotely sensed imagery is defined as the procedure of quantitatively analyzing and identifying changes occurred on the earth's surface from remotely sensed imageries acquired at different times. As a key element for many applications of earth observation such as resource inventory, environment monitoring, update of fundamental geographical database, etc., change detection technique is of urgent demands and has great potential in scientific applications. Currently change detection, especially change detection based on multi-temporal multi-channel (multispectral, multi-polarization, etc.) remotely sensed imageries has become a hot topic in research field related to remote sensing applications.Significant efforts have been made in the development of change detection techniques, and quite a lot of methods have been devised. However, there are still some problems that could not be solved properly by traditional methods in change detection, such as concentration of change information on all channels to produce temporal difference images, extraction of changed areas, identification of change types, etc. Under such circumstances, our investigations are carried out around the issues related to how to automatically extract change information rapidly and effectively from multi-temporal spaceborne remotely sensed multispectral imageries with mid-resolution, as well as Synthetic Aperture Radar (SAR) imageries in this dissertation. Most efforts are focused on two key problems, including production of temporal difference images and extraction of changed areas.The problem of producing difference images from multi-temporal multi-channel remotely sensed imageries is investigated in the first part of this dissertation. Compared with change detection based on single-channel imageries, it is more difficult to perform change detection on multi-channel imageries due to impact of inter-channel correlations. And it is necessary to effectively concentrate change information from all channels to produce a temporal difference image to facilitate detection and analysis of changes. From the point of view of multivariate statistical analysis, thorough researches are conducted in following aspects:(1) To eliminate impact of inter-channel correlations, canonical correlation analysis (CCA) and the so-called multivariate alteration detection (MAD) method based on CCA are introduced into bi-temporal multi-channel change detection. According to MAD method, two multi-channel imageries covering the same geographic location and acquired at different times are taken as two sets of random variables, then MAD transformation is performed on these random variable sets to produce a set of result variates that are uncorrelated with each other. In this way correlations between channels can theoretically be removed as much as possible, so that the actual changes in all channels can be simultaneously detected in the resultant difference image.(2) To improve effectiveness of the MAD result, it is proposed to use signal-to-noise ratio (SNR) instead of variance as a measurement for change information distribution, and another multivariate statistical transformation called minimum noise fraction (MNF) is introduced as a post-processing step for MAD transformation. In this way, change information can be separated from noise to the greatest extent, so that the technical problem of effectively concentrating change information and producing difference image could be solved properly.(3) The feasibility of change detection based on direct comparison usng multi-temporal remotely sensed imageries acquired by multi-sensors is explored. The scheme of employing MNF/MAD to produce difference image is proposed for multi-sensor change detection. An experiment on Landsat7 ETM+ and SPOT5 HRG imageries is carried out to demonstrate the effectiveness of the proposed scheme.
    Experimental results in a few test sites indicate that MNF/MAD method based on CCA is able to extract change information effectively from multi-temporal multi-channel remotely sensed imageries and pool them into a few resultant components of the temporal difference image. Generally these components could manifest some clear physical meanings. A distinguished advantage of the MNF/MAD scheme is its invariant to linear scaling, which means it is insensitive to disagreement in measurement scale, gain settings in measuring devices, and linear radiometric distortions, as a result the requirement on image preprocessing could be reduced.In the second part of this dissertation, the problem of extracting changed areas from difference image produced by change detection is studied. In fact changed area extraction is a typical problem of two-category classification, and can be solved by employing thresholding strategy. However, thresholds are difficult to establish in traditional schemes. In virtue of theories and methods in statistical pattern recognition, thorough researches are conducted in following aspects:(1) A method based on Bayes Rule for Minimum Error is proposed to establish change thresholds in an automatic way. Upon analyzing statistical characteristics of difference image, we firstly assumed that both the pixels of change and that of no change were subject to simple Gaussian density distribution model, and employed the Expectation-Maximization algorithm to estimate distribution parameters and change thresholds, so as to extract changed areas in an automatic way. Then, to account for the difficulty of applying simple Gaussian density distribution model in describing complicated distributions containing multiple classes, the mixed Gaussian density distribution model is used instead to describe distributions of the two pixel classes. And accordingly genetic algorithm is employed to estimate distribution parameters, so as to improve estimation of change thresholds.(2) A deficiency of Bayes scheme is found to be the adoption of pixel independency assumption as well as ignoring contextual information. Contextual Bayes decision method is devised for this problem. In this method, Markov random field (MRF) model is introduced into Bayes decision to depict and utilize contextual information to estimate local prior probability, so as to improve accuracy and reliability of the changed area extraction results.(3) The problem of SAR change detection is studied. The scheme of ratioinp with logarithmic stretching is employed to produce a temporal difference image. According to the approximate Gaussian distribution characteristics of pixels in difference image, a scheme is proposed to apply the contextual Bayes decision method to extract changed areas from the difference image.Experimental results demonstrate that for both multi-temporal optical and SAR imageries acquired by spaceborne sensors, the contextual Bayes decision method could establish change threshold in an automatic and unsupervised way, thus could identify and extract change areas effectively from the difference image.
引文
边肇祺,张学工。模式识别。清华大学出版社,北京,2001。
    陈晋,何春阳,史培军等。基于变化向量分析的土地利用/覆盖变化动态监测(Ⅰ)
    ——变化阈值的确定方法。遥感学报,5(4):259-266,2001a。
    陈晋,何春阳,卓莉。基于变化向量分析(CVA)的土地利用/覆盖变化动态监测
    (Ⅱ)——变化类型的确定方法。遥感学报,5(5):346-352,2001b。
    陈述彭,赵英时。遥感地学分析。测绘出版社,北京,1990。
    陈述彭。遥感地学分析的时空维。遥感学报,1(3):167~171,1997。
    陈志鹏。基于纹理特征的差值变化检测方法研究。中国科学院电子学研究所硕士学位论文,2002。
    范海生,马蔼乃,李京。采用图像差值法提取土地利用变化信息方法——以攀枝花仁和区为例。遥感学报,5(1):75~80,2001。
    方针,张剑清,张祖勋。基于城区航空影像的变化检测。武汉测绘科技大学学报,22(3):240-244,1997。
    符冉迪。遥感图像变化检测和分类识别技术的研究。中国人民解放军信息工程大学硕士学位论文,2001。
    郭华东。机载雷达遥感应用实验研究。中国科学技术出版社,北京,1992。
    胡国定,张润楚。多元数据分析——纯代数处理。南开大学出版社,天津,1990。
    贾永红。多源遥感影像数据融合方法及其应用的研究。武汉大学博士学位论文,2001。
    李德仁。利用遥感影像进行变化检测。武汉大学学报(信息科学版),28(3):7~12,2003。
    李纪人。遥感技术在1998年洪涝灾害监测与评估中的应用。中国航天,11:3-6,1998。
    廖明生,朱攀,龚健雅。基于典型相关分析的多元变化检测。遥感学报,4(3):197~201,2000。
    廖明生。由InSAR复数影像高精度自动生成干涉图。武汉大学博士学位论文,2000。
    廖明生,林晖。雷达干涉测量——原理与信号处理基础。测绘出版社,北京,2003。
    刘勇卫,贺雪鸿译,日本遥感研究会编。遥感精解。测绘出版社,北京,1993。
    刘直芳,张继平。变化检测方法及其在城市中的应用。测绘通报,2002(9):25-27,2002。
    骆剑承,杨艳。基于稳健统计理论的遥感影像特征估计模型初步研究。遥感技术与应用,15(1):45~50,2000。
    梅安新,彭望碌,秦其明等。遥感导论。高等教育出版社,北京,2001。
    盛辉。土地利用变化检测的典型相关分析方法研究。武汉大学硕士学位论文,2002。
    史培军,宫鹏,李晓兵等。土地利用/覆盖变化研究的方法与实践。科学出版社,北京,2000。
    舒宁。微波遥感原理。武汉大学出版社,武汉,2000。
    肖平。土地利用覆盖变化探测技术研究。武汉大学博士学位论文,2001。
    魏成阶,王世新,阎守邕等。1998年全国洪涝灾害遥感监测评估的主要成果——基于网络的洪涝灾害遥感速报系统的应用。自然灾害学报,9(2):16-25,2000。
    文贡坚。从新卫星遥感影像中自动发现变化区域。武汉大学博士后出站工作报告,2003。
    延昊。中国土地覆盖变化与环境影响遥感研究。中国科学院遥感应用研究所博士学位论文,2002。
    张继贤。论土地利用与覆盖变化遥感信息提取技术框架。中国土地科学,17(4):31-36,2003。
    张路,廖明生,盛辉。基于正交变换的多通道遥感影像变化检测。武汉大学学报(信息科学版),29(5):456~460,2004。
    郑宏。遗传算法在影像处理与分析中的应用。测绘出版社,北京,2002。
    郑肇葆。图像分析的马尔科夫随机场方法。武汉测绘科技大学出版社,武汉,2000。
    赵小杰。合成孔径雷达图象变化检测方法研究。中国科学院电子学研究所硕士学位论文,2001。
    赵英时,陈冬梅等。遥感应用分析原理与方法。科学出版社,北京,2003。
    周成虎,骆剑承,杨晓梅等。遥感影像地学理解与分析。科学出版社,北京,1999。
    周明,孙树栋。遗传算法原理及应用。国防工业出版社,北京,1999。
    朱攀。NOAAAVHRR数据的多元变化检测。武汉测绘科技大学硕士学位论文,1999。
    Adams, J. B., D. E. Sabol, V. Kapos, et al. Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52(2): 137-154, 1995.
    Anderson, T. W. An Introduction to Multivariate Statistical Analysis, Second Edition. John Wiley, New York, 1984.
    Andra, S., O. A1-Kofahi, R. J. Radke, et al. Image Change Detection Algorithms: A Systematic Survey. Technical Report, Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, New York, USA, 2003.
    Banner, A. V., T. Lynham. Multitemporal analysis of Landsat data for forest cut over mapping-a trial of two procedures. Proceedings of the 7th Canadian Symposium on Remote Sensing, Winnipeg (Canadian Remote Sensing Society), 233-240, 1981.
    Besag, J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36: 192~236,1974.
    Besag, J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, 48(3): 259~302,1986.
    Bruzzone, L., S.B.Serpico. An iterative technique for the detection of land-cover transitions in multitemporal remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 858~867, 1997.
    Bruzzone, L. An approach to feature selection and classification of remote-sensing images based on the Bayes rule for minimum cost. IEEE Transactions on Geoscience and Remote Sensing, 38(1): 429~438, 2000a.
    Bruzzone, L., D.F.Prieto. Automatic analysis of the difference image for unsupervised change detection. IEEE Transactions on Geoscience and Remote Sensing, 38(3): 1171~1182,2000b.
    Bruzzone, L., D.F.Prieto. A minimum-cost thresholding technique for unsupervised change detection. International Journal of Remote Sensing, 21(18): 3539~3544,2000c.
    Bruzzone, L., D.F.Prieto. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 11(4): 452~466, 2002.
    Bruzzone, L. Introduction to the analysis of multitemporal remote-sensing images, Lecture at Ph.D School on Temporal Image Analysis, Copenhagen, May 19-20, 2003.
    Canny, J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6): 679~698, 1986.
    Cohen, W.B., M.Fiorella. Comparison of methods for detecting conifer forest change with Thematic Mapper imagery. In: Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, Chelsea, MI, 1998.
    Collins, J.B., C.E.Woodcock. An assessment of several linear change detection techniques for mapping forest mortality using multitemporal Landsat TM data. Remote Sensing of Environment, 56(1): 66~77,1996.
    Conradsen, K., B.K.Nielsen, A.A.Nielsen. Noise removal in multichannel image data by a parametric maximum noise fractions estimator. In Proceedings of the 24th International Symposium on Remote Sensing of Environment, Environmental Research Institute of Michigan, 403~416, Rio de Janeiro, Brazil, 1991.
    Cooley, W.W., P.R.Lohnes. Multivariate Data Analysis. John Wiley and Sons, New York, 1971.
    Coppin, P., E.Lambin, I.Jonckheere, et al. Digital change detection methods in natural ecosystem monitoring: A review. In Proceedings of the First International Workshop on Multitemp 2001, World Scientific Publishing, 3~36, 2001.
    Coppin, P.R., M.E.Bauer. Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features. IEEE Transactions on Geoscience and Remote Sensing, 32(4): 918~927, 1994.
    Corner, B.R., R.M.Narayanan, S.E.Reichenbach. Noise estimation in remote sensing imagery using data masking. International Journal of Remote Sensing, 24(4): 689~702,2003.
    Dai, Xiaolong, S.Khorram. The effects of image misregistration on the accuracy of remotely sensed change detection. IEEE Transactions on Geoscience and Remote Sensing, 36(5): 1566~1577,1998.
    Deer, P.J. Digital change detection techniques: civilian and military applications. International Symposium on Spectral Sensing Research 1995 Report (Greenbelt, MD: Goddard Space Flight Center), http://ltpwww.gsfc.nasa.gov/ISSSR-95/digitalc, htm, 1995.
    Dempster, A.P., N.M.Laird, D.B.Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39: 1~38, 1977.
    Dierking, W., H.Skriver. Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 40(3): 618~636, 2002.
    Dubes, R., A.Jain. Random field models in image analysis. Journal of Applied Statistics, 16(2): 131~164,1989.
    Eastman, J.R., M.Fulk. Long Sequence time series evaluation using standardized principal components. Photogrammetric Engineering and Remote Sensing, 59(6): 991~996,1993.
    Eklundt, L., A.Singh. A comparative analysis of standardized and unstandardized principal components analysis in remote sensing. International Journal of Remote Sensing, 14(7): 1359~1370, 1993.
    Elvidge, C.D., D.Yuan, D.W.Ridgeway, et al. Relative radiometric normalization of Landsat Multispectral Scanner(MSS) data using automatic scattergram-controll ed regression. Photogrammetric Engineering and Remote Sensing, 61(10): 1255~1260,1995.
    Elvidge, C.D., T.Miura, W.T.Jansen, et al. Monitoring trends in wetland vegetation using a Landsat MSS time series. In: Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, Chelsea, MI, 1998.
    Ferretti, A., C.Prati, F.Rocca. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8~20, 2001.
    Fily, M., D.Rothrock. Sea-ice tracking by nested correlation. IEEE Transactions on Geoscience and Remote Sensing, GE-25: 570~580, 1987.
    Fung, T. Mapping land cover changes in the Inner Deep Bay area of Hong Kong. Hong Kong and the Pearl River Delta As Seen from Space Images. Geocarto International Centre, Hong Kong, 83~92, 1997.
    Fung, T., E.LeDrew. Application of principal components analysis to change detection. Photogrammetric Engineering and Remote Sensing, 53(12): 1649~1658, 1987.
    Fung, T., E.LeDrew. The determination of optimal threshold levels for change detection using various accuracy indices. Photogrammetric Engineering and Remote Sensing, 54(10): 1449~1454, 1988.
    Fung, T. An assessment of TM imagery for land-cover change detection. IEEE Transactions on Geoscience and Remote Sensing, 28(4): 681~692,1990.
    Geman, S., D.Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(6): 721~741,1984.
    Gillespie, A.R., M.O.Smith, J.B.Adams, et al. Interpretation of residual images: A spectral mixture analysis of AVIRIS images, Owen Valley, California. Proceedings 2nd Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, R.Green, Ed., Pasadena, CA, June 4-5. JPL Publication No. 90-54, 243~270,1990.
    Gong, P. Change detection using principal component analysis and fuzzy set theory. Canadian Journal of Remote sensing, 19(1): 22~29, 1993.
    Green, A.A., M.Berman, P.Switzer and M.D.Craig. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1): 65~74, 1988.
    Grey, W.M.F., A.J.Luckman, D.Holland. Mapping urban change in the UK using satellite radar interferometry. Remote Sensing of Environment, 87(1): 16~22, 2003.
    Hazel, G.G. Object-level change detection in spectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 39(3): 553~561, 2001.
    Hess, I.L., J.M.Melack, D.S.Simonett. Radar detection of flooding beneath the forest canopy: A review. International Journal of Remote sensing, 11(7): 1313~1325, 1990.
    Holland, J.H. Adaptation in Nature and Artificial Systems. MIT Press, 1992.
    Hotelling, H. Relations between two sets of variates. Biometrika, XXVIII: 321~377, 1936.
    Ingram, K., E.Knapp, J.W.Robinson. Change detection technique development for improved urbanized area delineation. Technique Memorandum CSC/TM-81/6087, Computer Sciences Corporation, Silver Springs, Maryland, USA, 1981.
    Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd Edition. Prentice Hall Press, Upper Saddel River, NJ, 1996.
    Johnson, R.D., E.S.Kasischke. Change vector analysis: A technique for the multispectral monitoring of land cover and condition. International Journal of Remote Sensing, 19(3): 411~426,1998.
    Kasischke, E.S., J.M.Melack, M.C.Dobson. The use of imaging radar for ecological applications—A review. Remote Sensing of Environment, 59(1): 141~156,1997.
    Kimura, H., Y.Yamaguchi. Detection of landslide areas using satellite radar interferometry. Photogrammetric Engineering and Remote Sensing, 66(3): 337~344, 2000.
    Kirkpatrick, S., C.D.Gelatt, M.P.Vecchi. Optimization by simulated annealing. Science, 220(4598): 671~680, 1983.
    Kopparapu, S.K., U.B.Desai. Bayesian Approach to Image Interpretation. Kluwer Academic Publishers, New York, 2002.
    Lambin, E.F., A.H.Strahler. Change vector analysis in multispectral space: A tool to detect and categorize land cover change processes using high temporal resolution satellite data. Remote Sensing of Environment, 48(2): 231~244, 1994.
    Landgrebe, D. Information extraction principles and methods for multispectral and hyperspectral image data. In Information Processing for Remote Sensing. World Scientific Publishing, New Jersey, 2000.
    Le Toan, T., F.Ribbes, L.F.Wang, et al. Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results. IEEE Transactions on Geoscience and Remote Sensing, 35(1): 41~56, 1997.
    Lee, J.B., A.S.Woodyatt, M.Berman. Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform. IEEE Transactions on Geoscience and Remote Sensing, 28(3): 295~304, 1990.
    Li, Jiacun, Shaomeng Qian, Xue Chen. Object-oriented method of land cover change detection approach using high spatial resolution remote sensing data. In Proceeding of IGARSS'03, V: 3005~3007,2003.
    Li, Jiang, R.M.Narayanan. A shape-based approach to change detection of lakes using time series remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2466~2477, 2003.
    Li, X., A.GO.Yeh. Principal component analysis of stacked multi-temporal images for the monitoring of rapid urban expansion in the Pearl River Delta. International Journal of Remote Sensing, 19(8): 1501~1518, 1998.
    Lillesand, T.M., R.W.Keifer. Remote Sensing and Image Interpretation, 2nd Edition. John Wiley&Sons, 1979.
    Liu, J.G., A.Black, H.Lee, et al. Land surface change detection in a desert area in Algeria using multi-temporal ERS SAR coherence images. International Journal of Remote Sensing, 22(13): 2463~2477, 2001.
    Liu, Y.B., S.Nishiyama, T.Yano. Analysis of four change detection algorithms in bi-temporal space within a case study. International Journal of Remote Sensing, 25(11): 2121~2139, 2004.
    Long, N.T., B.D.Trong. Flood monitoring of Mekong river delta, Vietnam using ERS SAR data. Proceedings of the 22nd Asian Conference on Remote Sensing, 2001.
    Lu, D., P.Mausel, E.Brondizio, E.Moran. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365~2407, 2004.
    Lunetta, R.S., C.D.Elvidge, Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, Chelsea, MI, 1998.
    Lyon, J.G., D.Yuan, R.S.Lunetta, et al. A change detection experiment using vegetation index. Photogrammetric Engineering and Remote Sensing, 64(2): 143~150, 1998.
    Macleod, R. D. A quantitative comparison of change-detection algorithm for monitoring Eelgrss from remote sensed data. Photogrammetric Engineering and Remote Sensing, 64(3): 207-216, 1998.
    Malila, W. A. Change vector analysis: an approach for detecting forest changes with Landsat. Proceedings, LARS Machine Processing of Remotely Sensed Data Symposium, W. Lafayette, in: Laboratory for the Application of Remote Sensing, pp. 326~336.
    Marroquin, J. L., S. Mitter, T. Poggio. Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association, 82(397): 76-89, 1987.
    Marroquin, J. L., F. A. Velasco, M. Rivera, et al. Gauss-Markov measure field models for low-level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(4): 337-348, 2001.
    Mas, J. F. Monitoring land-cover changes: A comparison of change detection techniques. International Journal of Remote Sensing, 20(1): 139-152, 1999.
    Masry, S. E., B. G. Crawley, W. H. Hilborn. Difference detection. Photogrammetric Engineering and Remote Sensing, 41(9): 1145-1148, 1975.
    Massonnet, D., M. Rossi, Carmona, et al. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364: 138-142, 1993.
    Menzel, D. H. Survey of the Universe. Prentice Hall Press, Englewood Cliffs, NJ, 1970.
    Metropolis, N., A. Rosenbluth, M. Rosenbluth et al. Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6): 1087-1092, 1953.
    Michalek, J. L., T. W. Wagner, J. J. Luczkovich, et al. Multispectral change vector analysis for monitoring coastal marine environments. Photogrammetric Engineering and Remote Sensing, 59(3): 381-384, 1993.
    Miller, L. D., K. Nualchawee, C. Tom. Analysis of dynamics of shifting cultivation in the tropic forest of northern Thailand using landscape modeling and classification of Landsat imagery. NASA Goddard Space Flight Center, Technical Memorandum No. 79545, Grenbelt, MD, 1978.
    Moon, T. K. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6): 47-60, 1996.
    Mouat, D. A., G. G. Mahin, J. Lancaster. Remote sensing techniques in the analysis of change detection. Geocarto International, 8(2): 39~50, 1993.
    Muchoney, D. M., B. N. Haack. Change detection for monitoring forest defoliation. Photogrammetric Engineering and Remote Sensing, 60(10): 1243-1251, 1994.
    Nelson, R. F. Detecting forest canopy change using Landsat. NASA Goddard Space Flight Center, Technical Memorandum No. 83918, Grenbelt, MD, 1982.
    Nelson, R. F. Detecting forest canopy change due to insect activity using Landsat MSS. Photogrammetric Engineering and Remote Sensing, 49: 1303~1314, 1983.
    Nico, G., M. Pappalepore, C. Pasquariello, et al. Comparison of SAR amplitude vs. coherence flood detection methods—a GIS application. International Journal of Remote Sensing, 21(8): 1619-1631, 2000.
    Nielsen, A.A., K.Conradsen, J.J.Simpson. Multivariate Alteration Detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies. Remote Sensing of Environment, 64(1): 1~19,1998.
    Oliver, C.J., S.Quegan. Understanding Synthetic Aperture Radar Images. Artech House Inc. Norwood, MA, 1998.
    Olsen, S.I. Estimation of noise in images: an evaluation. Graphical Models and Image Processing, 55(4): 319~323,1993.
    Peltzer, G, P.Rosen. Surface displacement of the 17 May 1993 Eureka Vally, California earthquake observed by SAR interferometry. Science, 268: 1333~1336, 1995.
    Pierce, L.E., K.M.Bergen, M.C.Dobson, F.T.Ulaby. Multitemporal land-cover classification using SIR-C/X-SAR imagery. Remote Sensing of Environment, 64(1): 20~33,1998.
    Piwowar, J.M., E.F.LeDrew. Hypertemporal analysis of remotely sensed sea ice data for climate change studies. Progress in Physical Geography, 19(2): 216~242, 1995.
    Quegan, S., T.Le Toan, J.J.Yu, et al. Multitemporal ERS SAR analysis applied to forest mapping. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 741~753, 2000.
    Rabus, B., M. Eineder, A. Roth, R. Bamler. The shuttle radar topography mission — a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry & Remote Sensing, 57(2): 241~262, 2003.
    Rank, K., M.Lendi, R.Unbehauen. Estimation of image noise variance. IEE Proceedings on Vision, Image and Signal Processing, 146(2): 80~84, 1999.
    Refice, A., E.Bovenga, J.Wasowski. Use of InSAR data for landslide monitoring: a case study from southern Italy. Proceedings of IGARSS '2000, Honolulu, Hawaii, 2000.
    Richards, J.A., X.P.Jia. Remote Sensing Image Analysis - An Introduction. Springer-Verlag, Berlin, 1999.
    Ridd, M.K., Jiajun Liu. A comparison of four algorithms for change detection in an urban environment. Remote Sensing of Environment, 65(2): 95~100,1998.
    Rignot, E.J.M., J.J.Van Zyl. Change detection techniques for ERS-1 SAR data. IEEE Transactions on Geoscience and Remote Sensing, 31(4): 896~906, 1993.
    Roberts, D.A., GT.Batista, Jorge L.GPereira, et al. Change identification using multitemporal spectra mixture analysis: Application in Eastern Amazonia. In: Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, Chelsea, MI, 1998.
    Rogan, J., J.Franklin, D.A.Roberts. A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80(1): 143~156, 2002.
    Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing. Academic Press, San Diego, CA, 1997.
    Shannon, C.E. A mathematical theory of communication. The Bell System Technical Journal, 27: 379~423 and 623~656,1948.
    Singh, A. Change detection in the tropical forest environment of North-eastern India using Landsat. Remote Sensing and Tropical Land Management. John Wiley and Sons Ltd., New York, 237~254,1986.
    Singh, A. Digital change detection techniques using remotely sensed data. International Journal of Remote Sensing, 10(6): 989~1003, 1989.
    Slater, P.N., S.F.Biggar, R.GHolm, et al. Reflectance- and radiance-based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22(1): 11~37,1987.
    Sohl, T.L. Change analysis in the United Arab Emirates: An investigation of techniques. Photogrammetric Engineering and Remote Sensing, 65(6): 475~484, 1999.
    Stabel, E., P.Fischer. Satellite radar interferometric products for the urban application domain. Advances in Environmental Research, 5:425~433,2001.
    Stofan, E.R., D.L.Evans, C.Schmullius, et al. Overview of results of spaceborne imaging radar-C,X-band synthetic aperture radar (SIR-C,X-SAR). IEEE Transactions on Geoscience and Remote Sensing, 33(4): 817~828,1995.
    Strozzi, T., P.B.G.Dammert, U.Wegmuller, et al. Landuse mapping with ERS SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(2): 766~775,2000.
    Suga, Y., S.Takeuchi, Y.Oguro, et al. Application of ERS-2/SAR data for the 1999 Taiwan earthquake. Advances in Space Research, 28(1): 155~163,2001.
    Sunar, F. An anlysis of changes in a multi-date data set: a case study in the Ikitelli area, Istanbul, Turkey. International Journal of Remote Sensing, 19(2): 225~235, 1998.
    Teillet, P.M., P.N.Slater, Y.Ding, et al. Three methods for the absolute calibration of the NOAA AVHRR sensors in-flight. Remote Sensing of Environment, 31(2): 105~120,1990.
    Timm, N.H. Applied Multivariate Analysis. Springer, New York, 2002.
    Todd, W.J. Urban and regional land use change detected by using Landsat data. U.S. Geological Survey Research Journal, 5: 529~534,1977.
    Tomiyama, N., K.Koike, M.Omura. Detection of topographic changes associated with volcanic activities of Mt. Hossho using D-InSAR. Advances in Space Research, 33(2): 279~283,2004.
    Townshend, J.R.G., C.O.Justice, C.Gurney. The impact of misregistration on change detection. IEEE Transactions on Geoscience and Remote Sensing, 30(5): 1054~1060, 1992.
    Tso, B., P.M.Muther. Classification Methods for Remotely Sensed Data. Taylor&Francis, New York, 2001.
    Turtle, M., J.Ehrismann, B.Hulshof. Detection and monitoring of surface subsidence using synthetic aperture radar interferometry in the Yibal Oilfield, Sultanate of Oma. http://www.atlsci.com/librarv/detection monitoring surface subsidence us ing. SAR interferometry in Yibal oilfield.htm, 2001.
    Ulaby, F., R. K.Moore, A. K. Fung. Microwave Remote Sensing. Active and Passive. Artech House, Norwood, MA, 1981.
    Ulaby, F., B.Brisco, C.Dobson. Improved spatial mapping of rainfall events with spacebome SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, GE-21: 118~8121, 1983.
    Villasenor, J. D., D. R. Fatland, L. D. Hinzman. Change detection on Alaska's north slope using repeat-pass ERS-1 SAR images. IEEE Transactions on Geoscience and Remote Sensing, 31 (1): 227~236, 1993.
    Way, J., E. Rignot, K. McDonald. Monitoring temporal change in Alaskan forests using AIRSAR data. Proceedings of IGARSS'1992, Houston, Texas, 1992.
    Weismiller, R. A., S. J. Kristoof, D. K. Scholz, et al. Change detection on coastal zone environment. Photogrammetric Engineering and Remote Sensing, 43 1977.
    Wickel, A. J., T. J. Jackson, E. F. Wood. Multitemporal monitoring of soil moisture with RADARSAT SAR during the 1997 Southern Great Plains hydrology experiment. International Journal of Remote Sensing, 22(8): 1571~1583, 2001.
    Winkler, G. Image Analysis, Random Fields and Dynamic Monte Carlo Method. Springer-Verlag, Berlin, 1995.
    Woodcock, C. E., A. H. Strahler. The factor of scale in remote sensing. Remote Sensing of Environment, 21 (3): 311~332, 1987.
    Yuan, D., C. D. Elvidge. NALC land cover change detection pilot study: Washington D. C. area experiments. Remote Sensing of Environment, 66(2): 166~178, 1998.
    Zebker, H. A., P. A. Rosen, R. M. Goldstein, et al. On the derivation of coseismic displacement fields using differential radar interferometry. Journal of Geophysical Research-Solid Earth, 99(B10): 19617~19634, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700