Med19在星形细胞瘤中的表达及对其恶性生物学行为调控的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2010年,美国新增22,020例颅脑肿瘤病例,13,140例颅脑肿瘤患者死亡(源自www.cancer.org,Cancer Facts & Figures 2010)。脑星形细胞瘤是颅内最常见的起源于神经上皮的原发肿瘤之,约占成人颅内肿瘤的73%~86%,其中恶性星形细胞瘤约占90%,以间变型星形细胞瘤和胶质母细胞瘤最为多见。恶性星形细胞瘤预后差,病死率高,即使手术全部切除后其复发率仍高达60%以上,5年生存率极低。近5年来,随着基础和临床研究的深入探索,发现:胶质母细胞瘤患者接受手术、放疗和化疗后,平均生存期可由10个月增加至14个月。但是,由于星形细胞瘤具有血供丰富,呈浸润性生长的生物学特点,并且与周围脑组织无明显分界,易于复发,则其疗效均不甚理想。
     既往研究表明:星形细胞瘤的恶性进展及其侵袭复发是个涉及多基因、多阶段、多步骤的复杂过程,是受多种基因、蛋白以及细胞因子等共同调控的结果。参与星形细胞瘤发生、发展过程中的基因,在其他肿瘤的发生发展过程中几乎均发挥作用,如:上皮生长因子、内皮生长因子、转化生长因子、肿瘤原癌基因和抑癌基因等;此外星形细胞瘤侵袭复发的过程可能涉及到肿瘤细胞粘附、基质降解、迁移、细胞增殖等诸多环节,但其具体机制仍不清楚。近年来,基于对星形细胞瘤分子机制的逐步了解,靶向性分子疗法为星形细胞瘤治疗提供了新思路,寻找星形细胞瘤发生发展过程中的重要通路和靶标分子以及安全高效的靶向性载体系统显得尤为重要,但尚未将任何种靶标分子用于星形细胞瘤的治疗具有明确疗效。因此寻找调控星形细胞瘤细胞恶性生物学行为的分子靶标,明确其在星形细胞瘤发病过程中的病理机制,已成为目前星形细胞瘤治疗研究领域的的热点之。
     Med19基因,与RNA聚合酶Ⅱ相互作用介导子基因,是2002年应用差异显示PCR方法从两种不同高低转移潜能的人肺癌细胞系中克隆到的人类新基因,目前尚无其功能学的报道。既往研究显示,Med19基因在多种正常组织以及肿瘤中有所表达,推测其可能与细胞的增殖、凋亡以及细胞分化密切相关。而在肺癌组织中发现,Med19基因的表达与肿瘤的恶性程度密切相关。在乳腺癌组织中发现,Med19蛋白的异常高表达,且运用慢病毒感染干扰Med19基因表达水平后,乳腺癌细胞的增殖能力和细胞周期受到显著影响;Medl9基因沉默后胃癌细胞的增殖能力和细胞周期均受到显著影响,因此推测其可能参与胃癌的发生发展以及促进恶性肿瘤细胞的增殖和浸润性生长。而在星形细胞瘤中Med19基因对肿瘤细胞的增殖,凋亡,侵袭以及血管生成等方面的研究在国内外,尚未见诸报道。因此,探讨MED19参与脑星形细胞瘤发生发展以及恶变的分子病理机制,有助于明确星形细胞瘤的恶性生物学行为及机理,有望为星形细胞瘤的临床治疗提供新的分子靶标。
     本研究拟通过观察Med19在不同病理级别脑星形细胞瘤以及星形细胞瘤细胞株中的确切表达情况,并通过研究Med19在星形细胞瘤细胞株中的异常表达,研究Med19在星形细胞瘤发生发展过程中的功能角色。实验共分为四个部分:第部分,观察Med19在脑星形细胞瘤组织中的表达水平以及与星形细胞瘤病理级别的相关性,探讨Med19的表达水平与星形细胞瘤患者生存周期之间的关系;第二部分,观察Med19在U251、U373和U87脑星形细胞瘤细胞株中的表达情况;第三部分,靶向Med19的RNA干扰和过表达慢病毒载体的构建和鉴定;第四部分,通过基因操作的方法上调或抑制Med19基因在星形细胞瘤细胞内表达,观察其对U251星形细胞瘤细胞株生长、增殖、凋亡、侵袭等细胞表型以及裸鼠皮下成瘤的体内外试验的影响。
     第一部分Med19在不同级别脑星形细胞瘤组织中的表达和临床病理相关性分析的实验研究
     目的:研究Med19在脑星形细胞瘤组织中表达水平及其与星形细胞瘤病理WHO级别的相关性,Med19表达水平同星形细胞瘤患者生存时间的关系。
     方法:首先,运用实时定量RT-PCR和Western blot杂交分别检测星形细胞瘤组织中Med19的mRNA及蛋白的表达水平并分析Med19表达水平同星形细胞瘤组织级别的相关性;随后采用免疫组化染色法检测5例正常脑组织和79例不同级别星形细胞瘤组织中Med19的表达情况;最后,临床随访星形细胞瘤患者,运用生存分析检测Med19表达水平同患者生存时间的相关性。
     结果:(1)应用实时定量RT-PCR检测Med19 mRNA在21例不同级别脑星形胶质细胞瘤和5例正常脑组织中的表达显示:Med19 mRNA表达水平在星形细胞瘤组织中明显上调,与正常脑组织相比差别显著(P<0.01);并且,Med19 mRNA水平在高级别星形细胞瘤组织中的表达水平明显高于低级别星形细胞瘤,二者相比差异显著(P<0.01)。(2)运用Western blot技术测定Med19蛋白在上述星形细胞瘤组织的表达水平,结果显示:Med19蛋白在星形胶质细胞瘤组织中表达明显上调,与正常脑组织相比差别显著(P<0.01)。Med19在III-IV级(高级别)星形细胞瘤中高表达,而在I-II级(低级别)星形细胞瘤中表达量较低,且有显著差异(P<0.001)。(3)采用免疫组化法检测了5例正常脑组织及79例人脑星形细胞瘤石蜡标本中Med19蛋白的表达情况。结果显示,正常脑星形胶质细胞中Med19蛋白染色为阴性,绝大部分星形细胞瘤标本中可见Med19蛋白的阳性表达。星形细胞瘤的临床病理级别与Med19的表达强度与肿瘤恶性程度呈正相关关系(P<0.01);而性别和年龄则无统计学上的差异(P>0.05)。生存分析表明,Med19免疫组化染色表达水平同患者生存时间呈负相关(p<0.05)。
     结论:Med19在脑星形细胞瘤中呈阳性表达,其表达水平同脑星形细胞瘤的级别呈明显正相关,同星形细胞瘤患者的生存时间呈负相关。
     第二部分Med19在脑星形细胞瘤细胞株中的表达
     目的:研究Med19在胶质母细胞瘤(GBM)细胞株U87、U373和U251中的表达情况。
     方法:应用细胞免疫荧光法检测Med19在胶质母细胞瘤细胞株U87、U373和U251中的定位;运用实时定量RT-PCR法和Western blot技术检测Med19在胶质母细胞瘤细胞株U87、U373和U251中的mRNA和蛋白表达情况。
     结果: (1)细胞免疫荧光结果提示:Med19在胶质母细胞瘤细胞株U87、U373和U251中的定位于细胞浆;(2)实时定量RT-PCR结果提示:Med19 mRNA在胶质母细胞瘤细胞株U87、U373和U251中均表达;(3)Western blot结果表明:Med19蛋白在胶质母细胞瘤细胞株U87、U373和U251均表达。
     结论:Med19在胶质母细胞瘤细胞株中均有表达。
     第三部分:靶向Med19的RNA干扰和过表达慢病毒载体的构建和鉴定
     目的:Med19在星形细胞瘤组织和细胞中均有表达,其表达量与星形细胞瘤的病理级别呈正相关,提示Med19可能与星形细胞瘤的恶性生物学行为密切相关。本部分拟构建靶向Med19的慢病毒RNA干扰和过表达载体,为进步研究Med19的生物学功能提供载体工具。
     方法:1)设计siRNA靶点,利用外源筛靶实验挑选高效干扰序列,与慢病毒载体连接,并利用荧光显微镜,实时定量RT-PCR、Western blot在U373、U251和U87细胞中验证RNA干扰效果。2)设计Med19过表达质粒并经过测序后,连接慢病毒载体,并利用荧光显微镜、实时定量RT-PCR、Western blot在U373、U251和U87细胞中验证过表达效果。
     结果:设计的siRNA干扰序列,其中两条干扰效率较高,连接入慢病毒载体后,转染效率超过75%。在U373和U251细胞中,RNAi能够在mRNA水平和蛋白水平显著降低内源性Med19的表达(p<0.01);设计的过表达质粒经过测序证实与原基因序列完全致,慢病毒过表达载体能够在使U373和U251细胞中内源性Med19的mRNA和(或)蛋白水平表达量增加(p<0.05)。
     结论:本研究成功构建了能够稳定改变内源性Med19表达水平的RNA干扰和过表达慢病毒载体,可为后续细胞功能学实验提供实验依据。
     第四部分:靶向Med19调控胶质母细胞瘤细胞恶性生物学行为的体内外实验研究
     目的:利用前期构建的稳定改变内源性Med19表达水平的RNA干扰和过表达慢病毒载体感染胶质母细胞瘤细胞株U251和U373细胞后,从体外和体内两个角度来研究Med19对胶质母细胞瘤恶性生物学行为的作用。
     方法:内源性Med19表达水平改变后,运用MTT法检测细胞增殖曲线变化、克隆形成实验检测肿瘤细胞克隆形成能力变化、流式细胞仪测肿瘤细胞周期与凋亡比例变化、transwell细胞侵袭试剂盒检测细胞侵袭能力、运用荷瘤裸鼠模型检测Med19表达量改变对皮下种植瘤生长速率的影响。
     结果:(1)Med19表达量降低后,胶质母细胞瘤细胞增殖能力减弱,克隆形成能力减弱;上调胶质母细胞瘤细胞内源性Med19的表达量后,其增殖能力增强,克隆形成能力增强;(2)U251MG细胞中,Med19表达量改变对细胞凋亡和细胞周期可产生影响;(3)在胶质母细胞瘤细胞株中,过表达内源性Med19表达水平后的细胞的侵袭能力明显增加;(4)利用裸鼠皮下成瘤模型,发现干扰Med19的慢病毒可以减缓肿瘤的增长速度,抑制肿瘤的致瘤性。结论:Med19参与调控胶质母细胞瘤细胞的恶性生物学行为。
In 2010 , U.S.A added 22,020 new cases of brain tumor patients , in addition to 13,140 cases of brain tumor patients died ( www.cancer.org, Cancer Facts & Figures 2010). Astrocytomas are the most common primary intracranial tumors, which origin from neuroepithelial. Astrocytomas account for approximately 73%-86% of all adult intracranial tumors, among them, nearly 90% are malignant astrocytomas , which are prevalent of anaplastic astrocytoma and glioblastoma. After completly surgery, the recurrence rate of malignant astrocytomas is nearly 60%, with poor prognosis and low survival time. Nearly 5 years, with the development of basic and clinical research, it found that the average survival time of glioblastoma patients who receiving surgery, radiotherapy and chemotherapy, is increased from 10 months to 14 months. However, astrocytomas with the biological characteristics of a rich blood supply and infiltrating growth are easy to relapse.
     Previous studies showed that the malignant progression, invasion and recurrence of astrocytomas are are a matter of multi-gene, multi-stage and multi-step complex processes, which are the results of a variety of genes, proteins and cytokines. The genes involved in the development of astrocytomas are epithelial growth factor, endothelial growth factor, transforming growth factor, tumor oncogenes and tumor suppressor genes. However, the molecular mechanisms underlying the initiation, maintenance and progression of astrocytomas still remain largely unclarified. Hence, identification and characterization of the regulatory molecules that involved in the astrocytomas tumorigenesis may offer important targets for treatment strategies.
     Med19 gene, interacting with the RNA polymeraseⅡ, was found by means of differential display from two different metastatic potential of human lung carcinoma cell lines(95C and 95D ). In previous reports, Med19 was higher expressed in human breast cancer. Med19 played an important role in the proliferation of human breast cancer cells, which suggested that the lentiviruses delivering shRNA against Med19 could be a promising tool for breast cancer therapy. However, little was known about its role in malignant progression of astrocytomas tumorigenesis. Hence, further investigation of the functional role of Med19 in the carcinogenesis of astrocytomas may offer a better understanding of malignant behavior of astrocytomas. The aim of this study is to clarify the exactly role of Med19 in the oncogenic process of astrocytomas by examining its expression level in astrocytoma tissues of different grades and astrocytoma cell lines and knocking down or overexpressing its expression level in astrocytoma cell lines. This study is consisted of four main parts: the first part is to investigate the expression pattern of Med19 in astrocytomas of different grades and survival rate of the patients analysis; the second part is to study expression level of Med19 in different astrocytoma cell lines, including U87 , U251, U373 glioblastoma cell lines; the third part is to construct lentiviral-Mediated RNAi and overexpression system of Med19 gene. Finally, the effects of siRNA or overexpression targeting Med19 on tumor proliferation, colony formation, cell cycle and apoptosis are evaluated in vitro and in vivo.
     PartⅠExpression of Med19 in Astrocytic Tumors and Survival Analysis of the Patients
     Objective: The purpose of this study is to investigate the expression level of Med19 gene in astrocytomas of different grades and normal brain tissues and to analysis the direct relationship between the expression level of Med19 and patients’life span.
     Methods: The expression levels of Med19 mRNA were evaluated by real-time quantitative PCR, and the protein levels of Med19 were assessed by using immunohistochemistry and western blot. Further, the direct relationship between the expression level of Med19 and patients’life span was evaluated by the product-limit estimate of the survival function (Kaplan-Meier method).
     Results: First of all, quantitative real time PCR analysis demonstrated elevated expression levels of Med19/β-actin in high-grade astrocytomas versus low-grade (p<0.01) or normal brain tissues (p<0.01). And secondly, statistical analysis showed increased Med19 protein levels in high-grade astrocytomas versus low-grade tumors (p<0.001) or normal controls (p<0.01). Finally, Kaplan-Meier survival curves indicated that increased expression of Med19 was significantly associated with poor overall survival of astrocytoma patients (P<0.05).
     Conclusion: In summary, we demonstrate that Med19 plays an important role in the astrocytic tumors. Med19 is positive in brain astrocytomas. The Med19 expression levels of astrocytomas were significantly correlated with pathological grade and were negatively correlated with patients’life span.
     PartⅡExpression of Med19 in Astrocytic Tumors cell lines
     Objective: To investigate the expression pattern of Med19 in glioblastoma cell lines, U87, U251, and U373.
     Methods: Immunofluorescene labelling assay was employed to investigate the celluar location of Med19 protein in U251, U373, and U87 glioblastoma cell lines. The expression level of Med19 mRNA and protein were evaluated by real-time quantitative PCR and Western blotting respectively in U251, U373, and U87 glioblastoma cell lines.
     Results: (1) Med19 protein was predominantly detected in the cytoplasm of astrocytoma cells by immunofluorescene labelling assay. (2) Quantitative real time PCR analysis demonstrated similar expression levels of Med19 /β-actin in U251, U373, and U87 glioblastoma cell lines. (3) Western blot analysis showed Med19 protein expressed in U251, U373, and U87 glioblastoma cell lines.
     Conclusion: Med19 is present in glioblastoma cell lines, and its expression levels were examined at both mRNA and protein levels.
     PartⅢConstruction and identification of lentiviral-mediated RNA interference and overexpression system targeting Med19
     Objective: Med19 was detected in both astrocytoma tissues and glioblastoma cell lines. Its expression in astrocytoma samples was related to astrocytoma tumor grades. In this study, we constructed and identified the lentiviral-mediated RNA interference and overexpression system targeting Med19 for further study of its molecular function on the tumorgenesis of glioblastoma.
     Method: 1) siRNA targeting sequences were constructed, after screening, they were connected with lentivirus, fluorescence microscope, real-time PCR, Western blot were then applied in U373, U251 and U87 cells to confirm the effects of RNA interference 2) Plasmid overexpressing Med19 was synthesed, after sequencing, it was connected with lentivirus, fluorescence microscope, real-time PCR, Western blot were then applied in U373, U251 and U87 cells to confirm the effects of overexpression.
     Results: siRNA targeting sequences were constructed to knock-down Med19 expression, two of them were selected because of high interference efficacy of more than 75%. Med19 expression was significantly inhibited by these two siRNA sequences in U373, U87 and U251 cell lines at both mRNA and protein levels. The overexpression plasmid showed the same sequence with Med19, while Med19 expression was significantly increased by lentiviral-mediated overexpression plasmid in U373, U87 and U251 cell lines at mRNA and (or) protein levels.
     Conclusion: We successfully constructed lentivirus based RNAi and overexpression system, it was highly effective to change the expression of Med19 in glioblastoma cells.
     PartⅣLentiviral-mediated RNAi and overexpression targeting Med19 on oncogenic behavior of glioblastoma cells, in vitro and in vivo.
     Objective: Using lentiviral-mediated RNAi and overexpression targeting Med19, we investigated the role of Med19 on oncogenic behavior of gliomblastoma cells, both in vitro and in vivo.
     Method: MTT, colony formation, flow cytometry and nude mouse xenograft model were applied to assess the oncogenic behavior of gliomblastoma cell lines, U373 and U251. The fouces were on the effect of Med19 RNAi and overexpression on gliomblastoma cells growth both in vitro and in vivo.
     Results: (1)In cell-based experiments, knocking down of Med19 can suppress the proliferation, colony formation of U251 and U87 glioblastoma cell lines, while overexpressing Med19 can enhance the proliferation, colony formation of glioblastoma cell lines. (2) In Med19 RNAi and overexpression U251 glioblastoma cells, the cell cycle and apoptosis change. (3)The capability of invasion in Med19 overexpression glioblastoma cells was enhanced. (4) In a nude mouse xenograft model, Med19 RNAi lentivirus significantly delayed tumor growth and extended mice’life span. Conclusion: Med19 played an important role in tumorigenesis of glioblastoma.
引文
1. Ohgaki, H., Epidemiology of brain tumors. Methods Mol Biol, 2009. 472: p. 323-42.
    2. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109.
    3. Shimizu, H., et al., Cytological interface of diffusely infiltrating astrocytoma and its marginal tissue. Brain Tumor Pathol, 2005. 22(2): p. 59-74.
    4. Bondy, M.L., et al., Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer, 2008. 113(7 Suppl): p. 1953-68.
    5. Barzon, L., et al., Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant gliomas. Cancer Gene Ther, 2006. 13(6): p. 539-54.
    6. van den Bent, M.J., M.E. Hegi, and R. Stupp, Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer, 2006. 42(5): p. 582-8.
    7. Kim, L. and M. Glantz, Chemotherapeutic options for primary brain tumors. Curr Treat Options Oncol, 2006. 7(6): p. 467-78.
    8. Lang, F.F., et al., Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg, 1994. 81(3): p. 427-36.
    9. Lang, F.F., et al., High frequency of p53 protein accumulation without p53 gene mutation inhuman juvenile pilocytic, low grade and anaplastic astrocytomas. Oncogene, 1994. 9(3): p. 949-54.
    10. von Deimling, A., et al., Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol, 1993. 3(1): p. 19-26.
    11. Kleihues, P. and H. Ohgaki, Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol, 1999. 1(1): p. 44-51.
    12. Tso, C.L., et al., Distinct transcription profiles of primary and secondary glioblastoma subgroups. Cancer Res, 2006. 66(1): p. 159-67.
    13. Kim, Y.J., et al., A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell, 1994. 77(4): p. 599-608.
    14. Samuelsen, C.O., et al., TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution. Proc Natl Acad Sci U S A, 2003. 100(11): p. 6422-7.
    15. Becerra, M., et al., The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol, 2002. 43(3): p. 545-55.
    16. Sato, S., et al., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell, 2004. 14(5): p. 685-91.
    17. Chen, L., et al., Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res, 2011. 30(1): p. 18.
    18. Li, L.H., et al., Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol, 2010.
    19相福,李俊安,宋彬,房学东. Med19基因沉默对胃癌细胞增殖和细胞周期的影响.中国老年学杂志2010,4,3O(8):1112-15
    1. Ohgaki, H., Epidemiology of brain tumors. Methods Mol Biol, 2009. 472: p. 323-42.
    2. Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol, 2007. 114(2): p. 97-109.
    3. Bondy, M.L., et al., Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer, 2008. 113(7 Suppl): p. 1953-68.
    4. Furnari, F.B., et al., Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev, 2007. 21(21): p. 2683-710.
    5. Wen, P.Y. and S. Kesari, Malignant gliomas in adults. N Engl J Med, 2008. 359(5): p. 492-507.
    6. Kelleher, R.J., 3rd, P.M. Flanagan, and R.D. Kornberg, A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell, 1990. 61(7): p. 1209-15.
    7. Boube, M., et al., Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell, 2002. 110(2): p. 143-51.
    8. Kim, Y.J., et al., A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell, 1994. 77(4): p. 599-608.
    9. Song, W., et al., SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol Cell Biol, 1996. 16(1): p. 115-20.
    10. Rosenblum-Vos, L.S., et al., The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol Cell Biol, 1991. 11(11): p. 5639-47.
    11. Becerra, M., et al., The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol, 2002. 43(3): p. 545-55.
    12. Sato, S., et al., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell, 2004. 14(5): p. 685-91.
    13. Chen, L., et al., Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res, 2011. 30(1): p. 18.
    14. Li, L.H., et al., Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol, 2010.
    15. Mawrin, C., et al., Alterations of cell cycle regulators in gliomatosis cerebri. J Neurooncol,2005. 72(2): p. 115-22.
    16. Kim, C.K., et al., Negative regulation of p53 by the long isoform of ErbB3 binding protein Ebp1 in brain tumors. Cancer Res, 2010. 70(23): p. 9730-41.
    17. Kondo, E., et al., Potent synergy of dual antitumor peptides for growth suppression of human glioblastoma cell lines. Mol Cancer Ther, 2008. 7(6): p. 1461-71.
    18. Shazeeb, M.S., et al., Targeted signal amplifying enzymes enhance magnetic resonance imaging of EGRF expression in an orthotopic model of human glioma. Cancer Res, 2011.
    19. Roberts, W.G., et al., Antiangiogenic and antitumor activity of a selective PDGFR tyrosine kinase inhibitor, CP-673,451. Cancer Res, 2005. 65(3): p. 957-66.
    20. Molina, J.R., et al., Loss of PTEN binding adapter protein NHERF1 from plasma membrane in glioblastoma contributes to PTEN inactivation. Cancer Res, 2010. 70(17): p. 6697-703.
    21. Persson, A. and E. Englund, Different assessments of immunohistochemically stained Ki-67 and hTERT in glioblastoma multiforme yield variable results: a study with reference to survival prognosis. Clin Neuropathol, 2008. 27(4): p. 224-33.
    22. Kogiku, M., et al., Prognosis of glioma patients by combined immunostaining for survivin, Ki-67 and epidermal growth factor receptor. J Clin Neurosci, 2008. 15(11): p. 1198-203.
    23. Niemiec, J., Ki-67 labelling index in human brain tumours. Folia Histochem Cytobiol, 2001. 39(3): p. 259-62.
    1. Sato, S., et al., A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell, 2004. 14(5): p. 685-91.
    2. Conaway, J.W., et al., The mammalian Mediator complex. FEBS Lett, 2005. 579(4): p. 904-8.
    3. van de Peppel, J., et al., Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell, 2005. 19(4): p. 511-22.
    4. Chen, L., et al., Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res, 2011. 30(1): p. 18.
    5. Li, L.H., et al., Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol, 2010.
    1. Bondy, M.L., et al., Brain tumor epidemiology: consensus from the Brain Tumor Epidemiology Consortium. Cancer, 2008. 113(7 Suppl): p. 1953-68.
    2. van den Bent, M.J., M.E. Hegi, and R. Stupp, Recent developments in the use of chemotherapy in brain tumours. Eur J Cancer, 2006. 42(5): p. 582-8.
    3. Kim, L. and M. Glantz, Chemotherapeutic options for primary brain tumors. Curr Treat Options Oncol, 2006. 7(6): p. 467-78.
    4. Barzon, L., et al., Clinical trials of gene therapy, virotherapy, and immunotherapy for malignant gliomas. Cancer Gene Ther, 2006. 13(6): p. 539-54.
    5. Miyoshi, H., et al., Stable and efficient gene transfer into the retina using an HIV-basedlentiviral vector. Proc Natl Acad Sci U S A, 1997. 94(19): p. 10319-23.
    6. Chen, L., et al., Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res, 2011. 30(1): p. 18.
    7. Yoshimine, T., et al., Stochastic determination of the chromosomal region responsible for expression of human glial fibrillary acidic protein in astrocytic tumors. Neurosci Lett, 1998. 247(1): p. 29-32.
    8. Yanez-Munoz, R.J., et al., Effective gene therapy with nonintegrating lentiviral vectors. Nat Med, 2006. 12(3): p. 348-53.
    9. Naldini, L., et al., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996. 272(5259): p. 263-7.
    1. Bjorklund, S. and C.M. Gustafsson, The yeast Mediator complex and its regulation. Trends Biochem Sci, 2005. 30(5): p. 240-4.
    2. Gu, W., et al., A novel human SRB/MED-containing cofactor complex, SMCC, involved in transcription regulation. Mol Cell, 1999. 3(1): p. 97-108.
    3. van de Peppel, J., et al., Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell, 2005. 19(4): p. 511-22.
    4. Myers, L.C., et al., Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A, 1999. 96(1): p. 67-72.
    5. Lee, Y.C., et al., An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol, 1999. 19(4): p. 2967-76.
    6. Han, S.J., et al., Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol Cell Biol, 1999. 19(2): p. 979-88.
    7. Kang, J.S., et al., The structural and functional organization of the yeast mediator complex. J Biol Chem, 2001. 276(45): p. 42003-10.
    8. Linder, T., et al., The classical srb4-138 mutant allele causes dissociation of yeast Mediator. Biochem Biophys Res Commun, 2006. 349(3): p. 948-53.
    9. Li, L.H., et al., Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol, 2010.
    10. Chen, L., et al., Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res, 2011. 30(1): p. 18.
    1. Thompson CM, Koleske AJ, Chao DM, Young RA: A multisubunit complex associated with theRNA polymerase II CTD and TATA-binding protein in yeast. Cell 1993, 73(7):1361-1375.
    2. Kim YJ, Bjorklund S, Li Y, Sayre MH, Kornberg RD: A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 1994, 77(4):599-608.
    3. Fondell JD, Ge H, Roeder RG: Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc Natl Acad Sci U S A 1996, 93(16):8329-8333.
    4. Levine M, Tjian R: Transcription regulation and animal diversity. Nature 2003, 424(6945):147-151.
    5. Toth-Petroczy A, Oldfield CJ, Simon I, Takagi Y, Dunker AK, Uversky VN, Fuxreiter M: Malleable machines in transcription regulation: the mediator complex. PLoS Comput Biol 2008, 4(12):e1000243.
    6. Mittler G, Kremmer E, Timmers HT, Meisterernst M: Novel critical role of a human Mediator complex for basal RNA polymerase II transcription. EMBO Rep 2001, 2(9):808-813.
    7. Baek HJ, Malik S, Qin J, Roeder RG: Requirement of TRAP/mediator for both activator-independent and activator-dependent transcription in conjunction with TFIID-associated TAF(II)s. Mol Cell Biol 2002, 22(8):2842-2852.
    8. Cantin GT, Stevens JL, Berk AJ: Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc Natl Acad Sci U S A 2003, 100(21):12003-12008.
    9. Baek HJ, Kang YK, Roeder RG: Human Mediator enhances basal transcription by facilitating recruitment of transcription factor IIB during preinitiation complex assembly. J Biol Chem 2006, 281(22):15172-15181.
    10. Holstege FC, Jennings EG, Wyrick JJ, Lee TI, Hengartner CJ, Green MR, Golub TR, Lander ES, Young RA: Dissecting the regulatory circuitry of a eukaryotic genome. Cell 1998, 95(5):717-728.
    11. Andrau JC, van de Pasch L, Lijnzaad P, Bijma T, Koerkamp MG, van de Peppel J, Werner M, Holstege FC: Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell 2006, 22(2):179-192.
    12. Zhu X, Wiren M, Sinha I, Rasmussen NN, Linder T, Holmberg S, Ekwall K, Gustafsson CM: Genome-wide occupancy profile of mediator and the Srb8-11 module reveals interactions with coding regions. Mol Cell 2006, 22(2):169-178.
    13. Hahn S: Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol 2004, 11(5):394-403.
    14. Malik S, Wallberg AE, Kang YK, Roeder RG: TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol Cell Biol 2002, 22(15):5626-5637.
    15. Wang G, Balamotis MA, Stevens JL, Yamaguchi Y, Handa H, Berk AJ: Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol Cell 2005, 17(5):683-694.
    16. Naar AM, Taatjes DJ, Zhai W, Nogales E, Tjian R: Human CRSP interacts with RNA polymerase II CTD and adopts a specific CTD-bound conformation. Genes Dev 2002, 16(11):1339-1344.
    17. Zhang X, Krutchinsky A, Fukuda A, Chen W, Yamamura S, Chait BT, Roeder RG: MED1/TRAP220 exists predominantly in a TRAP/ Mediator subpopulation enriched in RNApolymerase II and is required for ER-mediated transcription. Mol Cell 2005, 19(1):89-100.
    18. Malik S, Baek HJ, Wu W, Roeder RG: Structural and functional characterization of PC2 and RNA polymerase II-associated subpopulations of metazoan Mediator. Mol Cell Biol 2005, 25(6):2117-2129.
    19. Johnson KM, Wang J, Smallwood A, Arayata C, Carey M: TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev 2002, 16(14):1852-1863.
    20. Meyer KD, Lin SC, Bernecky C, Gao Y, Taatjes DJ: p53 activates transcription by directing structural shifts in Mediator. Nat Struct Mol Biol 2010, 17(6):753-760.
    21. Balamotis MA, Pennella MA, Stevens JL, Wasylyk B, Belmont AS, Berk AJ: Complexity in transcription control at the activation domain-mediator interface. Sci Signal 2009, 2(69):ra20.
    22. Chadick JZ, Asturias FJ: Structure of eukaryotic Mediator complexes. Trends Biochem Sci 2005, 30(5):264-271.
    23. Davis JA, Takagi Y, Kornberg RD, Asturias FA: Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol Cell 2002, 10(2):409-415.
    24. Knuesel MT, Meyer KD, Bernecky C, Taatjes DJ: The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev 2009, 23(4):439-451.
    25. Naar AM, Beaurang PA, Zhou S, Abraham S, Solomon W, Tjian R: Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 1999, 398(6730):828-832.
    26. Rachez C, Lemon BD, Suldan Z, Bromleigh V, Gamble M, Naar AM, Erdjument-Bromage H, Tempst P, Freedman LP: Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 1999, 398(6730):824-828.
    27. Taatjes DJ, Naar AM, Andel F, 3rd, Nogales E, Tjian R: Structure, function, and activator-induced conformations of the CRSP coactivator. Science 2002, 295(5557):1058-1062.
    28. Ding N, Zhou H, Esteve PO, Chin HG, Kim S, Xu X, Joseph SM, Friez MJ, Schwartz CE, Pradhan S et al: Mediator links epigenetic silencing of neuronal gene expression with x-linked mental retardation. Mol Cell 2008, 31(3):347-359.
    29. Meyer KD, Donner AJ, Knuesel MT, York AG, Espinosa JM, Taatjes DJ: Cooperative activity of cdk8 and GCN5L within Mediator directs tandem phosphoacetylation of histone H3. EMBO J 2008, 27(10):1447-1457.
    30. Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD: Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 2000, 5(6):905-915.
    31. Clayton AL, Rose S, Barratt MJ, Mahadevan LC: Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J 2000, 19(14):3714-3726.
    32. Lefebvre B, Ozato K, Lefebvre P: Phosphorylation of histone H3 is functionally linked to retinoic acid receptor beta promoter activation. EMBO Rep 2002, 3(4):335-340.
    33. Hirota T, Lipp JJ, Toh BH, Peters JM: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 2005, 438(7071):1176-1180.
    34. Zippo A, De Robertis A, Serafini R, Oliviero S: PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 2007, 9(8):932-944.
    35. Anest V, Hanson JL, Cogswell PC, Steinbrecher KA, Strahl BD, Baldwin AS: A nucleosomalfunction for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 2003, 423(6940):659-663.
    36. Donner AJ, Szostek S, Hoover JM, Espinosa JM: CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol Cell 2007, 27(1):121-133.
    37. Alarcon C, Zaromytidou AI, Xi Q, Gao S, Yu J, Fujisawa S, Barlas A, Miller AN, Manova-Todorova K, Macias MJ et al: Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-beta pathways. Cell 2009, 139(4):757-769.
    38. Gao S, Alarcon C, Sapkota G, Rahman S, Chen PY, Goerner N, Macias MJ, Erdjument-Bromage H, Tempst P, Massague J: Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol Cell 2009, 36(3):457-468.
    39. Fryer CJ, White JB, Jones KA: Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol Cell 2004, 16(4):509-520.
    40. Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, Moon NS, Kwon EJ, Haigis KM, Naar AM, Dyson NJ: E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 2008, 455(7212):552-556.
    41. Firestein R, Bass AJ, Kim SY, Dunn IF, Silver SJ, Guney I, Freed E, Ligon AH, Vena N, Ogino S et al: CDK8 is a colorectal cancer oncogene that regulates beta-catenin activity. Nature 2008, 455(7212):547-551.
    42. Donner AJ, Ebmeier CC, Taatjes DJ, Espinosa JM: CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat Struct Mol Biol 2010, 17(2):194-201.
    43. Black JC, Choi JE, Lombardo SR, Carey M: A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell 2006, 23(6):809-818.
    44. Liu X, Vorontchikhina M, Wang YL, Faiola F, Martinez E: STAGA recruits Mediator to the MYC oncoprotein to stimulate transcription and cell proliferation. Mol Cell Biol 2008, 28(1):108-121.
    45. Chen W, Rogatsky I, Garabedian MJ: MED14 and MED1 differentially regulate target-specific gene activation by the glucocorticoid receptor. Mol Endocrinol 2006, 20(3):560-572.
    46. Yang F, Vought BW, Satterlee JS, Walker AK, Jim Sun ZY, Watts JL, DeBeaumont R, Saito RM, Hyberts SG, Yang S et al: An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 2006, 442(7103):700-704.
    47. Taatjes DJ, Tjian R: Structure and function of CRSP/Med2; a promoter-selective transcriptional coactivator complex. Mol Cell 2004, 14(5):675-683.
    48. Pandey PK, Udayakumar TS, Lin X, Sharma D, Shapiro PS, Fondell JD: Activation of TRAP/mediator subunit TRAP220/Med1 is regulated by mitogen-activated protein kinase-dependent phosphorylation. Mol Cell Biol 2005, 25(24):10695-10710.
    49. Belakavadi M, Pandey PK, Vijayvargia R, Fondell JD: MED1 phosphorylation promotes its association with mediator: implications for nuclear receptor signaling. Mol Cell Biol 2008, 28(12):3932-3942.
    50. Chen W, Yang Q, Roeder RG: Dynamic interactions and cooperative functions of PGC-1alpha and MED1 in TRalpha-mediated activation of the brown-fat-specific UCP-1 gene. Mol Cell 2009, 35(6):755-768.
    51. Kim JH, Yang CK, Heo K, Roeder RG, An W, Stallcup MR: CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol Cell 2008,31(4):510-519.
    52. Wang Q, Carroll JS, Brown M: Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 2005, 19(5):631-642.
    53. Park SW, Li G, Lin YP, Barrero MJ, Ge K, Roeder RG, Wei LN: Thyroid hormone-induced juxtaposition of regulatory elements/factors and chromatin remodeling of Crabp1 dependent on MED1/TRAP220. Mol Cell 2005, 19(5):643-653.
    54. Degenhardt T, Rybakova KN, Tomaszewska A, Mone MJ, Westerhoff HV, Bruggeman FJ, Carlberg C: Population-level transcription cycles derive from stochastic timing of single-cell transcription. Cell 2009, 138(3):489-501.
    55. Pavri R, Lewis B, Kim TK, Dilworth FJ, Erdjument-Bromage H, Tempst P, de Murcia G, Evans R, Chambon P, Reinberg D: PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. Mol Cell 2005, 18(1):83-96.
    56. Thompson CM, Young RA: General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A 1995, 92(10):4587-4590.
    57. Lee D, Lis JT: Transcriptional activation independent of TFIIH kinase and the RNA polymerase II mediator in vivo. Nature 1998, 393(6683):389-392.
    58. McNeil JB, Agah H, Bentley D: Activated transcription independent of the RNA polymerase II holoenzyme in budding yeast. Genes Dev 1998, 12(16):2510-2521.
    59. Deato MD, Marr MT, Sottero T, Inouye C, Hu P, Tjian R: MyoD targets TAF3/TRF3 to activate myogenin transcription. Mol Cell 2008, 32(1):96-105.
    60. Naar AM, Lemon BD, Tjian R: Transcriptional coactivator complexes. Annu Rev Biochem 2001, 70:475-501.
    61. Conaway JW, Florens L, Sato S, Tomomori-Sato C, Parmely TJ, Yao T, Swanson SK, Banks CA, Washburn MP, Conaway RC: The mammalian Mediator complex. FEBS Lett 2005, 579(4):904-908.
    62. Beckerman R, Prives C: Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2010, 2(8):a000935.
    63. Ebmeier CC, Taatjes DJ: Activator-Mediator binding regulates Mediator-cofactor interactions. Proc Natl Acad Sci U S A 2010, 107(25):11283-11288.
    64. Ito M, Roeder RG: The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol Metab 2001, 12(3):127-134.
    65. De Luca LM: Retinoids and their receptors in differentiation, embryogenesis, and neoplasia. FASEB J 1991, 5(14):2924-2933.
    66. de The H, Chen Z: Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 2010, 10(11):775-783.
    67. Shao W, Rosenauer A, Mann K, Chang CP, Rachez C, Freedman LP, Miller WH, Jr.: Ligand-inducible interaction of the DRIP/TRAP coactivator complex with retinoid receptors in retinoic acid-sensitive and -resistant acute promyelocytic leukemia cells. Blood 2000, 96(6):2233-2239.
    68. Goldberg SF, Miele ME, Hatta N, Takata M, Paquette-Straub C, Freedman LP, Welch DR: Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res 2003, 63(2):432-440.
    69. Gwack Y, Baek HJ, Nakamura H, Lee SH, Meisterernst M, Roeder RG, Jung JU: Principal roleof TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Mol Cell Biol 2003, 23(6):2055-2067.
    70. Lee JE, Kim K, Sacchettini JC, Smith CV, Safe S: DRIP150 coactivation of estrogen receptor alpha in ZR-75 breast cancer cells is independent of LXXLL motifs. J Biol Chem 2005, 280(10):8819-8830.
    71. Matsumoto K, Yu S, Jia Y, Ahmed MR, Viswakarma N, Sarkar J, Kashireddy PV, Rao MS, Karpus W, Gonzalez FJ et al: Critical role for transcription coactivator peroxisome proliferator-activated receptor (PPAR)-binding protein/TRAP220 in liver regeneration and PPARalpha ligand-induced liver tumor development. J Biol Chem 2007, 282(23):17053-17060.
    72. Dougherty SM, Mazhawidza W, Bohn AR, Robinson KA, Mattingly KA, Blankenship KA, Huff MO, McGregor WG, Klinge CM: Gender difference in the activity but not expression of estrogen receptors alpha and beta in human lung adenocarcinoma cells. Endocr Relat Cancer 2006, 13(1):113-134.
    73. Vijayvargia R, May MS, Fondell JD: A coregulatory role for the mediator complex in prostate cancer cell proliferation and gene expression. Cancer Res 2007, 67(9):4034-4041.
    74. Singh H, Erkine AM, Kremer SB, Duttweiler HM, Davis DA, Iqbal J, Gross RR, Gross DS: A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics 2006, 172(4):2169-2184.
    75. Baidoobonso SM, Guidi BW, Myers LC: Med19(Rox3) regulates Intermodule interactions in the Saccharomyces cerevisiae mediator complex. J Biol Chem 2007, 282(8):5551-5559.
    76. Myers LC, Gustafsson CM, Hayashibara KC, Brown PO, Kornberg RD: Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A 1999, 96(1):67-72.
    77. Lee YC, Park JM, Min S, Han SJ, Kim YJ: An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol 1999, 19(4):2967-2976.
    78. Lee YC, Kim YJ: Requirement for a functional interaction between mediator components Med6 and Srb4 in RNA polymerase II transcription. Mol Cell Biol 1998, 18(9):5364-5370.
    79. Han SJ, Lee YC, Gim BS, Ryu GH, Park SJ, Lane WS, Kim YJ: Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol Cell Biol 1999, 19(2):979-988.
    80. Rosenblum-Vos LS, Rhodes L, Evangelista CC, Jr., Boayke KA, Zitomer RS: The ROX3 gene encodes an essential nuclear protein involved in CYC7 gene expression in Saccharomyces cerevisiae. Mol Cell Biol 1991, 11(11):5639-5647.
    81. Gustafsson CM, Myers LC, Li Y, Redd MJ, Lui M, Erdjument-Bromage H, Tempst P, Kornberg RD: Identification of Rox3 as a component of mediator and RNA polymerase II holoenzyme. J Biol Chem 1997, 272(1):48-50.
    82. Brown TA, Evangelista C, Trumpower BL: Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae. J Bacteriol 1995, 177(23):6836-6843.
    83. Qiu H, Hu C, Yoon S, Natarajan K, Swanson MJ, Hinnebusch AG: An array of coactivators is required for optimal recruitment of TATA binding protein and RNA polymerase II by promoter-bound Gcn4p. Mol Cell Biol 2004, 24(10):4104-4117.
    84. Song W, Treich I, Qian N, Kuchin S, Carlson M: SSN genes that affect transcriptional repression in Saccharomyces cerevisiae encode SIN4, ROX3, and SRB proteins associated with RNA polymerase II. Mol Cell Biol 1996, 16(1):115-120.
    85. Tabtiang RK, Herskowitz I: Nuclear proteins Nut1p and Nut2p cooperate to negatively regulate a Swi4p-dependent lacZ reporter gene in Saccharomyces cerevisiae. Mol Cell Biol 1998, 18(8):4707-4718.
    86. Becerra M, Lombardia-Ferreira LJ, Hauser NC, Hoheisel JD, Tizon B, Cerdan ME: The yeast transcriptome in aerobic and hypoxic conditions: effects of hap1, rox1, rox3 and srb10 deletions. Mol Microbiol 2002, 43(3):545-555.
    87. van de Peppel J, Kettelarij N, van Bakel H, Kockelkorn TT, van Leenen D, Holstege FC: Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell 2005, 19(4):511-522.
    88. Dettmann A, Jaschke Y, Triebel I, Bogs J, Schroder I, Schuller HJ: Mediator subunits and histone methyltransferase Set2 contribute to Ino2-dependent transcriptional activation of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 2010, 283(3):211-221.
    89. Reddy PH, Stockburger E, Gillevet P, Tagle DA: Mapping and characterization of novel (CAG)n repeat cDNAs from adult human brain derived by the oligo capture method. Genomics 1997, 46(2):174-182.
    90. Sato S, Tomomori-Sato C, Banks CA, Sorokina I, Parmely TJ, Kong SE, Jin J, Cai Y, Lane WS, Brower CS et al: Identification of mammalian Mediator subunits with similarities to yeast Mediator subunits Srb5, Srb6, Med11, and Rox3. J Biol Chem 2003, 278(17):15123-15127.
    91. Sato S, Tomomori-Sato C, Banks CA, Parmely TJ, Sorokina I, Brower CS, Conaway RC, Conaway JW: A mammalian homolog of Drosophila melanogaster transcriptional coactivator intersex is a subunit of the mammalian Mediator complex. J Biol Chem 2003, 278(50):49671-49674.
    92. Sato S, Tomomori-Sato C, Parmely TJ, Florens L, Zybailov B, Swanson SK, Banks CA, Jin J, Cai Y, Washburn MP et al: A set of consensus mammalian mediator subunits identified by multidimensional protein identification technology. Mol Cell 2004, 14(5):685-691.
    93. Ding N, Tomomori-Sato C, Sato S, Conaway RC, Conaway JW, Boyer TG: MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression. J Biol Chem 2009, 284(5):2648-2656.
    94. Chen L, Liang Z, Tian Q, Li C, Ma X, Zhang Y, Yang Z, Wang P, Li Y: Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res 2011, 30(1):18.
    95. Li LH, He J, Hua D, Guo ZJ, Gao Q: Lentivirus-mediated inhibition of Med19 suppresses growth of breast cancer cells in vitro. Cancer Chemother Pharmacol 2010.
    96. Zou SW, Ai KX, Wang ZG, Yuan Z, Yan J, Zheng Q: The role of Med19 in the proliferation and tumorigenesis of human hepatocellular carcinoma cells. Acta Pharmacol Sin 2011, 32(3):354-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700