鹅肥肝中差异表达基因的筛选及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索鹅肥肝形成的分子机理,本研究以12只朗德鹅为试验材料,分填肥组和对照组,每组6只,运用mRNA差异显示(DDRT-PCR)技术,检测填肥组和对照组之间的差异表达片段,将所获得的差异片段克隆测序后与GenBank中已知基因进行序列比对,寻找差异片段的同源基因或序列,并推测差异表达基因的功能。另外,由于鹅肥肝的形成与脂肪代谢密切相关,本研究还选择了7个脂肪性状的候选基因:脂肪细胞型脂肪酸结合蛋白(Adipocyte fatty acid binding protein, A-FABP)、肝脏型脂肪酸结合蛋白(liver fatty acid binding protein, L-FABP)、过氧化物酶体增殖物受体α(proxisome proliferators-activated receptor alpha, PPARα)和γ(proxisome proliferators-activated receptor gmma, PPARγ)、脂蛋白酯酶(lipoprotein lipase, LPL)、肝X受体-α(liver X receptor-α, LXRα)及脂联素(aidponectin, AdipoQ),利用半定量RT-PCR技术检测候选基因和新获得的差异表达基因在鹅肥肝中的表达水平,探讨它们在肥肝形成中的作用机理。结果如下:
     (1)用90对引物组合在填肥组和对照组间检测到40条差异表达片段,经片段回收、二次PCR及克隆测序后共成功获得了22条差异片段序列。经序列比对,在22条差异表达片段中,发现了8条与已知功能基因高度同源;6条与已知EST序列或cDNA序列同源,但其功能未知;8条在GenBank中没有找到相似序列,归为新EST序列。
     (2) 8条已知功能的差异表达基因为:纤维蛋白原α(fibrinogen alpha chain , FGA)基因、纤维蛋白素原γ(fibrinogen gamma chain, FGG)基因、色素框同源物6(Chromobox homolog 6, CBX6)基因、RNA结合基序7(RNA binding motif protein7, RBM7)基因、跨膜蛋白53(transmembrane protein 53, TMEM53)基因、基质金属蛋白酶11(matrix metallopeptidase-11, MMP-11 )基因、C18orf1基因和锌指蛋白469(zinc finger protein 469, ZNF469)基因。
     (3) DDRT-PCR结合半定量RT-PCR检测发现,在鹅肥肝中表达上调的基因有FGA、CBX6、TMEM53、MMP-11、ZNF469、A-FABP、L-FABP和PPARγ基因。而呈现下调趋势的有5条基因,它们是编码FGG、RBM 7、C18orf1、PPARα和LPL的基因。另外,LXRα基因在对照组和填肥组肝脏之间没有显著的表达差异,AdipoQ基因在两组间均不表达。
     (4)上述基因与脂肪代谢、肿瘤的转移、RNA修饰及调控有密切的关系,在强饲的高能饲料诱导下,这些基因在肝脏中的特异性表达变化可能是促进鹅肝脏中脂肪沉积的重要因素,可以将它们作为鹅肥肝形成的候选基因。
In order to search for the molecular mechanism of the goose fatty liver, 12 Landes geese were used in this study. These geese were divided into two groups and 6 geese in each group. The differential expression bands between overfeeding group and control group were detected with technique of mRNA differential display. These differential expression bands were cloned and sequenced and found homologous genes through comparison with known genes from the GenBank, and the possible functions should be predicted. In addition, because of the closely correlation between fat metabolism and development of goose fatty liver, 7 candidate genes of fatty trait were involved in the present study, such as: Adipocyte fatty acid binding protein (A-FABP) gene, liver fatty acid binding protein (L-FABP) gene, proxisome proliferators-activated receptor alpha and gmma gene (PPARαand PPARγ) gene, lipoprotein lipase(LPL)gene, liver X receptor(LXRs) gene and adiponectin(AdipoQ) gene. The mRNA level of these candidate genes and new differential expression genes in goose fatty liver were detected with technique of semi-quantitative RT-PCR, and their effect on the development of fatty liver were explored. The results are as follows:
     (1) 40 differential expression bands were found between overfeeding group and control group using 90 pairs primer combination, and 22 differential expression sequences were obtained successfully through recovering bands, twice PCR, cloning and sequencing. From the 22 differential expression bands, 8 bands that have homologization highly with known functional genes were found; 6 bands were similar with known EST or cDNA, but their functions were unknown; other 8 bands were new EST, their homologies were not found in GenBank.
     (2) 8 differential expression genes whose functions are known, are fibrinogen alpha chain(FAG) gene, fibrinogen gamma chain(FGG) gene, Chromobox homolog 6(CBX6) gene, RNA binding motif protein 7(RBM7), transmembrane protein 53(TMEM 53), matrix metallopeptidase-11 (MMP-11 ) gene, C18orf1 gene and zinc finger protein 469(ZNF469 ) gene.
     (3) With the combination of the DDRT-PCR and semi-quantitative RT-PCR analysis, the following genes were significantly up-regulated in goose fatty liver: FGA, CBX 6, TMEM 53, MMP-11, ZNF469, A-FABP, L-FABP and PPARγ, while 5 genes including FGG, RBM7, C18orf1, PPARαand LPL gene were down-regulated in goose fatty liver. Additionally, the difference of LXRαexpressed between overfeeding group and control group was not significant, and AdipoQ was not expressed in the two groups.
     (4) According to the previous studies, these genes were involved in the fat metabolism, tumorous transfer, RNA modify and regulation. Induced by the high-energy feeds, the special changes of the expression of these genes in goose fatty liver may be important factors in promoting the fatty accumulation in goose fatty liver. So these genes may be the candidate genes of the development of goose fatty liver.
引文
[1]陈耀王.鹅肥肝生产的简史、现状和展望.中国家禽,2005,27(12):1~6
    [2]陈黎洪,肖朝耿,徐治,等.鹅产业现状及鹅肥肝开发.家禽科学,2006,12:3~6
    [3]张以训.我国鹅肥肝生产概况、技术及思考.中国禽业导刊,2003,20(11)13~14
    [4]Fournier E, Peresson R. Relationships between storage and secretion of hepatic lipids in two breeds of geese with different susceptibility to liver steatosis. Poul Sci, 1997, 76:599~607
    [5]Pilo B, George J C. Diurmal and seasonal variations in liver glycogen and fat in relation to metabolic status of liver and metabolic pectoralis in the migratory starling, Sturnus roseus, winter in India. Comp Biochem Physiol, 1983, 74: 601~604
    [6]Reids I M, Dew AM and Williams LA. Haematology of subclincial fatty liver in dairy cow. Res Vet Sci, 1984, 37(1):63~65
    [7]Yasuhara M, Ohama T, Matsuki N. Induction of fatty liver by fasting in suncus. J Lipid res, 1991, 32: 887~891
    [8]Hermier D, Rousselot-Pailley D and Peresson R, et al. Influence of orotic acid and estrogen on hepatic lipid storage and secretion in the goose susceptible to liver steatosis. Biochim Biophys Acta, 1994, 1211(1):97~106
    [9]Guy G, Hermier D. Meat productin and force-feeding ability of different types of ducks. lst World Waterfowl Symposium. Taichung, Taiwai, 1999(1-4):462~468
    [10]Davail S, Guy G and Andre JM, et al. Metabolism in two breeds of geese with moderate or large overfeeding induced liver steatosis. Comp Biochem Physiol, 2000, 126(1):91~99
    [11]Mourot J, Guy G and Lagarrigue S, et al. Role of hepatic lipogenesis in the susceptibility to fatty liver in the goose (Anser Anser). Comp Biochem Physiol, 2001, 130: 227~235
    [12]Bogin, E, Avidar J and Merom M, et al. Biochemical changes associated with fatty liver in geese. Avian Pathol, 1984, 13:683~701
    [13]Hermier D, Salichon MR and Guy G, et al. Differential channeling of liver lipids in relation to hepatic steatosis in the goose. Poul Sci, 1999, 78: 1398~1406
    [14]Davail S, Rideau N and Guy G, et al. Hormonal and metabolic responses to overfeeding in three genotypes of ducks. Comp Biochem Physiol, 2003,134(4):707~715
    [15]Zhao AY, Tang HC and Liu SF, et al. Identification of a differentially-expressed gene in fatty liver of overfeeding geese. Acta Biochimica et Biophysica Sinica, 2007, 39(9): 649~656
    [16]Tsutsumi T, Suauki T and Shimoike T, et al. Interaction of hepatitis C virus core protein with retinoid X receptor alpha modulates its transcriptional activity. Hepatology, 2002, 35: 937~946
    [17]Perlemater G, Sabile A and Leteron P, et al. Hepatitis C virus core protein inhabits microsomaltriglyceride transfer protein activity and very low density lipoprotein secretion: a model viral- related steatosis. FASEB J, 2002, 16: 185~194
    [18]Paradis V, Perlemuter G and Bonvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology, 2001, 34:738~44
    [19]Fromenty B, Robin MA and Igoudjil A, et al. The ins and outs of mitochondrial dysfunction in NASH. Diabetes Metab, 2004, 30:121~38
    [20]Wang Q, Li H and Li N, et al. Tissue Expression and Association with Fatness Traits of Liver Fatty Acid-Binding Protein Gene in Chicken. Poultry Science, 2006, 85:1890~1895
    [21]Makowski L, Hotamisligil GS. Fatty acid binding proteins—the evolutionary crossroads of inflammatory and metabolic response. J Nutr, 2004, 134:2464S~2468S
    [22]Xu a, wang Y and Yu XJ, et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem, 2006, 52:405~2413
    [23] Hotamisligil GS, Johnson RS and Distel RJ, et al. Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science, 1996, 274:1377~1379
    [24] Uysal KT, Scheja L and Wiesbrock SM, et al. Improved glucose and lipid metabolism in genetically obese mice lacking aP2. Endocrinology, 2000, 141:3388~3396
    [25] Scheja L, Makowski L and Uysal KT, et al. Altered insulin secretion associated with reduced lipolytic efficiency in aP2?/? mice. Diabetes, 1999, 48:1987~1994
    [26] Baar RA, Dingfelder CS and Smith LA, et al. Investigation of in vivo fatty acid metabolism in AFABP/aP2 (?/?) mice. Am J Physiol Endocrinol Metab, 2005, 288: 187~193.
    [27]Domcott CM, Moffett S P and Feingold E, et al. Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor gamma interactively influence insulin sensitivity and body composition in males. Metabolism, 2004, 53:303~309
    [28] Furuhashi M, Tuncman G and G?rgün CZ, et al. Treatment of diabetes and atherosclerosis by inhibiting fatty-acid–binding protein aP2. Nature, 2007, 447:959~965
    [29]Wang Q, Li H and Li N, et al. Cloning and characterization of chicken adipocyte fatty acid binding protein gene. Anim Biotechnol, 2004, 15:121~132
    [30]Wang Q, Li H and Li L, et al. Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the Chicken. Poultry Science, 2006, 85:429~434
    [31]叶满红.鸡脂肪酸结合蛋自基因的克隆及其与肌内脂肪的关系.中国农业大学硕士论文, 2003
    [32]罗桂芬,陈继兰,文杰,等.鸡A-FABP基因多态性分析及其与脂肪性状的相关研究.遗传,2006,28(1):39~42
    [33] De Pietro SM, Santome JA. Presence of two new fatty acid binding proteins in catfish liver. Biochem Cell Biol, 1996, 74(5) : 675~680
    [34]Richieri GV, Ogata RT and Kleinfeld AM. Thermodynamic and kinetic properties of fatty acid interactions with rat liver fatty acid-binding protein. J Biol Chem, 1996, 271(49) : 31068-31074
    [35]冯爱娟.大鼠肝细胞L-FABP、FATP4在NAFL形成中的作用.第三军医大学硕士论文, 2004
    [36]Spann NJ, Kang S and Li AC, et al. Coordinate transcriptional repression of liver fatty acid-binding protein and icrosomal triglyceride transfer protein blocks hepatic very low density lipoprotein secretion without hepatosteatosis. J Biol Chem, 2006, 281(44):33066~33077
    [37]Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature, 1990, 347:645~650
    [38]Bookout AL, Jeong Y and Downes M, et al. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell, 2006, 126 (4), 789~799
    [39]Motojima K, Passilly P and Peters J, et al. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator- activated receptor alpha and gamma activators in a tissue and inducer-specific manner. J Biol Chem, 1998, 273: 16710~16714
    [40]Judith S, Alfred EA. The fatty acid transport function of fatty acid-binding proteins. Biochimica et Biophysica Acta, 2000, 1486: 28~44
    [41]Desvergne B, Wahli W. Peroxisome proliferator-activated receptors:nuclear control of metabolism. Endocr. Rev, 1999, 20 (5):649~688
    [42]王军.大鼠肝细胞PPARα在NAFL形成中的作用.第三军医大学硕士论文,2003
    [43]孟和,王桂华,王启贵,等.鸡PPAR基因单核苷酸多态与脂肪性状相关的研究.遗传学报, 2002, 29(2):119~123
    [44]Melanie B, Tarek H and Kenneth B. Analysis of mRNA and protein levels of PPARαand H-FABP in heart during hibernation of thirteen-lined ground squirrels. Cryobiology, 2007, (55):324~378
    [45]Rosen ED, Spiegelman BM. PPAR gamma: a nuclear regulator of metabolism, differentiation and cell growth. J Biol Chem, 2001, 276:37731~37734
    [46]Hollenberg AN, Susulie VS and Madura JP, et al. Funcional antagonism between CCAAT/enhancer binding protein alpha and peroxisome proliferators-activated receptor on the leptin promoter. J Biol Chem, 1997, 72:5283~5290
    [47]Sato K, Fukao K and Seki Y, et al. Expression of the chicken peroxisome proliferators activated receptor-gamma gene is influenced by aging, nutrition, and agonist administration. Poult Sci, 2004, 83(8):1342~1347
    [48]Miyahara T, Schrum L and Rippe R, et al. Peroxisome proliferators activated receptors andhepatic stellate cell activation. J Biol Chem, 2000, 275(46):35715~35722
    [49]赵彩彦.实验性脂肪性肝病发病机制的研究.河北医科大学博士论文, 2004
    [50]范建高,丁晓东,王国良,等.高脂饮食性非酒精性脂肪性肝病大鼠肝脏PPAR-γ表达增强. 2004, 9(4):225~228
    [51] Wion KL, Kirchgessner TG and Lusis AJ, et al. Human lipoprotein lipase complementary DNA sequence. Science, 1987, 235 (4796): 1638~1641
    [52] Hughes TR, Tengku-Muhammad TS and Irvine SA, et al. A novel role of Spl and Spa in the interferon gamma mediated suppression of macrophage lipoprotein lipase gene transcription. J Biol Chem, 2002, 277 (13 ):11097~11106
    [53]Schoonjans K, Gelman L and Haby C, et al. Induction of LPL gene expression by sterols is mediated sterol regulatory element and is independent of the presence of multiple E boxes. J Mol Biol, 2000, 304 (3):323~334
    [54] Zhang Y, Repa JJ and Gauthier K, et al. Regulation of lipoprotein lipase by the oxysterol receptors, LXR alpha and LXR beta. J Biol Chem, 2001, 276 (46):43018~43024
    [55] Zhang W, Bensadoun A. Identification of a silencing element in the chicken lipoprotein lipase gene promoter: characterization of the silencer-binding protein and delineation of its target nucleotide sequence. Biochim Biophys Acta, 1999, 1436 (3):390~404
    [56] Hamosh M, Hamosh P. Lipoprotein lipase: its physiological and clinical significance. Mol Aspects Med, 1983, 6 (3):199~289
    [57]Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J, 1992, 287(Pt 2):337~347
    [58] Nykjaer A, Nielsen M and Lookene A, et al. A carboxyl-ter urinal fragment of lipoprotein lipase binds to the low density lipoprotein receptor-related protein and inhibits lipase- mediated uptake of lipoprotein in cells. J Bio) Chem, 1994, 269 (50):31747~31755
    [59] Cryer A. Tissue lipoprotein lipase activity and its action in lipoprotein metabolism. J Biochem, 1981, 13(5):525~541
    [60]Cooper DA, Stein JC and Strieleman PJ, et al. Avian adipose lipoprotein lipase: cDNA sequence reciprocal regulation of mRNA levels in adipose and heart. Biochim Biophys Acta, 1989, 1008(1):92~101
    [61]Willy PJ, Umesono K and Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev, 1995, 9(9):1033~1045
    [62]Houck KA, Borchert KM and Hepler CD, et al. T0901317 is a dual LXR/FXR agonist. Molecular Genetics and Metabolism, 2004, 83 (1-2): 184~187
    [63]Peet DJ, Janowski BA and Mangelsdorf DJ. The LXRs: a new class of oxysterol receptors. Current Opinion in Genetics & Development, 1998, 8:571~575
    [64]Lehmann JM, Kliewer SA and Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem, 1997, 272(6):3137~3140
    [66]Alberti S, Schuster G and Parini P, et al. Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXR beta deficient mice. J Clin Invest, 2001, 107 (5): 565~573
    [67]Schultz, JR, Tu H and Luk A, et al. Role of LXRs in control of lipogenesis. Genes Dev, 2000, 14 (22): 2831~2838
    [68]Zhang Y, Repa JJ and Gauthier K, etal. Regulation of lipoprotein lipase by the oxysterol receptors, LXR alpha and LXR beta. J Biol Chem, 2001, 276(46):43018~43024
    [69]董飚.鸭脂联素及其受体基因的克隆、表达和功能的研究.扬州大学硕士论文, 2007
    [70]Berg AH and Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circulation Research, 2005, 96:939~49
    [71]Yamauchi T, Kamon J and Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med, 2002, 8(11):1288~1295
    [72]Ma K, Cabrero A and Saha PK, et al. Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adipoectin. J Biol Chem, 2002, 277(38):34658~34661
    [73]Ouchi N, Kihara S and Arita Y, et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation, 2001, 103(8):1057~1063
    [74]Zietz B, Herfarth H and Paul G, et al. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes. FEBS Lett, 2003, 545(2-3):103~104
    [75]Han S H, Quon M J and Kim J, et al. Adiponectin and cardiovascular disease: Response to therapeutic interventions. Journal of American College Cardiology, 2007, 49(5):531~538
    [76]Saely CH, Risch L and Hoefle G, et al. Low serum adiponectin is independently associated with both the metabolic syndrome and angiographically determined coronary atherosclerosis. Clinica Chimica Acta, 2007, 383:97~102
    [77]Liang P, Pardee AB. Differential Display of eukaryotic messenger RNA by means of the polymerase chain racation. Science, 1992, 257(14):967~971
    [78]Rajeevan MS, Dimulescu IM and Unger ER, et al. Chemiluminescent analysis of gene expression on high-density filter arrays. J Histochem Cytochem, 1999, 47(3): 337~342
    [79]李亮.乌骨鸡肝脏差异显示(DD)表达序列标签(ESTs)的筛选及分析鉴定.四川农业大学博士论文, 2004
    [80]潘佩文.猪不同品种或发育阶段肌肉组织中差异表达EST的分离、鉴定和定位.华中农业大学博士论文, 2003
    [81]王栋.应用mRNA差异显示技术研究鸡肉用性状杂种优势分子遗传机理.中国农业大学博士论文, 2003
    [82]李拥军.山羊早期胚胎发育基因表达的研究.甘肃农业大学博士论文, 2005
    [83] Tesfye D, Ponsuksili S and Wimmers K, et al. Identification and quantification of differentially expressed transcripts in in vitro-produced bovine preimplantation stage embryos. Mol Reprod Dev, 2003, 66(2): 105~114
    [84]Fujino M, Kawasaki K and Adachi, et al. Differential-display analysis of gene expression in livers from normal and partially hepatectomized mice. Transplantation Proceedings, 2006, 38:2701~2704
    [85]余桂花.不同侵袭性肝癌基因差异表达的初步研究.福建医科大学硕士论文, 2004
    [86]Li W, Zhang J and Yu W, et al. Expression of stage specific genes during zygotic gene activation in preimplantation mouse embryos. Zoolog Science, 2003, 20(11): 1389~1393
    [87]刘国君.莱茵鹅改良当地鹅的效果.黑龙江畜牧兽医, 2001, (07):9~10
    [88]王玉成,杨传平,刘桂丰,等.差异显示技术研究NaHCO3胁迫下星星草基因表达.植物学通报, 2005, 22(3): 307~312
    [89]Ponsuksili S, Wimmers K and Schellander K. Application of differential display to identify porcine liver ESTs. Gene, 2001, 280(1-2): 75~85
    [90]Janzen MA, Kuhlers DL and Jungst SB, et al. ARPP-16 mRNA is up-regulated in the longissimus muscle of pigs possessing an elevated growth rate. January of Animal Science, 2000, 78(6): 1475~1484
    [91]Brud CG, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science, 1994, 265:615~621
    [92]Wellmann S, Buhrer C and Moderegger E, et al. Oxyen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism. J Cell Sci, 2004, 117(9):1785~1794
    [93]Dresios J, Aschrafi A and Owens GC, et al. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proc Natl Acad Sci, 2005, 102(6):1865~1870
    [94]Jirouskova M, Smyth SS and Kudryk B, et al. A hamster antibody to the mouse fibrinogen gamma chain inhibits platelet-fibrinogen interactions and FXIIIa-mediated fibrin cross-linking, and facilitates thrombolysis. Thromb Haemost, 2001, 86(4):1047~1056
    [95]Hirota-Kawadobora M, Tozuka M and Yamauchi K, et al. Quantitative RT-PCR analysis demonstrates that synthesis of the recombinant fibrinogen is dependent on the transcription and synthesis of gamma-chain. Clin Chim Acta, 2002, 319(1):67~73
    [96]范秉琳,朱武凌,邹国林,等.人肝癌细胞差异表达基因纤维蛋白原γ-多肽的克隆与鉴定.癌症, 2004, 23(3):249~253
    [97]贺淑霞,雷晓丽.血浆纤维蛋白原水平与恶性肿瘤的生长转移关系.宁夏医学院学报, 2007, 29(5):508~509
    [98]Mccawley LJ, Matrisian LM. Matrix metalloproteinase: multifunctional contributors to tumor progression. Mol Med Today, 2000, 6(4):149~156
    [99]Wasenius VM, Hemmer S and Kettunen E, et al. Hepatocyte growth factor receptor, matrix metalloproteinase-11, tissue inhibitor of metalloproteinase-1, and fibronectin are up-regulated in papillary thyroid carcinoma: a cDNA and tissue microarray study. Clin Cancer Res, 2003, 9(1):68~75
    [100]Roebuck MM, Helliwell TR and Chaudhry, et al. Matrix metalloproteinase expression is related to angiogenesis and histologic grade in spindle cell soft tissue neoplasems of the extremities. Am J Clin Pathol, 2005, 123(3):405~414
    [101]Kikuchi M, Yamada K and Toyota T, et al. C18orf1 located on chromosome 18p11.2 may confer susceptibility to schizophrenia. J Med Dent Sci, 2003, 50(3):225~229
    [102]Haberman Y, Amarigliol N and Rechavi1 G, et al. Nucleotide repeats are prevalent among cancer-related genes. Trends in Genetics , 2007, 24(1):14~18
    [103]Helmlinger D, Tora L and Devys D. Transcriptional alterations and chromatin remodeling in polyglutamine diseases. Trends Genet, 2006, 22, 562~570
    [104]Fisher RM, Eriksson P and Hoffstedt J, et al. Fatty acid binding protein expression in different adipose tissue depots from lean and obese individuals. Diabetologia, 2001, 44(10):1268~1273
    [105]Maeda K, Cao H and Kono K, et al. Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses in obesity and diabetes. Cell Metab, 2005, 1:107~119
    [106]Westerbacka J, Lammi K and Hakkinen AM, et al. Dietary fat content modifies liver fat in overweight nondiabetic subjects. J Clin Endocrinol Metab, 2005, 90:2804~2809
    [107]Schadinger SE, Bucher NL and Schreiber BM, et al. PPAR gamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab, 2005, 288: 1195~1205
    [108]Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes, 2004, 53:S43~S50
    [109]Maddineni S, Metzger S and Ocon O, et al. Adiponectin gene is expressed in multiple tissues in the chicken: Food deprivation influences adiponectin messenger ribonucleic acid expression. Endocrinology, 2005, 146(10): 4250~4256
    [110] Chabrolle C, Tosca L and Crochet S, et al. Expression of adiponectin and its receptors (AdipoR1 and AdipoR2) in chicken ovary: Potential role in ovarian steroidogenesis. Domestic Animal Endocrinology, 2007, 33: 480~487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700