Ezrin影响U251和U87细胞的侵袭性生长能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑胶质瘤是发生于神经外胚层的肿瘤,是最常见的原发性颅内肿瘤,其发病率、死亡率最高,发病率为3~10/10万,占颅内肿瘤的46%,占全身恶性肿瘤的1%~3%,5年存活率为20%~30%,是中枢神经系统疾病的难点。手术切除和放射治疗(RT)辅以化疗是当前治疗标准,但神经胶质瘤对治疗抵抗,也使得神经胶质瘤的预后极差,平均生存期为12到15个月。虽然近年神经影像学和术中肿瘤示踪技术的发展与应用,使神经胶质瘤的治疗取得了一定的进展,但也难以保证以手术为主的治疗能完全根除肿瘤,其根本原因是脑胶质瘤的生长特点造成的。
     近年针对神经胶质瘤的分子靶标研制、开发了靶向治疗药物,临床试验有一定的治疗效果,但远未达到预期结果。此外,尽管科学工作者对肿瘤侵袭性生长的机制进行了大量研究,仍然不能深入了解脑胶质瘤浸润性生长的机制,因此深入研究其机制,寻找到其有效治疗的途径,是治疗神经胶质瘤、提高患者生存质量的关键。
     肿瘤转移是恶性肿瘤的生物学特点,细胞运动能力增强导致其迁移和侵袭,细胞骨架的重塑是直接原因,而Ezrin是肌动蛋白与细胞膜及膜表面受体连接的桥梁,参与多种肌动蛋白的功能如细胞粘附,细胞运动和形态发生。在多种肿瘤组织表达上调,包括脑胶质瘤。但Ezrin在胶质瘤浸润性生长中的作用不清楚。
     结合脑胶质瘤的生物学特性、治疗现状和Ezrin基因在肿瘤迁移和侵袭中的作用,本文研究了Ezrin与胶质瘤细胞U251和U87浸润性生长的相关性,并对其机制进行了探讨,主要研究结果:
     1、成功构建Ezrin基因的shRNA表达载体,以脂质体Lipofectimine2000介导转染U87细胞,RT-PCR和Western blot检测结果表明,shRNA-Ezrin-2可沉默Ezrin表达,使其mRNA和蛋白表达量降低,确定为有效shRNA载体。
     2、成功构建Ezrin基因表达载体pEGFP-C1/Ezrin。Western blot检测重组载体pEGFP-C1/Ezrin转染组Ezrin表达量高于空载体pEGFP-C1转染组和空白对照组。
     3、shRNA-Ezrin-2与过表达载体pEGFP-C1/Ezrin分别转染U251和U87细胞,划痕试验结果显示Ezrin shRNA可阻断U251和U87细胞迁移,其过表达可促进细胞迁移。裸鼠脑瘤模型结果显示,与对照组对比,转染shRNA-Ezrin-2的细胞迁移数少,而转染pEGFP-C1/Ezrin的细胞迁移数相对较多,表明Ezrin基因沉默可阻断U251和U87细胞浸润性生长,过表达可促进迁移,增强其浸润生长,由此判断Ezrin参与U251和U87细胞浸润性生长。
     4、为探讨Ezrin影响U251和U87细胞迁移、浸润性生长的机制,RT-PCR和Western blot分析shRNA-Ezrin-2与过表达载体pEGFP-C1/Ezrin转染细胞的Rac1的表达,结果显示,pEGFP-C1/Ezrin转染组Rac1表达量高于shRNA-Ezrin-2转染组和对照组,而shRNA-Ezrin-2转染组低于对照组。表明Ezrin可激活Rac1,Ezrin对U251和U87细胞的影响是通过Rac1实现的。
     5、Transwell发现U87细胞的迁移能力强于U251细胞,为分析这种差异的原因,对Ezrin结构进行了分析,结果显示,U87细胞的Ezrin蛋白在第66、258、265和577位发生变异,而C端的34氨基酸是Ezrin与F-actin结合的位点,N端的296个氨基酸是与C端107个氨基酸残基相联系的功能域[22],在此区域内发生氨基酸变异,是否影响Ezrin与F-actin或细胞膜的结合而影响其功能,从而影响细胞的迁移。本研究对具有不同浸润能力的脑胶质瘤细胞U251和U87的Ezrin蛋白功能和结构通过生物信息学方法加以分析、说明。Ezrin的蛋白功能分析显示,与U251细胞Ezrin“matched”的蛋白有362个,与U87细胞Ezrin“matched”的蛋白却有1503个;Ezrin的结构分析显示,U87细胞Ezrin的PDB多于U251细胞的,而SCOP和CATH所显示的结构域的结构分级和分层分级相同;U87细胞Ezrin的“Domain organisation”有45个,而U251细胞的Ezrin只有5个。SWISS-MODEL进一步分析,Coloring by residue error,U87细胞Ezrin有8处与U251细胞的不同,QMEAN4评分U87细胞Ezrin低于U251细胞的;SWISS-PDBViewer显示第258、265位氨基酸相对位于空间结构的内侧。推测U87细胞Ezrin的功能、结构域及空间结构均不同于U251细胞,导致了U251和U87细胞的迁移和浸润能力不同。
     6、为验证Ezrin蛋白结构的差异造成U251和U87细胞迁移和浸润能力不同,本研究将U251细胞的Ezrin转染U87细胞,再将U87细胞的转染U251细胞,结果显示pEGFP-C1/Ezrin87转染的U251细胞大量迁移至伤口,伤口愈合较快,而转染pEGFP-C1/Ezrin251的U87细胞迁移的细胞数少于pEGFP-C1/Ezrin87转染组,伤口愈合较慢。裸鼠脑瘤动物模型也证实了这种结果。Rac1的表达量也与这种结果吻合。表明Ezrin可造成U251和U87细胞迁移、侵袭能力不同,且通过激活Rac1实现的。
Glioma is the tumor in the neural ectoderm, is the most common type of primaryintracranial tumors, it has high incidence and mortality, the rate of incidence is3~10per100thousand, accounted for46%of all intracranial tumors,1%~3%of systemicmalignant tumors,5-year survival rate is20%~30%[12],and is a difficulty pointsfor the central nervous system diseases. Surgical resection and radiotherapy (RT),supplemented by chemotherapy is the current treatment standard, but gliomatreatment resistance, making very poor prognosis in glioma, average age12-15months[2-4]. Although in recent years, with the development and application of neuralimaging and intraoperative tumor tracer technology, it makes progress in the treatmentof glioma, but also difficult to ensure that predominantly surgical treatment cancompletely eradicate the tumor, the basic reason is the growth of gliomacharacteristics.
     Recent years base on the research of gliomas molecular targets, targeted therapydrugs the development, clinical trial has certain therapeutic effect, but far fromexpected results. Moreover, although workers have done many studies on themechanism of invasive tumor growth, but still can't solve the mechanism of gliomainvasive growth, so further study of the mechanism and finding the effective way oftreatment, is the key to treatment of glioma and improve the quality of survival.
     Tumor metastasis is the biological characteristics of malignant tumor, cellmovement ability enhanced lead to the migration and invasion, cytoskeletonremodeling is a direct reason, and Ezrin is actin bridge connected to the cellmembrane and membrane surface receptor[18], involved in many kinds of actinfunctions such as cell adhesion[20], cell movement and morphogenesis[21].Up-regulated the expression of variety of tumor tissue[8-15], including glioma. But therole of Ezrin in infiltrating growth of gliomas is not clear.
     Combine with the current situation of biological characteristics, treatment ofglioma and the role of Ezrin genes in tumor migration and invasion, this paper studiesthe relationship of invasive growth between Ezrin and glioma cells U87、U251, and discuss the mechanism. The main research results:
     1.The shRNA’s expression vector of Ezrin gene was constructed successfully,and U87cells were transfected by liposomes Lipofectimine2000, RT-PCR andWestern blot results showed that shRNA-Ezrin-2can be used to be silent theexpression of Ezrin, and made the expression levels of mRNA and protein decreased,it was identified to be valid shRNA vector.
     2. The pEGFP-C1/Ezrin that was the expression vector of Ezrin gene wasconstructed successfully. Western blot detect the recombinant vector pEGFP-C1/Ezrinturn transfection group that Ezrin expression levels was higher than the empty vectorpEGFP-C1transfection group and blank control group.
     3. After U87cells were transfected by shRNA vectors and expression vectors ofEzrin gene respectively, scratch experiments show that Ezrin shRNA can block themigration of U251and U87cells, and its over-expression can promote the cellmigration. The result of Brain tumor model in nude mice show that,compared withthe control group, the number of transfection shRNA-Ezrin-2on cell migration isless than transfection pEGFP C1/Ezrin. It show that Ezrin gene silencing can blockthe invasive growth of U251and U87, over expression can promote migration,increase its infiltration growth, so Ezrin participation in the invasive growth of U251and U87.
     4. To study the effects of Ezrin on migration of U251and U87, invasive growthmechanism, rt-pcr and Western blot analysis of shRNA Ezrin-2and over expressionvector pEGFP C1/Ezrin transfection cells the expression of Rac1, Results show thatexpression level of pEGFP-C1/Ezrin transferred group Rac1is higher thanshRNA-Ezrin-2transferred group and the control group, and shRNA-Ezrin-2transfected group is lower than control group. The results indicate that Ezrin canactivate the Rac1, the effects of Ezrin on U251and U87cells are achieved throughRac1.
     5. Transwell found the ability of U87cells migration is stronger than the U251cells, to know the reason of this difference, the structure of Ezrin was analyzed, andresults show that the Ezrin protein of U87cells in the66th,258,265and577-bit isvariable, and the C-terminus amino acid of34is the binding site of Ezrin and F-actin, N terminus43amino acids is the functional region,it is connected to the Cterminus107amino acids[26], we do not know in this area amino acid variations, whether affect the Ezrin and F-actin or combination of membranes and influence itsfunction, and then affects the cell migration. This study analysed Ezrin protein andfunction on the different infiltration ability of glioma cells with U251and U87throughbioinformatics methods. the U251cells Ezrin protein "matched" has362,and the U87cell Ezrin protein has1503,Ezrin structure function showed that,the number of PDBin Ezrin of U87is more than U251.According to the analysis, while the SCOP andCATH have the same hierarchical structure of the domain structure and hierarchicalclassification; Domain organization in Ezrin of U87cells had45, while the U251hadonly5. The further analysis of SWISS-MODEL, Coloring by residue error, the Ezrinof U87and U251cells had8difference, QMEAN4rate that the Ezrin of U87cellswas less than U251cells; SWISS-PDB Viewer showed that the258th,265th aminoacids was relatively in the inside of spatial structure. We speculated the function、domain and spatial structure of U87cells’ Ezrin was different from them of U251cells, resulting in the differences of U251and U87cells migration and invasioncapacity.
     6. To test and verify the differences of the Ezrin protein’s structure which lead tothe differences of U251and U87cell migration and invasion ability, we used Ezrin ofU251cells to transfect U87cells, and then used Ezrin of U87cells to transfect U251cells, the results showed that U251cells of pEGFP-C1/Ezrin87migrate to the wound,the wound heal faster, while U87cells was transfected pEGFP-C1/Ezrin251whosenumber of migration was less than the pEGFP-C1/Ezrin87transfection group, and thewound healed slowly. The animal model of brain tumors in nude mice also confirmedthis result. The expression level of Rac1is also consistent with this result. It showedthat Ezrin can cause the differences of U251and U87cells migration and invasion,and achieve through activation of Rac1.
引文
[1] Ohgaki H, Kleihues P. Epidemioligy and etiology of glimas[J]. ActaNeuropathol.2005,109(1):93-108.
    [2] Zhang Y, Chao T, Li R, et a1.MicroRNA-128inhibits glioma ceHs proliferationby targeting transcription factor E2F3a[J].J Mol Med.2009,87(1):43-51.
    [3] Sahin A, Vercamer C, Kaminski A, et a1.Dominant-negative inhibition of Ets1suppresses tumor growth,invasion and migration in rat C6glioma cells andreveals differentially expressed Ets l target genes[J].Int J Oncol.2009,34(2):377-389.
    [4] Zhou Z, Yuan X, Li Z, et a1. RNA interference targeting EphA2inhibitsproliferation, induces apoptosis, and cooperates with cytotoxic drugs in humanglioma cells[J].Surg Neurol.2008,70(6):562-568.
    [5] Hegedus B, BaneIjee D, Yeh TH, et a1.Preelinical cancer therapy in a mousemodel of neurofibromatosis-1opticgliom4[J]. Cancer Res.2008,68(5):1520-1528.
    [6] Zheng H, Ying H, Yan H, et a1. p53and Pten control neural and gliomastem/progenitor cell renewal and differentiation[J]. Nature.2008,455(16):1129-1133.
    [7] Carpentier AF. Neuro-oncology: the growing role of chemotherapy in glioma[J].Lancet Neurol.4(1),4–5(2005).
    [8] Schwartzbaum JA, Fisher JL, Aldape KD, et al. Epidemiology and molecularpathology of glioma[J]. Nat Clin Pract Neurol.2(9),494–503(2006).
    [9] Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med.2008,359(5):492–507.
    [10] Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the roleof ERM proteins[J]. Nat Rev Mol Cell Biol.2010,11(4):276-287.
    [11] Arpin M, Chirivino D, Naba A, et al. Emerging role for ERM proteins in celladhesion and migration[J]. Cell Adh Migr.2011,5(2):199-206.
    [12] Naba A, Reverdy C, Louvard D,et al. Spatial recruitment and activation of theFes kinase by ezrin promotes HGF-induced cell scattering[J]. EMBO J.2008,27(1):38-50.
    [13] Fievet B, Louvard D, Arpin M. ERM proteins in epithelial cell organization andfunctions[J]. Biochim Biophys Acta.2007,1773(5):653-660.
    [14] Chuan YC, Pang ST, Cedazo-Minguez A, et al. Androgen induction of prostatecancer cell invasion is mediated by ezrin[J]. J Biol Chem.2006,281(40):29938-29948.
    [15] Yu Y, Khan J, Khanna C, et al. Expression profiling identifies the cytoskeletalorganizer ezrin and the developmental homeoprotein Six-1as key metastaticregulators[J].Nat Med,2004,10(2):175-181.
    [16] Tynninen O, Carpén O, J skel inen J, et al.Ezrin expression in tissuemicroarray of primary and recurrent gliomas[J]. Neuropathol Appl Neurobiol.2004,30(5):472-477.
    [17]周龙,袁先厚,文志华. Ezrin蛋白与E钙粘素在脑胶质瘤中的表达及意义[J].武汉大学学报(医学版),2010,31(5):676-679.
    [18] Ohgaki H, Kleihues P. Epidemioligy and etiology of glimas[J]. ActaNeuropathol,2005,109(1):93-108.
    [19] Zhang Y, Chao T, Li R, et a1.MicroRNA-128inhibits glioma ceHs proliferationby targeting transcription factor E2F3a[J].J Mol Med.2009,87(1):43-51.
    [20] Sahin A, Vercamer C, Kaminski A, et a1.Dominant-negative inhibition of Ets1suppresses tumor growth,invasion and migration in rat C6glioma cells andreveals differentially expressed Ets l target genes[J].Int J Oncol.2009,34(2):377-389.
    [21] Zhou Z, Yuan X, Li Z, et a1. RNA interference targeting EphA2inhibitsproliferation, induces apoptosis, and cooperates with cytotoxic drugs in humanglioma cells[J].Surg Neurol.2008,70(6):562-568.
    [22] Gary R, Bretschert A. Ezrin Self-Association Involves Binding of anN-Terminal Domain to a Normally Masked C-Terminal Domain that Includesthe F-Actin Binding Site[J]. Mol Biol Cell.1995,6(8):1061-1075
    [23] CBTRUS (2010). CBTRUS Statistical Report: Primary Brain and CentralNervous System Tumors Diagnosed in the United States in2004–2006.Hinsdale, IL: Central Brain Tumor Registry of the United States; February2010. http://www.cbtrus.org.
    [24] Fischer I,Aldape K. Molecular Tools:Biology, Prognosis,and TherapeuticTriage[J]. Neuroimaging Clin N Am.2010,20(3):273–282.
    [25] Ohgaki H. Genetic pathways to glioblastomas[J].Neuropathology2005;25(1):1–7.
    [26] Ohgaki H, Dessen P, Jourde B, et al. Genetic pathways to glioblastoma: apopulation-based study[J].Cancer Res2004;64(19):6892–6899.
    [27] Ohgaki H, Kleihues P. Genetic pathways to primary and secondaryglioblastoma[J]. Am J Pathol2007;170(5):1445–1453.
    [28] Wolter M, Reifenberger J, Blaschke B, et al. Oligodendroglial tumorsfrequently demonstrate hypermethylation of the CDKN2A (MTS1, p16INK4a),p14ARF, and CDKN2B (MTS2, p15INK4b) tumor suppressor genes[J]. JNeuropathol Exp Neurol.2001;60(12):1170–1180.
    [29] Griffin CA, Burger P, Morsberger L, et al. Identification of der(1;19)(q10;p10)in five oligodendrogliomas suggests mechanism of concurrent1p and19qloss[J]. J Neuropathol Exp Neurol2006;65(10):988–994.
    [30] Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates,and genetic alterations in astrocytic and oligodendroglial gliomas[J]. JNeuropathol Exp Neurol2005;64(6):479–89.
    [31] Houillier C, Lejeune J, Benouaich-Amiel A, et al.Prognostic impact ofmolecular markers in a series of220primary glioblastomas[J]. Cancer2006;106(10):2218–2223.
    [32] Furnari FB, Fenton T, Bachoo RM et al. Malignant astrocytic glioma:genetics,biology, and paths to treatment[J]. Genes Dev.2007,21(21):2683–2710.
    [33] Sathornsumetee S, Reardon DA, Desjardins A, et al. Molecularly targetedtherapy for malignant glioma[J]. Cancer.2007,110(1):13–24.
    [34] Huang PH, Xu AM, White FM.Oncogenic EGFR signaling networks inglioma[J]. Sci Signal.2009,2(87):re6.
    [35] Huse JT, Holland EC. Targeting brain cancer: advances in the molecularpathology of malignant glioma and medulloblastoma[J]. Nat Rev Cancer.2010,10(5):319–331.
    [36] Vivanco I, Sawyers CL. The phosphatidylinositol3-kinase AKT pathway inhuman cancer [J]. Nat Rev Cancer.2002,2:489–501.
    [37] Castellino RC, Durden DL. Mechanisms of disease: the PI3K–AKT–PTENsignaling node–an intercept point for the control of angiogenesis in braintumors[J]. Nat Clin Pract Neurol.2007,3:682–693.
    [38] Guertin DA, Sabatini DM. The pharmacology of mTOR inhibition[J]. SciSignal.2009,2(67):pe24.
    [39] Mackay HJ, Twelves CJ. Targeting the protein kinase C family: are we thereyet[J]? Nat Rev Cancer.2007,7(7):554–562.
    [40] Martiny-Baron G, Fabbro D. Classical PKC isoforms in cancer[J]. PharmacolRes.2007,55(6):477–486.
    [41] Mercer RW, Tyler MA, Ulasov IV,et al. Targeted therapies for malignantglioma: progress and potential[J]. BioDrugs.2009,23(1):25–35.
    [42] Cancer Genome Atlas Research Network.Comprehensive genomiccharacterization defines human glioblastoma genes and core pathways[J].Nature.2008,455(7216):1061–1068.
    [43] Shete S, Hosking FJ, Robertson LB, et al.Genome-wide association studyidentifies five susceptibility loci for glioma[J]. Nat Genet.2009,41(8):899–904.
    [44] Clark MJ, Homer N, O’Connor BD, et al. U87MG decoded: the genomicsequence of a cytogenetically aberrant human cancer cell line[J]. PLoS Genet.2010,6(1):e1000832.
    [45] Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitantand adjuvant temozolomide for glioblastoma[J]. N Engl J Med.2005,352:987–996.
    [46] Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitantand adjuvant temozolomide versus radiotherapy alone on survival inglioblastoma in a randomised phase III study:5-year analysis of theEORTC-NCIC trial[J]. Lancet Oncol.2009,10:459–966.
    [47] Lieberman FS, Cloughesy T, Fine H, et al.NABTC Phase I/II trial of ZD-1839for recurrent malignant gliomas and unresectable meningiomas. J Clin Oncol.2004,22(Suppl.14).
    [48] Rich JN, Reardon DA, Peery T, et al.Phase II trial of gefitinib in recurrentglioblastoma[J]. J Clin Oncol.2004,22(1):133–142.
    [49] Haas-Kogan DA, Prados MD,Tihan T, et al. Epidermal growth factor receptor,protein kinase B/AKT, and glioma response to erlotinib[J].J Natl Cancer Inst.2005,97(12):880–887.
    [50] Wong ET, Hess KR, Gleason MJ, et al.Outcomes and prognostic factors inrecurrent glioma patients enrolled onto Phase II clinical trials[J]. J Clin Oncol.1999,17(8):2572–2578.
    [51] Mellinghoff IK, Wang MY, Vivanco I, et al.Molecular determinants of theresponse of glioblastomas to EGFR kinase inhibitors[J].N Engl J Med.2005,353(19):2012–2024.
    [52] Lassman AB, Rossi MR, Raizer JJ, et al.Molecular study of malignant gliomastreated with epidermal growth factor receptor inhibitors: tissue analysis fromNorth American Brain Tumor Consortium Trials01–03and00–01[J]. ClinCancer Res.2005,11(21):7841–7850.
    [53] Conrad C, Friedman H, Reardon D, et al.A Phase I/II trial of single-agent PTK787/ZK222584(PTK/ZK), a novel, oral angiogenesis inhibitor, in patients withrecurrent glioblastoma multiforme (GBM)[J].J Clin Oncol.2004,22(Suppl.14).
    [54] Reardon D, Friedman H, Yung WKA,et al. A Phase I/II trial ofPTK787/ZK222584(PTK/ZK), a novel, oral angiogenesis inhibitor, incombination with either temozolomide or lomustine for patients with recurrentglioblastoma multiforme (GBM)[J]. J Clin Oncol.2004,22(Suppl.14).
    [55] De Groot JF, Wen PY, Lamborn K, et al.Phase II single arm trial of afliberceptin patients with recurrent temozolomideresistant glioblastoma: NABTC0601[J].J Clin Oncol.2008,26(Suppl.15).
    [56] Dietrich J, Wang D, Batchelor TT.Cediranib: profile of a novel antiangiogenicagent in patients with glioblastoma[J]. Expert Opin Investig Drugs.2009,18(10):1549–1557.
    [57] Batchelor TT, Duda DG, di Tomaso E, et al. Phase II study of cediranib, an oralpan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, inpatients with recurrent glioblastoma[J]. J Clin Oncol.2010,28(17):2817–2823.
    [58] Brandes AA, Stupp R, Hau P, et al. EORTC study26041–22041: Phase I/IIstudy on concomitant and adjuvant temozolomide (TMZ) and radiotherapy (RT)with PTK787/ZK222584(PTK/ZK) in newly diagnosed glioblastoma[J]. Eur JCancer.2010,46(2):348–354.
    [59] Scott BJ, Quant EC, McNamara MB, et al. Bevacizumab salvage therapyfollowing progression in high-grade glioma patients treated with VEGFreceptor tyrosine kinase inhibitors[J]. Neuro Oncol.2010,12(6):603–607.
    [60] Vredenburgh JJ, Desjardins A, Herndon JE, et al. Bevacizumab plus irinotecanin recurrent glioblastoma multiforme[J]. J Clin Oncol.2007,25(30):4722–4729.
    [61] Norden AD, Young GS, Setayesh K, et al.Bevacizumab for recurrent malignantgliomas: efficacy, toxicity, and patterns of recurrence[J]. Neurology.2008,70(10):779–787.
    [62] Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and incombination with irinotecan in recurrent glioblastoma[J]. J Clin Oncol.2009,27(28):4733–4740.
    [63] Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumabfollowed by bevacizumab plus irinotecan at tumor progression in recurrentglioblastoma[J]. J Clin Oncol.2009,27(5):740–745.
    [64] Lai A, Filka E, McGibbon B, et al. Phase II pilot study of bevacizumab incombination with temozolomide and regional radiation therapy for up-fronttreatment of patients with newly diagnosed glioblastoma multiforme: interimanalysis of safety and tolerability[J]. Int J Radiat Oncol Biol Phys.2008,71(5):1372–1380.
    [65] Narayana A, Golfinos JG, Fischer I,et al.Feasibility of using bevacizumab withradiation therapy and temozolomide in newly diagnosed high-grade glioma[J].Int J Radiat Oncol Biol Phys.2008,72(2):383–389.
    [66] Lucio-Eterovic AK, Piao Y, de Groot JF.Mediators of glioblastoma resistanceand invasion during antivascular endothelial growth factor therapy[J]. ClinCancer Res.2009,15(14):4589–4599.
    [67] Chamberlain MC, Raizer J. Antiangiogenic therapy for high-grade gliomas[J].CNS Neurol Disord Drug Targets.2009,8(3):184–194.
    [68] Wen PY, Yung WK, Lamborn KR, et al.Phase I/II study of imatinib mesylatefor recurrent malignant gliomas: North American Brain Tumor ConsortiumStudy99-08[J]. Clin Cancer Res.2006,12(16):4899–4907.
    [69] Raymond E, Brandes AA, Dittrich C, et al.Phase II study of imatinib in patientswith recurrent gliomas of various histologies: a European Organisation forResearch and Treatment of Cancer Brain Tumor Group Study[J]. J Clin Oncol.2008,26(28):4659–4665.
    [70] Reardon DA, Desjardins A, Vredenburgh JJ, et al. Safety and pharmacokineticsof dose-intensive imatinib mesylate plus temozolomide: Phase1trial in adultswith malignant glioma[J]. Neuro Oncol.2008,10(3):330–340.
    [71] Dresemann G, Weller M, Rosenthal MA, et al. Imatinib in combination withhydroxyurea versus hydroxyurea alone as oral therapy in patients withprogressive pretreated glioblastoma resistant to standard dose temozolomide[J].J Neurooncol.2010,96(3):393–402.
    [72] Razis E, Selviaridis P, Labropoulos S, et al. Phase II study of neoadjuvantimatinib in glioblastoma: evaluation of clinical and molecular effects of thetreatment[J]. Clin Cancer Res.2009,15(19):6258–6266.
    [73] Chang SM, Wen P, Cloughesy T, et al.Phase II study of CCI-779in patientswith recurrent glioblastoma multiforme[J]. Invest New Drugs.2005,23(4):357–361.
    [74] Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus(CCI-779) in recurrent glioblastoma multiforme: a North Central CancerTreatment Group Study[J]. J Clin Oncol.2005,23(23):5294–5304.
    [75] Cloughesy TF, Yoshimoto K, Nghiemphu P, et al. Antitumor activity ofrapamycin in a Phase I trial for patients with recurrent PTEN-deficientglioblastoma[J]. PLoS Med.2008,5(1): e8.
    [76] Rao RD, Mladek AC, Lamont JD, et al. Disruption of parallel and convergingsignaling pathways contributes to the synergistic antitumor effects ofsimultaneous mTOR and EGFR inhibition in GBM cells[J]. Neoplasia.2005,7(10):921–929.
    [77] Reardon DA, Desjardins A, Vredenburgh JJ, et al. Phase2trial of erlotinib plussirolimus in adults with recurrent glioblastoma[J]. J Neurooncol.2010,96(2):219–230.
    [78] Kreisl TN, Lassman AB, Mischel PS et al. A pilot study of everolimus andgefitinib in the treatment of recurrent glioblastoma (GBM)[J].J Neurooncol.2009,92(1):99–105.
    [79] Fine HA, Puduvalli VK, Chamberlain MC, et al. Enzastaurin (ENZ) versuslomustine (CCNU) in the treatment of recurrent,intracranial glioblastomamultiforme (GBM): a Phase III study[J]. J Clin Oncol.2008,26(Suppl.15).
    [80] Wick W, Puduvalli VK, Chamberlain MC, et al. Phase III study of enzastaurincompared with lomustine in the treatment of recurrent intracranialglioblastoma[J]. J Clin Oncol.2010,28(7):1168–1174.
    [81] Tabatabai G, Frank B, Wick A, et al. Synergistic antiglioma activity ofradiotherapy and enzastaurin[J]. Ann Neurol.2007,61(2):153–161.
    [82] Wang D, Boerner SA, Winkler JD, et al. Clinical experience of MEK inhibitorsin cancer therapy[J]. Biochim Biophys Acta.2007,1773(8):1248–1255.
    [83] Cloughesy TF, Wen PY, Robins HI, et al.Phase II trial of tipifarnib in patientswith recurrent malignant glioma either receiving or not receivingenzyme-inducing antiepileptic drugs: a North American Brain TumorConsortium Study[J]. J Clin Oncol.2006.24(22):3651–3656.
    [84] Moyal EC, Laprie A, Delannes M et al. Phase I trial of tipifarnib (R115777)concurrent with radiotherapy in patients with glioblastoma multiforme[J]. Int JRadiat Oncol Biol Phys.2007,68(5):1396–1401.
    [85] Gilbert MR, Gaupp P, Liu C et al.A Phase I study of temozolomide (TMZ) andthe farnesyltransferase inhibitor (FTI), lonafarnib (Sarazar, SCH66336) inrecurrent glioblastoma[J]. J Clin Oncol.2006,24(Suppl.18).
    [86] Wen PY, Prados M, Schiff D, et al. Phase II study of XL184(BMS907351), aninhibitor of MET, VEGFR2, and RET, in patients (pts) with progressiveglioblastoma[J].J Clin Oncol.2010,28(Suppl.15).
    [87] Stupp R, Ruegg C. Integrin inhibitors reaching the clinic[J]. J Clin Oncol.2007,25(13):1637–1638.
    [88] Ruegg C, Postigo AA, Sikorski EE, et al. Role of integrin a4b7/a4b P inlymphocyte adherence to fibronectin and VCAM-1and in homotypic cellclustering[J]. J Cell Biol.1992,117(1):179–189.
    [89] Reardon DA, Fink KL, Mikkelsen T, et al.Randomized Phase II study ofcilengitide, an integrin-targeting arginine–glycine–aspartic acid peptide, inrecurrent glioblastoma multiforme[J]. J Clin Oncol.2008,26(34):5610–5617.
    [90] Stupp R, Goldbrunner R, Neyns B, et al.Phase I/IIa trial of cilengitide(EMD121974) and temozolomide with concomitant radiotherapy, followed bytemozolomide and cilengitide maintenance therapy in patients (pts) with newlydiagnosed glioblastoma (GBM)[J]. J Clin Oncol.2007,25(Suppl.18).
    [91] Stupp R, Van Den Bent MJ, Erridge SC, et al. Cilengitide in newly diagnosedglioblastoma with MGMT promoter methylation: protocol of a multicenter,randomized, open-label, controlled Phase III trial (CENTRIC)[J] J Clin Oncol.2010,28(Suppl.15).
    [92] Heasley LE. Autocrine and paracrine signaling through neuropeptide receptorsin human cancer[J]. Oncogene.2001,20(13):1563–1569.
    [93] Rozengurt E. Neuropeptides as growth factors for normal and cancerouscells[J].Trends Endocrinol Metab.2002,13(3):128–134.
    [94] Moody TW, Hill JM, Jensen RT. VIP as a trophic factor in the CNS and cancercells[J]. Peptides2003,24(1):163–177.
    [95] Evers BM. Neurotensin and growth of normal and neoplastic tissues[J].Peptides.2006,27(10):2424–2433.
    [96] Patel O, Shulkes A, Baldwin GS. Gastrinreleasing peptide and cancer[J].Biochim Biophys Acta2006,1766(1):23–41.
    [97] Cornelio D, Roesler R, Schwartsmann G.Gastrin-releasing peptide receptor asa molecular target in experimental anticancer therapy[J]. Ann Oncol.2007,18(9):1457–1466.
    [98] Dorsam RT, Gutkind JS. G-proteincoupled receptors and cancer[J]. Nat RevCancer.2007,7(2):79–94.
    [99] Schally AV. New approaches to the therapy of various tumors based on peptideanalogues[J]. Horm Metab Res.2008,40(5):315–322.
    [100] Moody TW, Merali Z. Bombesin-like peptides and associated receptors withinthe brain: distribution and behavioral implications[J]. Peptides.2004,25(3):511–520.
    [101] Roesler R, Henriques JA, Schwartsmann G. Gastrin-releasing peptide receptoras a molecular target for psychiatric and neurological disorders[J].CNS NeurolDisord Drug Targets.2006,5(2):197–204.
    [102] Jensen RT, Battey JF, Spindel ER, et al. International Union ofPharmacology.LXVIII. Mammalian bombesin receptors:nomenclature,distribution, pharmacology, signaling, and functions in normal and diseasestates[J]. Pharmacol Rev.2008,60(1):1–42.
    [103] Hohla F, Schally AV. Targeting gastrin releasing peptide receptors: newoptions for the therapy and diagnosis of cancer[J]. Cell Cycle.2010,9(9):1738–1741.
    [104] Flores DG, Meurer L, Uberti AF, et al.Gastrin-releasing peptide receptorcontent in human glioma and normal brain[J]. Brain Res Bull.2010,82(1–2):95–98.
    [105] de Farias CB, Lima RC, Lima LO et al.Stimulation of proliferation ofU138-MG glioblastoma cells by gastrin-releasing peptide in combination withagents that enhance cAMP signaling[J]. Oncology.2008,75(1–2):27–31.
    [106] Flores DG, de Farias CB, Leites J, et al.Gastrin-releasing peptide receptorsregulate proliferation of C6glioma cells through a phosphatidylinositol3-kinase-dependent mechanism[J]. Curr Neurovasc Res.2008,5(2):99–105.
    [107] Flores DG, Lenz G, Roesler R,et al. Gastrin-releasing peptide receptorsignaling in cancer[J].Cancer Ther.2009,7(A):332–346.
    [108] Kiaris H, Schally AV, Sun B, et al. Inhibition of growth of human malignantglioblastoma in nude mice by antagonists of bombesin/gastrin-releasingpeptide[J]. Oncogene.1999,18(50):7168–7173.
    [109] de Oliveira MS, Cechim G,Braganhol E et al. Anti-proliferative effect of thegastrin-release peptide receptor antagonist RC-3095plus temozolomide inexperimental glioblastoma models[J]. J Neurooncol.2009,93(2):191–201.
    [110] Schwartsmann G, DiLeone LP, Horowitz M, et al. A Phase I trial of thebombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095in patientswith advanced solid malignancies[J]. Invest New Drugs.2006,24(5):403–412.
    [111] Huang EJ, Reichardt LF. Trk receptors:roles in neuronal signaltransduction[J].Annu Rev Biochem.2003,72:609–642.
    [112] Chiaretti A, Aloe L, Antonelli A, et al.Neurotrophic factor expression inchildhood low-grade astrocytomas and ependymomas[J]. Childs Nerv Syst.2004,20(6):412–419.
    [113] Grotzer MA, Janss AJ, Fung K, et al.TrkC expression predicts good clinicaloutcome in primitive neuroectodermal brain tumors[J]. J Clin Oncol.2000,18(5):1027–1035.
    [114] Brown MC, Staniszewska I, Lazarovici P,et al. Regulatory effect of nervegrowth factor in a9b1integrin-dependent progression of glioblastoma[J]. NeuroOncol.2008,10(6):968–980.
    [115] Calatozzolo C, Salmaggi A, Pollo B et al.Expression of cannabinoid receptorsand neurotrophins in human gliomas[J]. Neurol Sci.2007,28(6):304–310.
    [116] Chin LS, Murray SF, Zitnay KM, et al.K252a inhibits proliferation of gliomacells by blocking platelet-derived growth factor signal transduction[J]. ClinCancer Res.1997,3(5):771–776.
    [117] Schmidt AL, de Farias CB, Abujamra AL, et al. BDNF and PDE4, but not theGRPR, regulate viability of human medulloblastoma cells[J]. J Mol Neurosci.2010,40(3):303–310.
    [118] Johnston AL, Lun X, Rahn JJ, et al.The p75neurotrophin receptor is a centralregulator of glioma invasion[J]. PLoS Biol.2007,5(8): e212.
    [119] Wang L, Rahn JJ, Lun X et al. g-secretase represents a therapeutic target forthe treatment of invasive glioma mediated by the p75neurotrophin receptor.PLoS Biol.2008,6(11):e289.
    [120] Mayer ML. Glutamate receptor ion channels[J]. Curr. Opin. Neurobiol.15(3),282–288(2005).
    [121] Javitt DC. Glutamate as a therapeutic target in psychiatric disorder[J]. MolPsychiatry.2004,9(11):984–997.
    [122] Nakazawa K, McHugh TJ, Wilson MA,et al. NMDA receptors, place cells andhippocampal spatial memory[J]. Nat. Rev Neurosci.2004,5(5):361–372.
    [123] Chen HS, Lipton SA. The chemical biology of clinically tolerated NMDAreceptor antagonists[J]. J Neurochem.2006,97(6):1611–1626.
    [124] Behrens PF, Langemann H, Strohschein R,et al. Extracellular glutamate andother metabolites in and around RG2rat glioma: an intracerebral microdialysisstudy[J]. J Neurooncol.2000,47(1):11–22.
    [125] Takano T, Lin JH, Arcuino G, et al. Glutamate release promotes growth ofmalignant gliomas[J].Nat Med.2001,7(9):1010–1015.
    [126] Lyons SA, Chung WJ, Weaver AK,et al. Autocrine glutamate signalingpromotes glioma cell invasion[J]. Cancer Res.2007,67(19):9463–9471.
    [127]. Abdul M, Hoosein N. N-methyl-daspartate receptor in human prostatecance[J]r. J Membr Biol.2005,205(3):125–128.
    [128] Watanabe K, Kanno T, Oshima T, et al. The NMDA receptor NR2A subunitregulates proliferation of MKN45human gastric cancer cells[J]. BiochemBiophys Res Commun.2008,367(2):487–490.
    [129] North WG, Gao G, Memoli VA, et al. Breast cancer expresses functionalNMDA receptors[J]. Breast Cancer Res Treat.2010,122(2):307–314.
    [130] Kalariti N, Lembessis P, Koutsilieris M.Characterization of the glutamatergicsystem in MG-63osteoblast-like osteosarcoma cells[J].Anticancer Res.2004,24(6):3923–3929.
    [131] Choi SW, Park SY, Hong SP, et al. The expression of NMDA receptor1isassociated with clinicopathological parameters and prognosis in the oralsquamous cell carcinoma[J]. J Oral Pathol Med.2004,33(9):533–537.
    [132] Rzeski W, Ikonomidou C, Turski L.Glutamate antagonists limit tumor growth.Biochem Pharmacol.2002,64(8):1195–1200.
    [133] Stepulak A, Sifringer M, Rzeski W, et al.NMDA antagonist inhibits theextracellular signal-regulated kinase pathway and suppresses cancergrowth[J]..Proc Natl Acad Sci. USA2005,102(43):15605–15610.
    [134] Ishiuchi S, Tsuzuki K, Yoshida Y, et al.Blockage of Ca(2+)-permeable AMPAreceptors suppresses migration and induces apoptosis in human glioblastomacells[J]. Nat Med.2002,8(9):971–978.
    [135] Piao Y, Lu L, de Groot J. AMPA receptors promote perivascular gliomainvasion via b1integrin-dependent adhesion to the extracellular matrix[J].Neuro Oncol.2009,11(3):260–273.
    [136] van Vuurden DG, Yazdani M, Bosma I, et al. Attenuated AMPA receptorexpression allows glioblastoma cell survival in glutamate-rich environment[J].PLoS One.2009,4(6), e5953.
    [137] Nicoletti F, Arcella A, Iacovelli L,et al.Metabotropic glutamate receptors: newtargets for the control of tumor growth?Trends Pharmacol Sci[J].2007,28(5):206–213.
    [138] Iwamoto FM, Kreisl TN, Kim L, et al.Phase2trial of talampanel, a glutamatereceptor inhibitor, for adults with recurrent malignant gliomas[J]. Cancer.2010,116(7):1776–1782.
    [139] Grossman SA, Ye X, Chamberlain M, et al.Talampanel with standardradiation and temozolomide in patients with newly diagnosed glioblastoma: amulticenter Phase II trial[J]. J Clin Oncol.2009,27(25):4155–4161.
    [140] Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitantand adjuvant temozolomide versus radiotherapy alone on survival inglioblastoma in a randomised Phase III study:5-year analysis of theEORTC–NCIC trial[J]. Lancet Oncol.2009,10(5):459–466.
    [141] Baselga J, Tripathy D, Mendelsohn J et al.Phase II study of weekly intravenousrecombinant humanized anti-p185HER2monoclonal antibody in patients withHER2/neu-overexpressing metastatic breast cancer[J]. J Clin Oncol.1996,14(3):737–744.
    [142] Schwechheimer K, L ufe RM, Schmahl W, Kn dlseder M, Fischer H, H fer H.Expression of neu/c-erbB-2in human brain tumors[J]. Hum Pathol.1994,25(8):772–780.
    [143] Kristt DA, Yarden Y. Differences between phosphotyrosine accumulation andNeu/ErbB-2receptor expression in astrocytic proliferative processes.Implications for glial oncogenesis[J]. Cancer.1996,78(6):1272–1283.
    [144] Koka V, Potti A, Forseen SE, et al. Role of Her-2/neu overexpression andclinical determinants of early mortality in glioblastoma multiforme[J]. Am JClin Oncol.2003,26(4):332–335.
    [145].Mineo JF, Bordron A, Baroncini M, et al.Low HER2-expressing glioblastomasare more often secondary to anaplastic transformation of low-grade glioma[J].JNeurooncol.2007,85(3):281–287.
    [146] Haynik DM, Roma AA, Prayson RA.HER-2/neu expression in glioblastomamultiforme. Appl. Immunohistochem[J]. Mol Morphol.2007,15(1):56–58.
    [147] Mineo J-F, Bordron A, Quintin-Roué I, et al. Recombinant humanisedanti-HER2/neu antibody (Herceptin) induces cellular death of glioblastomas. BrJ Cancer.2004,91(6):1195–1199.
    [148] Thiessen B, Stewart C, Tsao M,et al.A Phase I/II trial of GW572016(lapatinib) in recurrent glioblastoma multiforme: clinical outcomes,pharmacokinetics and molecular correlation[J]. Cancer Chemothe. Pharmacol.2009,65(2):353–361.
    [149] Furman MA, Shulman K. Cyclic AMP and adenyl cyclase in braintumors[J].J Neurosurg.1977,46(4):477–483.
    [150] Chen TC, Hinton DR, Zidovetzki R,et al. Up-regulation of the cAMP/PKApathway inhibits proliferation,induces differentiation, and leads to apoptosis inmalignant gliomas. Lab Invest.1998,78(2):165–174.
    [151] Chen TC, Wadsten P, Su S, et al. The type IV phosphodiesterase inhibitorrolipram induces expression of the cell cycle inhibitors p21(Cip1) andp27(Kip1),resulting in growth inhibition, increased differentiation, andsubsequent apoptosis of malignant A-172glioma cells[J]. Cancer Biol Ther.2002,1(3):268–276.
    [152] Helmbrecht K, Rensing L.Different constitutive heat shock protein70expression during proliferation and differentiation of rat C6glioma cells[J].Neurochem Res.1999,24(1):1293–1299.
    [153] Goldhoff P, Warrington NM, Limbrick DD, et al. Targeted inhibition ofcyclic AMP phosphodiesterase-4promotes brain tumor regression[J]. ClinCancer Res.2008,14(23):7717–7725.
    [154] Schmidt AL, de Farias CB, Abujamra AL,et al.Phosphodiesterase-4inhibitionand brain tumor growth[J].. Clin Cancer Res.2009,15(9):3238.
    [155] Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise ofepigenetic (and more) treatments for cancer[J]. Nat Ver Cancer.2006,6(1):38–51.
    [156] Burgess R, Jenkins R, Zhang Z. Epigenetic changes in gliomas[J]. Cancer BiolTher.2008,7(9):1326–1334.
    [157] Nagarajan RP, Costello JF. Molecular epigenetics and genetics inneuro-oncology.[J] Neurotherapeutics.2009,6(3):436–446.
    [158] Kamitani H, Taniura S, Watanabe K, et al.Histone acetylation may suppresshuman glioma cell proliferation when p21WAF/Cip1and gelsolin areinduced[J]. Neuro Oncol.2002,4(2):95–101.
    [159] Kim MS, Blake M, Baek JH,et al. Inhibition of histone deacetylase increasescytotoxicity to anticancer drugs targeting DNA[J]. Cancer Res.2003,63(21):7291–7300.
    [160] Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of humanglioblastoma cells to trichostatin A, a histone deacetylase inhibitor[J]. Int JRadiat Oncol Biol Phys.2004,59(4):1174–1180.
    [161] Sawa H, Murakami H, Kumagai M, et al.Histone deacetylase inhibitor,FK228,induces apoptosis and suppresses cell proliferation of humanglioblastoma cells in vitro and in vivo[J]. Acta Neuropathol.2004,107(6):523–531.
    [162] Entin-Meer M, Rephaeli A, Yang X,et al. Butyric acid prodrugs are histonedeacetylase inhibitors that show antineoplastic activity and radiosensitizingcapacity in the treatment of malignant gliomas[J]. Mol Cancer Ther.2005,4(12):1952–1961.
    [163] Komata T, Kanzawa T, Nashimoto T,et al. Histone deacetylase inhibitors,N-butyric acid and trichostatin A, induce caspase-8-but not caspase-9-dependent apoptosis in human malignant glioma cells[J]. Int J Oncol.2005,26(5):1345–1352.
    [164] Wetzel M, Premkumar DR, Arnold B,et al. Effect of trichostatin A, a histonedeacetylase inhibitor, on glioma proliferation in vitro by inducing cell cyclearrest and apoptosis[J]. J Neurosurg.2005,103(6Suppl.):549–556.
    [165] Das CM, Aguilera D, Vasquez H, et al.Valproic acid induces p21andtopoisomerase-II (a/b) expression and synergistically enhances etoposidecytotoxicity in human glioblastoma cell lines[J]. J Neurooncol.2007,85(2):159–170.
    [166] Wetzel M, Premkumar DR, Arnold B,et al. Effect of trichostatin A, a histonedeacetylase inhibitor, on glioma proliferation in vitro by inducing cell cyclearrest and apoptosis[J]. J Neurosurg.2005,103(6Suppl.):549–556.
    [167] Das CM, Aguilera D, Vasquez H,et al.Valproic acid induces p21andtopoisomerase-II (a/b) expression and synergistically enhances etoposidecytotoxicity in human glioblastoma cell lines[J]. J Neurooncol.2007,85(2):159–170.
    [168] Masoudi A, Elopre M, Amini E et al.Influence of valproic acid on outcome ofhigh-grade gliomas in children[J]. Anticancer Res.2008,28(4C):2437–2442.
    [169] Wolff JE, Kramm C, Kortmann RD, et al.Valproic acid was well tolerated inheavily pretreated pediatric patients with high-grade glioma[J]. J Neurooncol.2008,90(3):309–314.
    [170] Galanis E, Jaeckle KA, Maurer MJ, et al.Phase II trial of vorinostat inrecurrent glioblastoma multiforme: a North Central Cancer Treatment[J].Group study. J Clin Oncol.2009,27(12):2052–2058.
    [171] Singh SK, Clarke ID, Terasaki M, et al.Identification of a cancer stem cell inhuman brain tumors[J]. Cancer Res.2003,63(18):5821–5828.
    [172] Singh SK, Hawkins C, Clarke ID, et al.Identification of human brain tumourinitiating cells[J]. Nature.2004,432(7015):396–401.
    [173] Flores DG, Ledur PF, Abujamra AL, et al.Cancer stem cells and the biologyof brain tumors[J]. Curr Stem Cell Res Ther.2009,4(4):306–313.
    [174] Roesler R, Cornelio DB, Abujamra AL,et al. HER2as a cancer stem-celltarget[J]. Lancet Oncol.2010,11(3):225–226.
    [175] Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics[J].Nat Rev Cancer2004,4:296–307.
    [176] Esteller M, Garcia-Foncillas J, Andion E, et al.Inactivation of the DNA-repairgene MGMT and the clinical response of gliomas to alkylating agents [J]. NEngl J Med.2000,343:1350–1354.
    [177] Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefitfrom temozolomide in glioblastoma[J]. N Engl J Med.2005,352:997–1003.
    [178] Dolan ME, Mitchell RB, Mummert C, et al. Effect of O6-benzylguanineanalogues on sensitivity of human tumor cells to the cytotoxic effects ofalkylating agents[J]. Cancer Res.1991,51:3367–3372.
    [179] Wedge SR, Porteous JK, Newlands ES.3-aminobenzamide and/orO6-benzylguanine evaluated as an adjuvant to temozolomide or BCNUtreatment in cell lines of variable mismatch repair status and O6-alkylguanine-DNA alkyltransferase activity[J]. Br J Cancer.1996,74:1030–1036.
    [180] Quinn JA, Jiang SX, Reardon DA, et al. Phase II trial of temozolomide plusO6-benzylguanine in adults with recurrent, temozolomide-resistant malignantglioma[J].J Clin Oncol.2009,27:1262–1267.
    [181] Quinn JA, Jiang SX, Carter J, et al. Phase II trial of Gliadel plusO6-benzylguanine in adults with recurrent glioblastoma multiforme[J]. ClinCancer Res.2009,15:1064–1068.
    [182] Tolcher AW, Gerson SL, Denis L, et al. Marked inactivation ofO6-alkylguanine-DNA alkyltransferase activity with protracted temozolomideschedules[J]. Br JCancer.2003,88:1004–1011.
    [183] Clarke JL, Iwamoto FM, Sul J, et al. Randomized phase II trial ofchemoradiotherapy followed by either dose-dense or metronomictemozolomide for newly diagnosed glioblastoma[J]. J Clin Oncol.2009,27:3861–3867.
    [184] Groves MD, Puduvalli VK, Gilbert MR, et al. Two Phase II trials oftemozolomide with interferon-a2b (pegylated and non-pegylated) in patientswith recurrent glioblastoma multiforme[J]. Br J Cancer.2009,101(4):615–620.
    [185] Tentori L, Leonetti C, Scarsella M, et al. Systemic administration of GPI15427, a novel poly(ADP-ribose) polymerase-1inhibitor, increases theantitumor activity of temozolomide against intracranial melanoma,glioma,lymphoma[J]. Clin Cancer Res.2003,9(14):5370–5379.
    [186] Zheng H, Ying H, Wiedemeyer R et al.PLAGL2regulates Wnt signaling toimpede differentiation in neural stem cells and gliomas[J]. CancerCell.2010,17(5):497–509.
    [187] Arpin M, Chirivino D, Naba A, et al. Emerging role for ERM proteins in celladhesion and migration[J]. Cell Adh Migr.2011,5(2):199-206.
    [188] Shiue H, Musch MW, Wang Y, et al. Akt2phosphorylates ezrin to triggerNHE3translocation and activation[J]. J Biol Chem.2005,280(2):1688-1695.
    [189] Heiska L, Melikova M, Zhao F, Ezrin is key regulator of Src-inducedmalignant phenotype in three-dimensional environment[J].Oncogene.2011,30(50):4953-4962.
    [190] Tynninen O, Carpén O, J skel inen J, et al.Ezrin expression in tissuemicroarray of primary and recurrent gliomas[J]. Neuropathol Appl Neurobiol.2004,30(5):472-477.
    [191] Hunter KW. Ezrin, a key component in tumor metastasis[J]. Trends Mol Med.2004,10(5):201-204.
    [192] Khanna C, Wan X, Bose S, et al. The membrane-cytoskeleton linker ezrin isnecessary for osteosarcoma metastasis[J]. Nat Med.2004,10(2):182-186.
    [193] Yu Y, Khan J, Khanna C, et al. Expression profiling identifies the cytoskeletalorganizer ezrin and the developmental homeoprotein Six-1as key metastaticregulators[J].Nat Med.2004,10(2):175-181.
    [194] Elliott BE, Meens JA, SenGupta SK, et al. The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells[J]. BreastCancer Res.2005,7(3):R365-373.
    [195] Pujuguet P, Del Maestro L, Gautreau A, et al. Ezrin Regulates E-Cadherin-dependent Adherens Junction Assembly through Rac1Activation[J].Mol BioCell.2003,14(5):2181-2191.
    [196] Gary R, Bretschert A. Ezrin Self-Association Involves Binding of anN-Terminal Domain to a Normally Masked C-Terminal Domain that Includesthe F-Actin Binding Site[J]. Mol Biol Cell.1995,6(8):1061-1075.
    [197] van den Bent MJ, Brandes AA, Rampling R et al. Randomized Phase II trial oferlotinib versus temozolomide or carmustine in recurrent glioblastoma:EORTCbrain tumor group study26034[J].J Clin Oncol.2009,27(8):1268–1274.
    [198] Wen PY, Yung WK, Lamborn KR, et al.Phase I/II study of imatinib mesylatefor recurrent malignant gliomas: North American Brain Tumor ConsortiumStudy99-08[J]. Clin Cancer Res.2006,12(16):4899–4907.
    [199] Kreisl TN, Kotliarova S, Butman JA,et al.A Phase I/II trial of enzastaurin inpatients with recurrent high-grade gliomas[J]. Neuro Oncol.2010,12(2):181–189.
    [200] Zaidel-Bar R, Geiger B. The switchable integrin adhesome. J Cell Sci.2010,123:1385-8.
    [201] Li Q, Nance M R, Kulikauskas R, et al. Self-masking in an intact ERM-merlinprotein:An active role for the central α-helical domain[J]. J Mol Biol.2007,365:1446–1459.
    [202] Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: Integrators atthe cell cortex[J]. Nat Rev Mol Cell Biol.2002,3:586–599.
    [203] Fi′evet B, Louvard D,Arpin M. ERMproteins in epithelial cell organization andfunctions. Biochim Biophys Acta.2007,1773:653–660.
    [204] Doi Y, Itoh M, Yonemura S, et al. Normal development of mice andunimpaired cell adhesion/cell motility/actin-based cytoskeleton withoutcompensatory up-regulation of ezrin or radixin in moesin gene knockout[J]. JBiol Chem.1999,274:2315–2321.
    [205] Barret C, Roy C, Montcourrier P, et al.Mutagenesis of the PIP2binding site inthe N-terminal domain of ezrin correlates with its altered cellular distribution[J].J Cell Biol.2000,151:1067–1079.
    [206] Hamada K, Shimizu T, Matsui T, et al. Structural basis of themembrane-targeting and unmasking mechanisms of the radixin FERMdomain[J]. EMBO J.2000,19:4449–4462.
    [207] Niggli V, Andr′eoli C, Roy C, et al. Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin[J]. FEBSLett.1995,376:172–176.
    [208] Baumgartner M, Sillman AL, Blackwood EM, et al. The Nck-interacting kinasephosphorylates ERM proteins for formation of lamellipodium by growthfactors[J]. Proc Natl Acad Sci USA.2006,103:13391–13396.
    [209] Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signallingin leucocytes[J]. Immunology.2004,112:165–176.
    [210] Loebrich S, Bahring R, Katsuno T, et al. Activated radixin is essential forGABAA receptor α5subunit anchoring at the actin cytoskeleton[J]. EMBOJ.2005,25:987–999.
    [211] Tamura A, Kikuchi S, Hata M, et al. Achlorhydria by ezrin knockdown:Defects in the formation/expansion of apical canaliculi in gastric parietalcells[J]. J Cell Biol.2005,169:21–28.
    [212] Kikuchi M, Hata K, Fukumoto Y, et al. Radixin deficiency causes conjugatedhyperbilirubinemia with loss of Mrp2from bile canalicular membranes[J]. NatGenet.2002,31:320–325.
    [213] Kitajiri S, Fukumoto K, Hata M, et al. Radixin deficiency causes deafnessassociated with progressive degeneration of cochlear stereocilia[J].J CellBiol.2004,166:559–570.
    [214] Khan SY, Ahmed ZM, Shabbir MI, et al. Mutations of the RDX gene causenonsyndromic hearing loss at the DFNB24locus[J]. Hum Mut.2007,28:417–423.
    [215] Turunen O, Wahlstrom T, Vaheri A. Ezrin has a COOH-terminal actin-bindingsite that is conserved in the ezrin protein family[J]. J Cell Biol.1994,126:1445-53.
    [216] Charrin S, Alcover A. Role of ERM(ezrin-radixin-moesin) proteins in Tlymphocyte polarization, immune synapse formation and in T cellreceptor-mediated signalling[J]. Front Biosci.2006,11:1987–1997.
    [217] Rossy J, Gutjahr MC, Blaser N, et al.Ezrin/moesin in motile Walker256carcinosarcoma cells: Signal dependent relocalization and role in cell migration.Exp Cell Res.2004,313:1106–1120.
    [218] Gupta N, Wollscheid B, Watts JD, et al. Quantitative proteomic analysis of Bcell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raftdynamics[J]. Nat Immunol.2006,7:625–633.
    [219] Algrain M, Turunen O, Vaheri A, et al. Ezrin contains cytoskeleton andmembrane binding domains accounting for its proposed role as amembrane-cytoskeletal linker[J]. J Cell Biol.1993,120:129-39.
    [220] Gary R, Bretscher A. Ezrin self-association involves binding of an N-terminaldomain to a normally masked C-terminal domain that includes the F-actinbinding site[J]. Mol Biol Cell.1995,6:1061-75.
    [221] Smith WJ, Nassar N, Bretscher A,et al. Structure of the active FERM domainof ezrin: conformational and mobility changes identify keystone interactions[J].J Biol Chem.2002.
    [222] Hamada K, Shimizu T, Matsui T, et al. Structural basis of themembrane-targeting and unmasking mechanisms of the radixin FERMdomain[J]. EMBO J.2000,19:4449-62.
    [223] Edwards SD, Keep NH. The2.7A crystal structure of the activated FERMdomain of moesin: an analysis of structural changes on activation[J].Biochemistry.2001,40:7061-8.
    [224] Pearson MA, Reczek D, Bretscher A, et al.Structure of the ERM proteinmoesin reveals the
    [225] FERM domain fold masked by an extended actin binding tail domain[J]. Cell.2000,101:259-70.
    [226] Li Q, Nance MR, Kulikauskas R, et al. Self-masking in an intact ERM-merlin[J].J Mol Biol.2007,365:1446-59.
    [227] Hirao M, Sato N, Kondo T, et al. Regulation mechanism of ERM(Ezrin/Radixin/Moesin) protein/plasma membrane association:possibleinvolvement of phosphatidylinositol turnover and rho-dependent signalingpathway[J]. J Cell Biol.1996,135:37-51.
    [228] Yonemura S, Matsui T, Tsukita S,et al. Rhodependent and-independentactivation mechanisms of ezrin/radixin/moesin proteins: an essential role forpolyphosphoinositides in vivo[J]. J Cell Sci.2002,115:2569-80.
    [229] Fiévet BT, Gautreau A, Roy C, et al. Phosphoinositide binding andphosphorylation act sequentially in the activation mechanism of ezrin[J]. J CellBiol.2004,164:653-9.
    [230] Nakamura F, Amieva MR, Furthmayr H.Phosphorylation of threonine558inthe carboxyterminal actin-binding domain of moesin by thrombin activation ofhuman platelets[J]. J Biol Chem.1995,270:31377-85.
    [231] Pietromonaco SF, Simons PC, Altman A,et al. Protein kinase C-qphosphorylation of moesin in the actinbinding sequence[J]. J Biol Chem.1998,273:7594-603.
    [232] Ng T, Parsons M, Hughes W, et al. Ezrin is a downstream effector oftrafficking PKC/integrin complexes involved in the control of cell motility[J].EMBO J.2001,20:2723-41.
    [233] Baumgartner M, Sillman AL, Blackwood EM, et al. The Nckinteractingkinase phosphorylates ERM proteins for formation of lamellipodium by growthfactors[J]. Proc Natl Acad Sci USA.2006,103:13391-13396.
    [234] Belkina NV, Liu Y, Hao JJ, et al. LOK is a major ERM kinase in restinglymphocytes and regulates cytoskeletal rearrangement through ERMphosphorylation[J]. Proc Natl Acad Sci USA.2009,106.
    [235] ten Klooster JP, Jansen M, Yuan J, et al. Mst4and Ezrin Induce BrushBorders Downstream of the Lkb1/Strad/Mo25Polarization Complex[J]. DevCell.2009,16:551-562.
    [236] Nakamura F, Huang L, Pestonjamasp K,et al. Regulation of F-actin binding toplatelet moesin in vitro by both phosphorylation of threonine558andpolyphosphatidylinositides[J]. Mol Biol Cell.1999,10:2669-85.
    [237] Yonemura S, Hirao M, Doi Y, et al. Ezrin/radixin/moesin (ERM) proteinsbind to a positively charged amino acid cluster in the juxta-membranecytoplasmic domain of CD44, CD43and ICAM-2[J]. J Cell Biol.1998,140:885-895.
    [238] Weinman EJ, Hall RA, Friedman PA, et al. The association of NHERFadaptor proteins with g protein-coupled receptors and receptor tyrosinekinases[J]. Annu Rev Physiol.2006,68:491-505.
    [239] Reczek D, Berryman M, Bretscher A. Identification of EBP50: APDZ-containing phosphoprotein that associates with members of theezrin-radixin-moesin family[J]. J Cell Biol.1997,139:169-179.
    [240] Mori T, Kitano K, Terawaki SI, et al. Structural basis for CD44recognition byERM proteins[J]. J Biol Chem.2008,283:29602-29612.
    [241] Finnerty CM, Chambers D, Ingraffea J, et al. The EBP50-moesin interactioninvolves a binding site regulated by direct masking on the FERM domain[J]. JCell Sci.2003,117:1547-52.
    [242] Chirivino D, Del Maestro L, Formstecher E, et al. The ERM proteins interactwith the class C-Vps/HOPS complex to regulate the maturation ofendosomes[J]. Mol Biol Cell.2011,22:375-385.
    [243] Heiska L, Carpen O. Src phosphorylates ezrin at tyrosine477and induces aphosphospecific association between ezrin and a kelch-repeat protein familymember[J].J Biol Chem.2005,280:10244-10252.
    [244] Speck O, Hughes SC, Noren NK, et al. Moesin functions antagonistically tothe Rho pathway to maintain epithelial integrity[J]. Nature.2003,421:83-7.
    [245] Van Fürden D, Johnson K, Segbert C, et al. The C. elegansezrin-radixin-moesin protein ERM-1is necessary for apical junctionremodelling and tubulogenesis in the intestine[J]. Dev Biol.2004,272:262-276.
    [246] Gobel V, Barrett PL, Hall DH, et al. Lumen morphogenesis in C. elegansrequires the membrane-cytoskeleton linker erm-1[J]. Dev Cell.2004,6:865-873.
    [247] Saotome I, Curto M, McClatchey AI. Ezrin is essential for epithelialorganization and villus morphogenesis in the developing intestine[J]. DevCell.2004,6:855-864.
    [248] Bonilha VL, Rayborn ME, Saotome I,et al. Microvilli defects in retinas ofezrinknockout mice[J]. Exp Eye Res.2006,82:720-729.
    [249] Zhou R, Cao X, Watson C, et al. Characterization of protein kinaseA-mediated phosphorylation of ezrin in gastric parietal cell activation[J]. J BiolChem.2003,278:35651-9.
    [250] Tamura A, Kikuchi S, Hata M, et al. Achlorhydria by ezrinknockdown:defects in the formation/expansion of apical canaliculi in gastricparietal cells[J]. J Cell Biol.2005,169:21-8.
    [251] Kikuchi S, Hata M, Fukumoto K, et al. Radixin deficiency causes conjugatedhyperbilirubinemia with loss of Mrp2from bile canalicular membranes[J]. NatGenet.2002,31:320-5.
    [252] Kitajiri S, Fukumoto K, Hata M, et al. Radixin deficiency causesdeafnessassociated with progressive degeneration of cochlear stereocilia[J]. JCell Biol.2004,166:559-70.
    [253] Pilot F, Philippe JM, Lemmers C, et al. Spatial control of actin organization atadherens junctions by the synaptotagmin-like protein Btsz[J]. Nature.2006,442:580-4.
    [254] Médina E, Williams J, Klipfell E, et al. Crumbs interacts with moesin andbeta(Heavy)-spectrin in the apical membrane skeleton of Drosophila[J]. J CellBiol.2002,158:941-51.
    [255] Dard N, Louvet S, Santa-Maria A, et al. In vivo functional analysis of ezrinduring mouse blastocyst formation[J]. Dev Biol.2001,233:161-73.
    [256] Dard N, Louvet-Vallée S, Santa-Maria A,et al. Phosphorylation of ezrin onthreonine T567plays a crucial role during compaction in the mouse earlyembryo[J]. Dev Biol.2004,271:87-97.
    [257] Louvet S, Aghion J, Santa-Maria A,et al. Ezrin becomes restricted to outercells following asymmetrical division in the preimplantation mouse embryo[J].Dev Biol.1996,177:568-79.
    [258] Naba A, Reverdy C, Louvard D, et al. Spatial recruitment and activation of theFes kinase by ezrin promotes HGF-induced cell scattering[J]. EMBO J.2008,27:38-50.
    [259] Takeuchi K, Sato N, Kasahara H, et al. Perturbation of cell adhesion andmicrovilli formation by antisense oligonucleotides to ERM family members[J].J Cell Biol.1994,125:1371-84.
    [260] Mackay DJG, Esch F, Furthmayr H, et al. Rho-and Rac-dependent assemblyof focal adhesion complexes and actin filaments in permeabilized fibroblasts:an essential role for ezrin/radixin/moesin proteins[J]. J Cell Biol.1997,138:927-38.
    [261] Popoff MR, Geny B. Multifaceted role of Rho, Rac, Cdc42and Ras inintercellular junctions, lessons from toxins[J]. Biochim Biophys Acta.2009,1788:797-812.
    [262] Hipfner DR, Keller N, Cohen SM. Slik Sterile-20kinase regulates Moesinactivity to promote epithelial integrity during tissue growth[J]. Genes Dev.2004;18:2243-8.
    [263] Pujuguet P, Del Maestro L, Gautreau A, et al. Ezrin regulates E-cadherin-dependent adherensjunction assembly through Rac1activation[J]. Mol BiolCell.2003,14:2181-91.
    [264] Yamada S, Nelson WJ. Localized zones of Rho and Rac activities driveinitiation and expansion of epithelial cell-cell adhesion[J]. J Cell Biol.2007,178:517-27.
    [265] Takahashi K, Sasaki T, Mammoto A, et al. Direct interaction of the Rho GDPdissociation inhibitor with ezrin/radixin/moesin initiates the activation of theRho small G protein[J]. J Biol Chem.1997,272:23371-5.
    [266] Prag S, Parsons M, Keppler MD, et al. Ezrin promotes cell migration throughrecruitment of the GEF Dbl to lipid rafts and downstream activation ofCdc42[J]. Mol Biol Cell.2007,18:2935-48.
    [267] Hatzoglou A, Ader I, Splingard A, et al. Gem associates with Ezrin and actsvia the Rho-GAP protein Gmip to downregulate the Rho pathway[J]. Mol BiolCell.2007,18:1242-52.
    [268] Fazioli F, Wong WT, Ullrich SJ, et al. The ezrin-like family of tyrosine kinasesubstrates:receptor-specific pattern of tyrosine phosphorylation and relationshipto malignant transformation[J].Oncogene.1993,8:1335-45.
    [269] Orian-Rousseau V, Morrison H, Matzke A, et al. Hepatocyte growthfactorinduced Ras activation requires ERM proteins linked to both CD44v6andF-actin[J]. Mol Biol Cell.2007,18:76-83.
    [270] Clark P. Modulation of scatter factor/hepatocyte growth factor activity bycell-substratum adhesion[J]. J Cell Sci.1994,107:1265-75.
    [271] Orian-Rousseau V, Chen L, Sleeman JP, et al. CD44is required for twoconsecutive steps in HGF/c-Met signaling[J]. Genes Dev.2002,16:3074-86.
    [272] Legg JW, Isacke CM. Identification and functional analysis of theezrin-binding site in the hyaluronan receptor, CD44[J]. Curr Biol.1998,8:705-8.
    [273] Orian-Rousseau V, Ponta H. Adhesion proteins meet receptors: a commontheme[J]? Adv Cancer Res.2008,101:63-92.
    [274] Crepaldi T, Gautreau A, Comoglio PM, et al. Ezrin is an effector ofhepatocyte growth factor-mediated migration and morphogenesis in epithelialcells[J]. J Cell Biol.1997,138:423-34.
    [275] Penela P, Ribas C, Aymerich I, et al. G protein-coupled receptor kinase2positively regulates epithelial cell migration[J]. EMBO J.2008,27:1206-18.
    [276] Kahsai AW, Zhu S, Fenteany G. G protein-coupled receptor kinase2activatesradixin, regulating membrane protrusion and motility in epithelial cells[J].Biochim Biophys Acta.2010,1803:300-10.
    [277] Cui Y, Wu J, Zong M, Song, et al.Proteomic profiling in pancreatic cancerwith and without lymph node metastasis[J]. Int J Cancer.2009,124:1614-21.
    [278] Belbin TJ, Singh B, Smith RV, et al. Molecular profiling of tumor progressionin head and neck cancer[J]. Arch Otolaryngol Head Neck Surg.2005,131:10-8.
    [279] Sarrio D, Rodriguez-Pinilla SM, Dotor A, et al. Abnormal ezrin localization isassociated with clinicopathological features in invasive breast carcinomas[J].Breast Cancer Res Treatment.2006,98:71-9.
    [280] Elliott BE, Meens JA, SenGupta SK, et al. The membrane-cytoskeletalcrosslinker ezrin is required for metastasis of breast carcinoma cell[J]s. BreastCancer Res.2005,7:365-73.
    [281] Elliott BE, Qiao H, Louvard D, et al. Co-operative effect of c-Src and ezrin inderegulation of cell-cell contacts and scattering of mammary carcinoma cells[J].J Cell Biochem.2004,92:16-28.
    [282] Gavert N, Ben-Shmuel A, Lemmon V, et al. Nuclear factorκB signaling andezrin are essential for L1-mediated metastasis of colon cancer cells[J]. J CellSci.2010,123:2135-43.
    [283] Gavert N, Conacci-Sorrell M, Gast D, et al. L1, a novel target of β-cateninsignaling, transforms cells and is expressed at the invasive front of coloncancers[J]. J Cell Biol.2005,168:633-42.
    [284] Roesler R, Brunetto AT, Abujamra AL, et al.Current and emerging moleculartargets in glioma. Expert Rev. Anticancer Ther.2010,10(11):1735–1751.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700