白桦热激反应的分子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热激反应是生物体对高温胁迫的一种应激反应,由于其具有反应快速、直接的特点,
    逐渐成为研究生物体与环境间相互作用的模式系统。近来,热激反应与多种环境胁迫之
    间的联系,使人们愈加重视它在植物生理、生态及生物进化中的作用,并成为多个领域
    研究热点。
     1、本文以东北地区分布范围广、适应性强的白桦为研究对象,人为模拟高温条件,
    对一年生白桦幼苗进行不同温度、不同时间的热激处理,以质膜相对透性和丙二醛含量
    为主要测定指标,比较了不同高温和不同处理时间相互作用对白桦幼苗的伤害程度。在
    37℃和42℃热激处理的24小时期间,白桦幼苗叶片的质膜相对透性和丙二醛的含量均
    有明显变化,变化趋势基本一致,但变化幅度37℃小于42℃。热激初期(4h之内)两
    项指标均呈现上升趋势,4h后则逐渐下降,但热激时间超过12h,质膜相对透性和丙二
    醛含量急剧上升。整个热激处理期间,37℃下的幼苗外在的生长势良好,而42℃下的
    幼苗当胁迫超过8h即显现热害症状。因此,白桦的最佳热激反应温度确定为37℃。
     2、不同热激预处理既可提高白桦幼苗的耐冷性又可提高白桦幼苗的耐热性。37℃
    高温处理4h的白桦幼苗转置2℃ 24h,其质膜相对透性和丙二醛含量明显低于未经高温
    预处理的和42℃热激处理4h的幼苗;37℃热激胁迫4h的幼苗放入45℃2h,受伤害的
    程度明显低于直接放入45℃ 2h的幼苗。热激胁迫对白桦幼苗耐冷性和耐热性的提高,
    填补了树木热激反应在其温度适应研究领域的空白,说明热激反应是研究树木温度适应
    的一种很好模式系统。
     3、比较了三种树木RNA的提取方法,确定改良的CTAB法为白桦组织RNA的最
    优的提取方案。其为一种快速、可靠的树木RNA提取方法。
     4、建立了适应白桦的mRNA差异显示分析体系,优化了反应条件和反应程序。利
    用三种锚定引物和24种10碱基随机引物组合,展示了东北白桦正常条件下和热激条件
    下基因表达的差异图谱。为在RNA水平研究白桦个体/群体与环境之间温度适应机制提
    供了相应的理论和方法学基础。对热激条件下白桦叶片组织高表达的4个差异片段进行
    了回收、克隆和测序分析。
Heat shock response is a conserved reaction of organisms to elevated temperature, and it
     is becoming a model system of a genotype-environment interaction for its characteristic of
     transient and direct.
     I One year old Birch saplings were exposed to different high temperature, and the
     interaction between high temperature and expose time was studies in the laboratory. Holding
     Birch saplings at 370C or 420C for 24 hours, the electrolyte leakage and Ml)A content were
     increased within first 4 hours, then they decreased between 4 hours to 12 hours. After 12
     hours, the rate of electrolyte leakage and MDA content increased rapidly. But the heat injury
     to Birch at 370C were gentle than the injury at 42aC.
    
     2 ~ Prior high temperature exposure affected Birch subsequent chilling sensitivity and
     improved their higher temperature tolerance . One year old Birch saplings were exposed to
     370C 4 hours and then immediately held at 20C 24 hours, the electrolyte leakage and MDA
     content were lower than the trees directly held at 20C 24 hours. When saplings were
     pre-incubated at 370C 4 hours following be kept at 450C for 2b, which can be protect against
     heat injury. While unheated sapling directly placed at 450C 2h, the rate of electrolyte leakage
     and MDA content increased rapidly. Therefore, the temperature adaptive mechanisms caused
     by heat shock may be an ideal model system on studying the interaction between Birch and
     environment.
     3 ~ Three methods were compared in the extraction of total RNA from Birch leaves.
     CTAB methods were the ideal for the trees?total RNA extraction, and it was also a quick and
     effective method for other trees.
    
     4 mRNA differential display system of Birch was established. Content of Mg2~, dNTP,
     cDNA templates concentration were tested and the optimal reaction system of DD-RT PCR
     for Birch was determined. Combined 3 anchored primer and 24 arbitrary decainer, differential
     display pattern of the total RNA from control and heat shock Birch leaves were established.
     Four fI-agrnents which were differentially expressed in heat shock Birch leaves were isolated,
     cloned and sequenced.
引文
1. 陈中健,王金发.差异显示技术及其进展.生物工程进展.1998,18(5):21-25.
    2. 程宁辉 高燕萍等.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,39(4):379-382.
    3. 高亦珂.东北地区天然白桦种群遗传生态学研究.东北林业大学博士论文,哈尔滨,1998.
    4. 石锐.小麦G型细胞质雄性不育性恢复基因Rf3在小孢子单核晚期相关表达基因的差异显示分析.东北农业大学博士论文.哈尔滨.1999.
    5. 张恒庆.天然红松种群的分子生态学研究.东北林业大学博士学位论文.哈尔滨,1998.
    6. 赵大中,陈民等.用差异显示PCR技术克隆冬小麦春化设定cDNA克隆实验系统的建立.实验生物学报,1999,32(1):47-53
    7. 赵世杰.现代植物生理学实验指南.科学出版社,1999,305-306.
    8. 周以良等.中国大兴安岭植被.北京:科学出版社.1991.
    9. 朱峰、赵永同.mRNA差示技术的缺陷及对策.生命科学.1998,10(1):6-7.
    10. 祖元刚,孙梅等.分子生态学理论,方法和应用.高等教育出版社,施普林格出版社.1999.
    11. 祖元刚、孙梅、康乐,生态适应与生态进化的分子机制。2000,高等教育出版社和施普林格出版社。
    12. Ainsworth C. Isolation of RNA from floral tissue of Rumex acetosa(sorrel). Plant Molecular Biology Reporter. 1994,12(3):198-203.
    13. Akerman S, Tammisola J, et al. RAPD markers in parentage confirmation of a valuable breeding progeny of European white birch. Canadian Journal of Forest Research. 1995, 25(7): 1070-1076.
    14. Alamillo J, Almoguera C, et al. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigna plantagineum. Plant Mol Biol. 1995,29:1093-1099.
    15. Almoguera C, Coca MA, et al. Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant J. 1993,4:947-958.
    16. Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock proteins and Lea mRNAs. Plant Mol Biol. 1992,19:781-792.
    17. Anamthawat JK, Heslop-Harrison JS. Molecular cytogenetics of Icelandic birch SPECIES: physical mapping by in situ hybridization and rDNA polymorphism. Canadian Journal of Forest Research. 1995,25(1):101-108.
    
    
    18. Anderson JV, Li QB, et al. Structural organization of the Spinach endoplasmic reticulum-luminal 70-kilodalton heat-shock cognate gene and exprression of 70-kilodalton heat-shock genes during cold acclimation. Plant Physiol. 1994,104:1359-1370.
    19. Bassam BJ, et al. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991, 196 : 80-83.
    20. Bauer D, et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucleic Acids Research. 1993,21(18) : 4272-4280.
    21. Bouchard RA. Characterization of expressed meiotic prophase repeat transcript clones of Lilium: meiosis-specific expression, relatedness, and affinities to small heat shock protein genes. Genome. 1990,33:68-69.
    22. Bousquet J, Strauss SH, et al. Complete congruence between morphological and rbcL-based molecular phylogenies in birch and related species (Betulaceae). Molecular Biology and Evolution.1992,9(6) :1076-1088.
    23. Breiteneder H, Pettenburger K, et al. The gene coding gone the major birch pollen allergen Betvl is highly homologous to a pea disease resistance response gene. EMBO Joirnal. 1989, 8(7) : 1935-1938.
    24. Callard D, B Lescure, et al. A method for the eliminat ion of false positive generated by the mRNA differential display technique. BioTechniques. 1994, 16:1096-1103.
    25. Chang SJ, Puryear J,et al.A simlpe and efficient method for isolating RNA from pine tree. Plant Molecular Biology Reporter. 1993,11(2) :113-116.
    26. Chen Q, Lauzon LM, et al. Accumulation, stability and localization of a major cDhloroplast heat shock protein. J Cell Biol. 1990,110:1873-1883.
    27. Chen Q, Vierling E. Analysis of conserved domains identifies a unique Structural feature of a chloroplast heat shock protein. Mol Gen Genet. 1991,226:425-431.
    28. Chen YR, Chou M, et al. Observations of soybean root meristematic cellls in response to heat shock. Protoplasma. 1988,144:1-9.
    29. Coca MA, Almogurta C, et al. Expression of sunflower low-molecular-weight heat-shock oriteins during embryogenesis and persistence after germination: location and possible functional implications. Plant Mol Biol. 1994,25:479-492.
    
    
    30. Collins GG, Nie X, et al. Heat shock increases chilling tolerance of mung bean hypocotyl tissuee. Pbysiol Plant. 1993, 89:431-433.
    31. Cooper P, Ho THD.Intracellular location of heat shock proteins in maize. Plant Phyeil. 1987 (84) : 1197-1203
    32. Derocher AE, Helm KW, et al. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol. 1991,96:1038-1047.
    33. DeRocher AE, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation. Plant J. 1994,5:93-102.
    34. Diachenko LB, Ledesma J, et al. Combining the technique of RNA fingerprinting and differential display to obtain differentially expressed mRNA. Biochemical and Biophysical Research communication. 1996, 219:824-828.
    35. Didier Callardet al.Bio Technique, 1994, 16(6) :1002-1006.
    36. Dieffenbach,CW and Dveksler GS. PCR Primer:A Laboratory Manual. Cold Spring Harbor Press, 1995.
    37. Dietrich PS, Bouchard RA, et al. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol. 1991,96:1038-1047.
    38. Feder ME, Hofmann GE. Heat shock proteins, molecular chaperones and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 1999,61:243-282.
    39. Ferguson LB.Lurie S,Bowen JH.Protein synthesis and breakdown during heat shock of cultured pear celis.Plant Physiol. 1994, 104:1429-1437.
    40. Friemann A, Brinkamann K et al. Sequence of a cDNA encoding nitrite reductase from the tree Betula pendula and identification of conserved protein regions. Molecular and general genetics.1992,231 (3) :411-416.
    41. Frienann A, Brinkamann K et al. Sequence of a complementary DNA encoding the bi-specific NAD(P)H-nitrate reductase from the tree Betula pendula and identification of conserved proteein regions. Molecular and general genetics.1991, 227(1) : 97-105.
    42. Gething MJ, et al. Guidebook to Molecular Chaperones and Protein-Folding Catalysts.Oxford, UK:Oxford Univ.Press. 1997.
    43. Gielly L, Taberlet P. Chloroplast DNA polymorphism at the intrageneric Ievel and plant phylogenies. Comptes de l'Academie des Sciences Serie Ⅲ Sciences de la Vie. 1994, 317 (7) :685-692.
    44. Graf D, Fisher AG, et al. Nuclic Acids Res. 1997, 25:2239-2240.
    
    
    45. Graham GC. A method for extraction of total RNA from Pinus radiata and other conifers. Plant Mol Biol Reptr. 1993,11:32-37.
    46. Heln KW, Abernathy RH. Heat shock proteins and their mRNA in dry and early embryos of wheat. Plant Physiol. 1990,93:1626-1633.
    47. Hernandez LD, Vierling E. Expression of low molecular weight heat-shock proteins under field conditions. Plant Physiol. 1993,101:1209-1216.
    48. Hofmann GE, Somero GN. Interspecific variation in thermal denatiuration of proteins in the congeneric muddels Mytilus trossulus and M. Calloprovincialis:evidence from the heat shock peotein ubiquitination. Mar. Biol. 1996,126:65-75.
    49. Horwitz J.Alpha-crystallin can function as a molecular chaperone.Pric Natl Acad Sci USA. 1992,89:10449-10453.
    50. Howarth C. Heat shock proteins in Sorghum bicolorand Pennisetum americanum. Ⅱ.Stored RNA in sorghum seed and its relationship to heat shock protein synthesis during germination. Plant Cell Enciron. 1990,13:57-64.
    51. Howland DE, Oliver RP, et al. Morphological and molecular variation in natural populations of Belula. New Phytologist. 1995, 130(1) : 117-124.
    52. Hsieh MH, Chen TJ, et al. A class of soybean low molecular weight heat shock proteins. Immunological study and quantitation. Plant Physiol.1992, 99:1279-1284.
    53. Huey RB, Bennett AF. Physiological adjustments to fluctuating thermal environments: an ecological and evolutionary perspective. In stress Proteins in Biology and Medicine, ed. RI Morimoto. A Tissieres, C Georgopoulos,pp37-59. Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press. 1990
    54. Ito T, Kito K, et al. Fluorescent differential display: arbitrarily primed RT-PCR fingerprinting on an automated DNA sequencer. FEBS letters. 1994,35:231-236.
    55. Jacob U, Gaestel M, et al. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993,268:1517-1520.
    56. Johnson DA, Chang CCY. Structure of the 5S rRNA genes in birch(Betula papurufera) and alder (Alnus incana). Genome. 1992, 35 (2) : 337-341.
    57. Johnston RN, Kucey BL. Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science. 1988,242:1551-1554.
    
    
    58. Joshi CP, Kumar S, et al. Application of modified differential display technique for cloning and sequencing of the 3' region froa three putative members of wheat HSP70 gene family. Plant Mol Biol. 1996,30:641-646.
    59. Kerbs RA, Feder ME. Hsp70 and larval thernotolerance in Drosophila aelanogaster :How much is enough and when is more too nuch? J. Insect Physiol. 1998,44:1091-1101.
    60. Key JL, et al. Cellular and molecular biology of plant stress. Alan R. Liss.New York. 1985, p161.
    61. Key JL,Lin CY,Chen MY. Heat shock proteins of higher plants.Proc Natl Acad Sci USA. 1981 78:3526-3530.
    62. Khan AA, Maguire JD, et al. Matriconditioning of vegetable seeds to improve stand establishment in early field plantings. J Am Soc Hortic Sci. 1992,117:41-47) .
    63. Kiiskinen M, Korhonen M, et al. Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mptl) :ozone stress induces Mptl mRNA accumulation in birch(Betula pendula Roth).
    64. Kimpel, JA. , Key, JL. Heat shock in plants. Trands Biochem. Sci. , 1985 10:353-357.
    65. Kiyosue Y, Yamaguchi-Shinozaki K, et al. Cloning of cDNAs for genes that are early responsive to dehydration stress in Arabidopsis thaliana L.:identification of three ERDs as HSP cognate genes. Plant Mol Biol. 1994,25:791-798
    66. Knaap E, Kende H. Identification of a gibberellin-induced gene in deep water rice using differential display of mRNA. Plant Mol Biol. 1995, 28:589.
    67. Knauf U, Jakob U, et al. Stress and mitogen-induced phosphorylation of small heat shock protein HSP25 by MAPKAP kinase 2 is not essential for chaperone properties and cellular thermoresistance. EMBO J. 1994, 13:54-60.
    68. Krishna P, Sacco M, et al. Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiol. 1995,107:915-923.
    69. Laboie J, Lambert H, et al. Modulation of cellular thermoresistance and actin filament stability accomppanies phosphorylation-induced changes in the oligomeric structure of heat shock protein27. Mol Cell Biol. 1995,15:505-516.
    
    
    70. Lafuente MT, Belver A, et al. Effect of temperature conditioning on chilling jnjury of cucumber cotyledons. Plant Physiol. 1991,95:443-449.
    71. Landry J, Chr 6 tien P et al. Heat shock resistance conferred by expression of the human HSP27 gene in rodent celis.J Cell Biol.1989,109:7-15.
    72. Landry J, Chretien P, et al. Heat shock resistance conferred by expression of the human HSP27 gene in rodent celis. J Cell Biol. 1989,109:7-15
    73. Lavoie JN, Gingras-Breton G, et al. Induction of chinese hamster HSP27 gene expression in mouse celis confers resistance to heat shock. J Biol Chem, 1993,268:3420-3429.
    74. Lee GJ, Pokala N, et al. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 1995,270:10432-10438.
    75. Lee GJ, Roseman AM, et al. A small heat shock protein stably binds heat-dematured modei substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997,16:659-671.
    76. Lee J,Hubel A,Schoffl F.Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance in transgenic Arabidopsis. Plant J. 1995b, 8:603-612.
    77. Lewnsohn E, Steele CL, et al. Simple isolation of functional RNA from woody stems of gymnosperms. Plant Mol Biol Reptr. 1994, 12:20-25.
    78. Li F, ES Barnathan, et al. Rapid method for screening and cloning cDNAs generated in differential mRNA display: application of Northern blot for affinity capturing of cDNAs. Nucleic Acids Res.1994,22:1764-1765.
    79. Liang P, Averboukh L, et al. Distribution and cloning of eukaryotic mRNA by means of differential display: refinements and optimization. Nucleic Acids Research. 1993,21(14) : 3269-3275.
    80. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science. 1992, 257(14) : 967-971.
    81. Liang P, Zhu WM, et al. Differential display using one-base anchored oligo-dT primers. Nucleic Acids Research.1994, 22(25) : 5763-5764.
    82. Lin CY, Chen YM et al. Soluble leakagein soybean seedlings undervarious heat shock regimes.Plant Cell Physiol. 1985 (26) :1493-1498.
    
    
    83. Lin CY,Roberts JK, Key JL. Acquisition of thermotolerance in soybean seedlings. Plant Physiol, 1984, 74:152-160.
    84. Lindquist, S. J.Mol.Biol. 1980, 137:151-158.
    85. Lindquist, S. The heat response. Annu.rev Biochem. 1986 45:39-72.
    86. Liu CM, Raghothama KG. Practical method for cloning cDNAs generated in an mRNA differential display. BioTechniques. 1996, 20(4) :576-580.
    87. Lohmann J, Schickle H, et al. REN display, a rapid and efficient method for nonradioactive differential display and mRNA isolation. BioTechniques. 1995, 18(2) :200-202.
    88. Luding-M u ller J, Krishna P, et al. A glucosinolate mutant of Arabidopsis is thermosensitive and defective in cytosolic HSP90 expression after heat stress. Plant Physiol. 2000,123:949-958.
    89. Lurie S, Klein JD. Acquisition of low-temprature tolerance in tomatoes by exposure to high temperature stress. J Am Soc Hortic Sci. 1991,116:1007-1012.
    90. McCollum TG, Doostdar H, et al. Immersion of cucumber fruit in heated water alters chilling induced physiological changes. Postharv Biol Technol. 1995,6:55-64.
    91. Mencarelli F, Ceccantoni B, et al. Influence of heat treatment on the physiological response of sweet pepper kept at chilling temperature. Acta Hortic. 1993,343:238-243.
    92. Merck K, Groenon D, et al, Structure and functional similarities of bovine a-crystallin and mouse small heat shock protein. J Biol Chem. 1993,268:1046-1052.
    93. Nagao R, Kimpel J.Vierling E,Key J.The heat shock response:a comparative analysis.0xf Surv Plant Mol Cell Biol.1986,3:384-438.
    94. Neven LG, Haskell DW, et al. Association of 70-kilodalton heat-shock cognate proteins with acclimation to cold. Plant Physiol. 1992,99:1362-1369.
    95. Paeek A, Singla SL, et al. Distribution patterns of HSP90 protein in rice. Plant Sci. 1997,125:221-230.
    96. Pam Cooper, Tuan-hua David Ho et al. Tissue specificity of the heat-shock response in Maize.Plant Physiol, 1984(75) :431-441.
    97. Poteri M, Rousi M. Variation in Melampsoridium resistance among Europea white birch clones grown in different fertilization treatmeats. Eropean Journal of Forest Pathology.1996,26(4) :171-181.
    
    
    98. Ranney TG, Bir RE, et al. Comparative drought resistance six species of Birch(Betula): Influence of mild water stress on water relations and leaf gas exchange. Tree Physilogy.1991,8 (4) :351-361.
    99. Riabowol KT, Mizzen LA, et al. Heat shock is lethal to fibro-blast microinjected with antibodies against hso70. Science. 1988,22:433-436
    100. Ritossa, FM. A new puffing pattern induced by heat shock and SNP in Drosophila. Experientia, 1962. 18:571-573.
    101. Rollet E, Lavioe J, Tanguay R.Expression of Drosophila's 27KDa heat shock protein into rodent celis confers thermal resistance. Biochem Biophys Res Commun. 1992,185:116-120.
    102. Rompf R, Kahl G. mRNA differential display in agarose gels. BioTechniques. 1997,23:28-32.
    103. Roy A, Frascarua N, et al. Segregating random amplified polymorphic DNAs(RAPD)in Betula alleghaniensis. Theoretical and applied genetics. 1992,85:173-180.
    104. Rutherfors SL, Lindquist S. HSP90 as a capacitor for morphological evolution. Nature, 1998. 396 (26) :336-341
    105. Sabehat A, Weiss D, Susan L. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in Tomato fruit. Plant Phvsiol. 1996,110:531-537.
    106. Sabehat,A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures. Plant Phvsiol. 1998,117:651-658.
    107. Saltveit ME. Prior temperature exposure affects subsequent chilling sensitivity. Phvsiol Plant. 1991,82:529-536.
    108. Sanchez Y, Lindquist SL. HSP104 required for induced thermotolerance. Science. 1990,248:1112-1114.
    109. Sanguinetti CJ, et al. Rapid sliver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques. 1994, 17(5) :915-919.
    110. Sasson N, Bramlage WJ. Effects of chemical protectants against chilling injury of young cucumer seedlings. J Am Soc Hortic Sci.1981,106:282-284.
    111. Savard L, Michaud M, et al. Genetic diversity and phylogenetic relationships between birches and alders using ITS,18S rRNA, and rbcL gene sequences.Molecular Phylogenetics and Evolution. 1993, 2(2) :112-118.
    
    
    112. Schirmer EC, Lindquist S, et al. An Arabidopisis heat shock protein conplements a thermotolerance defect in yeast. Plant Cell. 1994,6:189-1909.
    113. Schnerderbauer A, Sandermann HJ, et al. Isolation of functional RNA from plant tissues rich in phenolic compounda. Anal Biochea. 1991,197:91-95
    114. Schoffl F, Prandl R, et al. Regulation of the Heat-shock response. Plant Physiol. 1998, 117:1135-1141.
    115. Sbarma YK, Dacis KR. Isolation of a noval Arabidopsi ozone-induced cDNA by differential display. Plant Mol Biol. 1995,29:91.
    116. Suzuki TC, Krawitz DC, et al. The chloroplast small heat-shock protein oligomer is not phosphorylated and does not dissociate during heat stress in vivo. Plant Physiol. 1998,116:1151-1161.
    117. Swoboda I, Scheiner 0, et al.cDNA cloning and characterization of three genes in the Betv l gene family that encode pathogenesis-related proteins. Plant Cell and Environnent. 1995,18(8) :865-874.
    118. Tseng T, Goodman HM, et al. Identification of sucrose-regulated genes in cultured rice celis using mRNA differential display. Gene, 1995,161:179.
    119. Vayda ME, Yuan ML. The heat shock response of an Anrarctic alga is evident at 5 degrees C. Plant Mol Biol. 1994,24:229-233.
    120. Vierling E, Sun A. Developmental expression of heat shock proteins in higher plants. In J Cherry, ed, Environaental Stress in plants. 1989, Springer-Verlag, Berlin, pp343-354.
    121. Vierling E. The roles of heat shock proteins in plants. Annu Rev Plant Physiol Mol Biol 1991,42:579-560.
    122. Visioli G, Maestri E, et al. Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LWM HSP specificallu expressed in condition of induced thermtolerance in Arabidopsis thaliana(L.) Heynh. Plant Mol. Biol. 1997,34(3) :517-527.
    123. Warthoe P, Bauer D, et al. PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1995, P295-309.
    124. Waters ER,Lee GJ,Vierling E.Evolution,structureand function of the small heat shock proteins in plants. J Exp Bot.1996,47:325-338.
    125. Weaver KR, et al.Isolation and cloning of DNA amplification products from sliver-stained polyacrylamide gels. BioTechniques. 1994, 16(2) :226-227
    
    
    126. Wehmeyer N, Hernadez LD, et al. Synthesis of small heat-shock proteins is part of the developmental program of kate seed matutation. Plant Physiol. 1996,112:747-757.
    127. Woolf AB, Watkins CB, et al. Reducing external chilling injury in stored 'Hass' avocados with dry heat treatments. J Am Soc Hortic Sci. 1995,120:1050-1056.
    128. Yeh CH, Chang PFL, et al. Expression of a gene encoding a 16. 9-kDa heat shock protein, Oshsp16. 9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA. 1997,94:10967-10972.
    129. Zegzouti H, et al. Improved screening of cDNAs generated bu mRNA differential disply enables the selection of true positives and the isolation of weakly expressed messages. Plant Molecular Biology Reporter. 1997,15:236-245.
    130. Zhang H, Zhang R, et al. Differential screening of gene expression differnce enriched by differential display. Nuclic Acids Res. 1996, 24(12) :2454-2455.
    131. Zhao SC, Oli SL, et al. New primer strategy improves precison of differential display. BioTechniques. 1995, 18(5) : 842-850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700