玉米株型相关性状分子遗传机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米不仅是重要的粮食作物,而且也是重要的饲料、经济和能源作物。高产是现代玉米育种追求的最重要目标。以改良玉米株型、增强抗耐高密度逆境、提高群体光合效率为目标的株型育种,是实现玉米高产再高产的重要途径。因此,研究玉米株型相关性状的分子遗传机理,不仅对促进玉米耐密型高产育种研究和分子标记辅助选择技术的发展,而且对解析玉米株型性状分子生物学机制都具有重要的理论和实践意义。
     本研究以玉米株型主要性状QTL为主要研究对象,分以下4个步骤开展研究。首先,以紧凑型和松散型玉米自交系为亲本,构建了一套F2作图群体及其衍生的F2:3家系的定位群体,在3个环境下对玉米田间表型进行鉴定,利用Mapmaker version 3.0构建了具有222个SSR标记的连锁图谱,对玉米株型相关性状进行了QTL初步定位及效应分析。其次,利用多群体联合QTL分析的方法,将具有不同亲本的2套F2群体基因型数据进一步整合成为一张包含352个分子标记的遗传图谱,再结合2套定位群体多个环境田间鉴定的表现型数据,对玉米株型相关性状的QTL进一步定位和印证,明确了控制株型性状主效QTL集中的染色体区域。此外,又利用生物信息学和比较基因组学的方法,预测了控制主要性状QTL所在染色体区段的候选基因。再次,根据QTL初步定位的结果,将研究目标集中控制玉米叶夹角主效QTL qLA1-1基因位点上,利用连续多次回交和开发分子标记等方法,成功构建了qLA1-1的近等基因系群体,利用BC3F2:3家系进行定位验证qLA1-1的准确性并利用BC3F2分离群体进行精细定位,逐步缩小QTL目标区域,最终将qLA1-1的QTL目标区域限定在0.75Mb范围之内。最后,以双亲为材料利用同源克隆的方法,对定位主效QTL目标区域预测的候选基因进行克隆。成功克隆了与调控水稻叶夹角基因OsTAC1高度同源的玉米ZmTAC1基因,根据双亲DNA序列的差异开发了一个CAPs标记,将其作为基因的功能标记,重新对定位群体进行了叶夹角QTL基因定位分析;另外,根据双亲序列差异性分析了31个不同叶夹角表型自交系的DNA序列,初步验证了ZmTAC1与叶夹角之间的关系和功能。具体研究结果如下:
     1、利用豫82×沈137构建的F2群体构建了一张包含有222个标记的遗传连锁图,覆盖玉米10条染色体,图谱总长度为1864.7 cM,两标记间平均距离为8.40 cM。利用3个环境鉴定的表型值的均值对株型相关性状进行QTL定位及效应分析,共检测到了25个QTL,除第6、8染色体外分布在其余8条染色体上;其中,检测到叶夹角QTL3个,叶向值QTL5个,叶长QTL3个,叶宽QTL4个,株高QTL3个,穗位高QTL7个。发现了2个调控叶夹角和叶向值的主要染色体区域:①位于第1染色体的1.02区域,介于标记umc1166和umc2226之间,解释表型遗传变异的20.4%;②位于第5染色体的5.04-5.05区域,介于标记bnlg1287和mmc0282之间,贡献率为9.7%;这两个位点具有减小叶夹角、增大叶向值作用,基因效应均来自紧凑型亲本豫82。
     2、联合2个F2作图群体整合了一张具有333个SSR标记、3个新开发的CAPS标记和16个候选基因位点的遗传图谱,整合的遗传图谱总长度为1766.4cM,相邻两标记间的平均距离为5.0cM。利用该遗传图谱通过MCQTL软件分析,共检测到与叶夹角、叶向值、叶长、叶宽有关的QTL 33个。其中与叶夹角相关的QTL 7个,位于第1,2,3,5,7和8染色体上,单个QTL的贡献率变异范围是7.3%-19.0%;检测到11个影响叶向值的QTL,位于第1,2,3,4,5,7,8和9染色体上,单个QTL的贡献率变异范围5.03%-23.2%;检测到7个与叶长相关的QTL,分布在第3,5,7和10染色体上,单个QTL的贡献率变异范围7.14%-20.6%;检测到8个QTL与叶宽有关,分布在第1,3,4,7,8和9染色体上,单个QTL贡献率的变异范围4.86%-20.4%。结果表明控制叶型性状QTL主要集中的染色体区域有2个(ZmLAR1和ZmLAR2):ZmLAR1位于第3染色体的umc1608-umc1674,除叶夹角的贡献率为9.26%外,其它3个性状的贡献率范围14.07%-20.6%;ZmLAR2位于第7染色体的umc1380-umc1936,4个性状的贡献率范围6.8%-14.3%。此外,也发现了3个调控叶夹角、1个调控叶长和1个调控叶宽的主要位点。这些主要位点/区域都包含的相应候选基因为调控叶夹角的基因DWARF4、TAC1、LIC、YABBY15、ligueless1和ligueless2;一个调控叶长的基因lng1和一个调控叶宽的基因NAL7。
     3、在初步定位的基础上,对调控叶夹角的位于第1染色体1.02区域内的QTL qLA1-1通过多次回交采用“双卡”的方法,即表型选择结合基因型选择,“一卡”遗传背景回复率(RRGB)大于95%以上;“二卡”目标性状(叶夹角)小于12.5°以下的单株等构建了近等基因系。利用BC3F2:3家系验证了该QTL的准确性及构建的近等基因系是单个QTL位点控制叶夹角的大小。根据定位结果,在目标区域内开发了43对SSR引物,筛选到在亲本间具有多态性强且带型清晰的SSR引物9对。通过对近等基因系的BC3F2分离大群体精细定位,将qLA1-1限定在标记LA25与bnlg1484之间,其标记距离在0.75Mb范围之内。
     4、利用同源克隆方法,首次克隆了与叶夹角发育调控有关ZmTAC1基因。该基因序列中792bp的开放性阅读框可编码263个氨基酸,编码的氨基酸序列与水稻的同源性为68%,cDNA 5’端非编码区碱基序列在豫82与沈137两个自交系中一个单碱基的差异可能引起mRNA表达水平的差异。应用实时荧光定量PCR对该基因时空表达分析表明,叶枕和叶鞘中表达量最高,叶片和茎尖其次,根中很低;4叶期开始表达,9-10叶期达到高峰,11叶期以后逐渐下降;豫82的时空表达量均明显低于沈137。在31个自交系中,豫82和13个穗上部叶夹角小的自交系在5’端非编码区碱基序列均为CTCCT,而沈137和18个穗上部叶夹角的自交系在5’端非编码区碱基序列均为CCCCT。利用开发的基因内CAPS标记和利用豫82与沈137构建的F2:3家系进行基因内定位,ZmTAC1被定位在qLA1-2的区间内。
Maize is a not only important cereal crop but alse important forage, economic and energy crop. High yield is a most important aim that modern maize breeders pursue today. Maize plant-type breeding with the aim by improving plant-type, strengthening resistance high-density adversity, and improving group photosynthetic efficiency is a main approache to achieve high yield of corn. Therefore, researches related to the characters of corn plant molecular genetic mechanism has the important theoretical and practical significance to not only promote maize resistance high-density breeding and molecular marker assisted selection technology development but aslo analyze maize plant traits molecular biology mechanism.
     In this study, maize architecture traits QTL as the main research object carry out research as following four steps. Firstly, a set of F2:3 families derived from a compact and expanded maize inbred line cross were developed.
     a set of 229 F2:3 families derived from compact and spread-out inbred line cross was evaluated for three environments. Genetic linkage maps with 222 SSR markers were constructed using Mapmaker version 3.0. Were detected for the six measured morphological traits using composite interval mapping (CIM). The performinance data of plant architecture traits in the F2:3 families were used for QTL mapping and analysis to genetic effect. Secondly, the genetic linkage maps with 352 SSR markers integrated using the two sets of genotypes data from F2 population of different parents and the performinance data of plant architecture traits from the two populations evaluated in three environments were used for further QTL mapping and confirmation by analysis technique of multiple population joint QTL and the chromosomal regions that main effect QTL with the traits concentrated were identified. In addition, the cadidate genes of QTL located on chromosome regions were speculated using comparative genomics and bioinformatics. Thirdly, our research objective concentrated on the major effect QTL qLA1-1 with leaf angle by preliminary results of QTL mapping. The near-isogenic line (NIL) of qLA1-1 were successfully constructed using repeatedly backcross and molecular marker assisted selection. qLA1-1 were confirmed by BC3F2:3 families. Fine mapping of qLA1-1 by the BC3F2 segregation population and the latest molecular marker developed shortened the distance of QTL region that were limited in 0.75 Mb scope. Finally, the candidate gene speculated in the scope of major effect QTL was cloned through homology-based cloning. ZmTAC1 was successfully cloned that the gene was high homologous to OsTAC1 with rice leaf angle. A CAPs marker was developed on the basis of the differences of parents DNA sequences. As the function marker of the gene, the performinance data of leaf angle were again used for QTL mapping. In addition, the DNA sequences that 31 inbred lines had difference of leaf angle were cloned and analysed. The relationship of ZmTAC1 and leaf angle was identified. The main results obtained in this research were concluded as follow:
     1. The linkage map of 222 SSR markers constructed using F2 population of Yu82×Shen137 consisted of all ten maize chromosomes allocated to ten linkage groups, spanning a total length of 1864.7 cM with an average marker interval of 8.40 cM. QTL for plant architecture traits were mapped using a set of 229 F2:3 families derived from the cross between compact and expanded inbred lines, evaluated in three environments. Twenty-five QTL were detected in total on the rest 8 chromosomes besides chromosome 6 and 8. 3 QTL of leaf angle were located, 5 QTL of leaf orientation value were detected, 3 QTL of leaf length were detected, 4 QTL of blade width were detected, 3 QTL of plant height were located, and 7 QTL of ear height were located. Two key genome regions controlling leaf angle and leaf orientation were identified from our study. The QTL between umc1166 and umc2226 in the 1.02 region of chromosome 1 explained 20.4% of the phenotypic variance and another QTL between umc1166 and umc2226 in the 5.04-5.05 region of chromosome 5 explained 9.7% of the phenotypic variance. two QTL associated with decreased leaf angle and increased leaf orientation value were contributed by Yu82.
     2. The linkage map of 333 SSR markers, 3 CAPs markers developed, and 16 candidate genes were integrated using two F2 population3 of Yu82×Shen137 and Yu82×Yu87-1, spanning a total length of 1766.4 cM with an average marker interval of 5.0 cM. 33 QTL were detected for leaf angle, leaf orientation value, leag length, and blade width using MCQTL 4.0. Seven QTL for leaf angle were located on chromosome 1, 2, 3, 5, 7, and 8 with individual effects ranging from 7.3% to 19.0%. 11 QTL for leaf orientation value were detected on chromosome 1, 2, 3, 4, 5, 7, 8, and 9 with individual effects ranging from 5.03% to 23.2%. 7 QTL associated with leaf length were located on chromosome 3, 5, 7, and 1 with individual effects ranging
     from 7.14% to 20.6%. 8 QTL of leaf width were detected on chromosome 1, 3, 4, 7, 8, and 9 with individual effects ranging from 4.86% to 20.4%. Two key genome regions(ZmLAR1and ZmLAR2)controlling leaf architecture traits were identified from our study. ZmLAR1 were between umc1608 and umc1674 on chromosome 3 with individual effect of four traits ranging from 9.26% to 20.4% and ZmLAR2 were between umc1380 and umc1936 on chromosome 7 with individual effect of the traits ranging from 6.8% to 14.3%. Moreover, 3 genome regions of leaf angle, a genome region of leaf length, and 1 genome region of leaf width were identified. All these regions encompass candidate genes DWARF4, TAC1, LIC, YABBY15, ligueless1and ligueless2 for leaf angle, lng1 for leaf length, and NAL7 for leaf width.
     3. According to the results of QTL mapping, QTL qLA1-1-NIL in bin 1.02 of chromosome 1 for leaf angle was constructed by more once backcrosses and“Double Card”.“One Card”was RRGB greater than 95% and“Two Card”was leaf angle lesser than 12.5o. qLA1-1 was idengtified again using BC3F2:3famalies and that the NIL had controled leaf angle for single locus segregation. 43 SSR markers were developed in the target region. 9 SSR markers had polymorphism strong and clear banding. qLA1-1 was defined by BC3F2 population between LA25 and bnlg1484, spanning a total length of 0.75 Mb.
     4. ZmTAC gene for leaf angle was cloned by homology-based cloning in maize inbred lines Yu82 and Shen137, a predicated 792-bp open reading frame was detected in the cloned sequence, which encoded 263 amino acids. The protein sequence was 91% homology to rice TAC1. The difference in the inbred lines which a single DNA letter change in the 5’- untranslated region(UTR) caused the difference in expression level of mRNA. Real-time PCR analysis revealed that ZmTAC1 was expressed superlatively in leaf sheath and pulvinus, secondly in leaf and stem apex, and expressioned from 4-leaf stage, with the peak at 9-11 leaf stage, the expression decreased gradually from 11-leaf stage. Yu82 was lower than Shen137 in expression. The sequence of Yu82(CTCCT) in 5’- UTR was always associated with 13 compact plant architecture inbred lines and the sequence of Shen137(CCCCT) in 5’- UTR was always associated with 18 expended plant architecture inbred lines. ZmTAC1 was defined in the region of qLA1-2 by the CAPs developed and the F2:3 families of Yu82×Shen137.
引文
敖君.几个玉米自交系主要数量性状配合力分析[J].玉米科学,1999,7(1):41-42
    蔡一林,王久光,孙海燕,王国强.玉米几个株型性状的遗传模型及其与穗粒性状的典型相关分析[J].作物学报,2002,28(6):829-834
    曹永国,王国英,王守才,魏艳玲,卢江,谢友菊,戴景瑞.玉米RFLP遗传图谱的构建及矮生基因定位[J].科学通报,1999,44(20):2178-2182
    陈岭,崔绍平,徐有,张动敏.玉米株型性状的遗传分析[J].华北农报,1994,9(增刊):11-15
    陈宛秋,张彪,康继伟,李成之.几个常用玉米自交系株型性状的遗传及其在株型育种中的作用[J].四川农业大学学报,1993,11(4):563-567
    高用明,朱军,宋佑胜等.水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析[J].作物学报,2004,30(9):849-854
    黄开健,杨华铨,吴永升,谭华.12个玉米自交系主要农艺性状的配合力分析[J].玉米科学, 2002, 10(3): 43~45
    霍仕平,晏庆九,许明陆.玉米主要株型数量性状的基因效应分析[J].玉米科学.2001, 9 (1):12-15
    吉春容,李世清,冯宏昭,李生秀.不同株型夏玉米冠层叶片气孔特性的差异.西北农林科技大学学报,2008年第36卷第5期
    金益.玉米株形和穗部性状的遗传规律及其选择方案[J].沈阳农学院学报,1985,16 (4):25-36
    赖仲铭,杨克诚,雷本鸣等.玉米几个自交系株型数量性状遗传的研究[J].中国农业科学,1981,(4):28-36
    兰进好,褚栋.玉米株高和穗位高遗传基础的QTL剖析[J].遗传,2005,27(6):925-934
    李子银,陈受宜.1999.水稻抗病基因同源序列的克隆、定位及其表达.科学通报.44 (7): 727-733
    李玉玲,张长江,杨铁柱,许新芳,刘凤英.玉米株型性状的基因效应研究[J].河南农业大学学报,1996,30(1):41-44
    刘鹏,任英,王洪秋.玉米几个主要农艺性状的遗传研究[J].吉林农业科学,2004,29(6):3-8
    路明,周芳,谢传晓,李明顺,徐云碧,张世煌.玉米杂交种掖单13号的SSR连锁图谱构建与叶夹角和叶向值的QTL定位与分析[J].遗传,2007,29(9):1131-1138
    毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999,7(4):386-394
    潘光堂,荣廷昭,刘礼超.化学诱导的玉米孤雌生殖系的遗传分析[J].西南农业学报,1996, 9 (1): 45-52
    沈高中,赖仲铭.玉米自交系主要性状的配合力与环境互作的研究[J].作物学报,1987,13 (1): 69-76
    施开鸿,郭其茂,黄玉莲.7个玉米自交系主要性状的配合力及遗传参数分析[J].玉米科学,2001,9 (1): 39~42
    苏书文,白琪林,郭新林.玉米叶夹角性状配合力的研究[J].玉米科学,1993,1(1):1-4
    汤继华,马西青,滕文涛,严建兵,吴为人,戴景瑞,李建生.利用“永久F2”群体定位玉米株高的QTL与杂种优势位点[J].科学通报,2006,51(24):2864-2869
    汤华,严建兵,黄益勤,郑用琏,李建生.玉米5个农艺性状的QTL定位[J].遗传学报,2005, 32(2): 203-209
    王雅萍.玉米自交系株型和产量性状的关系及其利用研究[J].玉米科学,2004,12(3): 47-49
    王国强,蔡一林,王久光,孙海艳.10个玉米自交系株型性状的配合力分析[J].西南农业大学学报(自然科学版),2005,27(3):374-377
    王秀全,陈光明,刘昌明.玉米株型育种亲本选配的遗传规律研究[J].西南农业学报,2000, 13(1): 50-54
    王克胜,孔繁玲.玉米株型性状的遗传表达和自交系与杂交种的聚类分析[J].北京农业大学学报,1993,19(3):19-27
    王金君,姜明月,陈玉库,张丽颖,罗新兰.玉米株高和穗位的遗传分析[J].国外农学-杂粮作物,1995,1:13-14,23
    温海霞,蔡一林,王久光,孙海燕.9个玉米自交系主要株型性状的配合力分析[J].西南农业大学学报,2002,24(3):223-225
    吴子恺.玉米10个数量性状的基因效应分析[J].玉米科学,1995,3(1):6-11,17
    吴为人,李维明,卢浩然.建立一个重组自交系群体所需的自交代数(英文)[J].福建农业大学学报,1997,26(2):129-132
    吴广成,薛雁,何代元.玉米自交系的配合力分析[J].玉米科学,2003,11(2):32-36, 53
    席章营,朱芬菊.作物QTL分析的原理与方法[J].中国农学通报,2005,21(1): 88-92
    邢永忠,徐才国.作物数量性状基因研究进展[J].遗传,2001,23(5):498-502
    邢永忠,徐才国,华金平,谈移芳,孙新立.水稻株高和抽穗期基因定位和分离.植物学报,2001,43(7):721-726
    杨安贵.玉米三个株型性状的基因效应[J].西南农学院学报,1983,(4):1-9
    杨俊品,荣廷昭,向道权,唐海涛,黄烈健,戴景瑞.玉米数量性状基因定位[J].作物学报,2005,31(2):188-196
    杨伟光,苏颖,张建华,曲祥春,耿晓君.玉米株高和穗位遗传模型测验[J].吉林农业大学学报,2000,22(4):28-31, 44
    尹燕枰,童玉森.玉米主要性状的基因效应与其杂种优势关系的研究[J].山东农业大学学报,1987,18(1):19-32
    于永涛,张吉民,石云素,宋燕春,王天宇,黎裕.利用不同群体对玉米株高和叶片夹角的QTL分析[J].玉米科学,2006,14(2):88-92
    虞慧芳.赤霉素诱导无蔓南瓜蔓伸长生理和分子生物学机制的研究,博士学位论文,浙江大学,导师:曹家树,2005,pp.25-28
    张玉山.水稻重要农艺性状的QTL分析和主效QTL近等基因系的构建.华中农业大学博士论文,2006
    章元明.作物QTL定位方法研究进展[J].科学通报,2006,51(19):2223-2231
    张晓峰,金益,张永林.东农-2玉米改良群体的遗传结构分析[J].中国农业科学,2000, 33(增刊):105-112
    张志明,赵茂俊,荣廷昭,潘光堂.玉米SSR连锁图谱构建与株高及穗位高QTL定位[J].作物学报,2007,33(2):341-344
    赵延明,王玲,苏维洲等.玉米株型性状的遗传参数研究[J].杂粮作物,2000,20 (2):1-5
    郑祖平,杜克柱.玉米数量性状的遗传参数研究[J].西南农业大学学报,1995,17(4):359-361
    郑祖平,黄玉碧,田孟良.不同供氮水平下玉米株型相关性状的QTLs定位和上位性效应分析.玉米科学,2007,15(2):14-18
    朱军.复杂数量性状基因定位的混合线性模型分析方法[A].全国作物育种学术讨论会论文集,北京,中国农业科技出版社,1998
    Ait-ali T, Rands C, Harberd NP: Flexible control of plant architecture and yield via switchable expression of Arabidopsis gai. Plant Biotechnol J, 2003, 1:337-343
    Ashikari M, Sasaki A, Ueguchi-Tanaka M, toh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS et al.: Loss-of-function of a rice gibberellin biosynthetic gene GA20 oxidase (GA20ox-2), led to the rice‘Green revolution’. Breed Sci, 2002, 52:143-150
    Ashikari M, Sakaibara H, Lin S, Yamanoto T, Takashi T, Nishimura A, Angilis E, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309, 741-745
    Austin DF, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci, 1998, 38:1296-1308
    Austin DF, Lee M, Veldboom LR. Genetic mapping in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet, 2001, 102:163-176
    Austin D F, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments.Crop Sci, 1998 38(5):1296-1308
    Azpiroz L R, Feldmamm K A. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 1997, 13: 152-156
    Babb, s. and Muehlbauer, G.J. Genetic and morphological xharacterization of the barley uniculm2(cul2) mutant. Theor. Appl. Genet. 2003, 106: 846-857
    Beavis W D, O.S. Smith, D.Grant and R. Fincher. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci, 1994, 34:882-896
    Berke T, Rocheford T. Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci, 1995, 35:1542-1549
    Bohn M B, Schulz R, Kreps D, Klein and A Melchinger. QTL mapping for resistance against the European corn borerin early maturing European dent germplasm. TAG, 2000, 1001:907-917
    Broman K W, Speed T P. A review of methods for identifying QTLs in experimental crosses. Lecture Notes-Monograph Series, 1999, 33: 114-142
    Bouchez A, Hospital F, Causse M, Gallais A, Charcosset. A Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics, 2002, 162:1945-1959
    Brown P O. Genome scanning methods. Currrent Opin Genet Dev, 1994, 4: 366-37
    Burr B, Burr F A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. TAG, 1991, 7: 55-60
    Chandler PM, Marion-Poll A, Ellis M, Gubler F: Mutants at the Slender1 locus of barley cv. Himalaya. Molecular and physiological characterization. Plant Physiol 2002, 129:181-190
    Chen P, Jiang L, Yu CY et al. The identification and mapping of a tiller angle QTL on rice chromosome 9. Crop Sci, 2008, 48: 1799-1806
    Clive R. Spray, Masatomo K., Yoshihito S., Bernard O. P., Paul G., Jake M.: The dwarf-i (dl) mutant of Zea mays blocks three steps in the gibberellin-biosynthetic pathway. Proc. Natl. Acad. Sci. USA 1996, 93:10515-10518
    Clouse SD. Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol. Cell, 2002, 10: 973–82
    Clouse SD. Molecular genetic studies confirm the role of brassinosteroids in plant growth and development. Plant J. 1996, 10:1–8
    Clouse SD, Sasse JM. BRASSINOSTEROIDS: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1998, 49: 427–51
    Cong B, Liu J, Tanksley SD. Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA, 2002, 99, 13606-13611
    Conway G, Toenniessen G. Feeding the world in the twenty-first century. Nature 1999, 402:C55-C58
    Dai M, Hu Y, Zhao Y, Liu H, Zhou DX. A WUSCHEL-LIKE HOMEOBOX gene represse a YABBY gene expression required for rice leaf development. Plant Physiol, 2007, 144(1):3803?90
    Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX. The rice YABBY1 gene is involved in the feedback regulation of Gibberellin metabolism. Plant Physiol, 2007, 144(1): 1211?33
    Diatohenko L, Lau Y F, Campbell A P, et al. Suppression Subtractive Hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Nail Acad Sci. 1996, 96(12): 6025-6030
    Dill A, Jung Hs, Sun T-p: The DELLA motif is essential for gibberellin- induced degradation of RGA. Proc Natl Acad Sci USA, 2001, 98:14162-14167
    Doebley J, Stec A, Hubbard L: The evolution of apical dominance in maize. Nature, 1997, 386:485-488
    Duvick DN. Genetic rates of gain in hybrid maize yields during the past 40 years. Maydica. 1977, 22: 187-196
    Duvick DN. Genetic contributions to advances in yield of United-States maize. Maydica, 1992, 37: 69-79
    Duvick DN. What is yield? In: Edmeades GO, ed. Developing drought and low N-tolerant maize. El Batan, Mexico:CIMMYT, 1997, 332–335.
    Duvick DN, Cassman KG. Post-green revolution trends yield potential of temperate maize in the north-central United States. Crop Sci, 1999, 39:1622-1630
    Duvick DN. The contribution of breeding to yield advances in maize ( Zea mays L.). Advances in Agronomy. Elsevier Academic Press Inc., San Diego, 2005, 86: 83-145
    Dorweiler J,Stec A, Kermicle J, Doebley J. Tesominate glume architecture 1. A genetic locus controlling a key step in maize evolution. Science, 1993, 262: 233-235
    Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev, 2004, 18: 926-936
    Earp D J, Lowe B, Baker B. Amplification of genomic sequences flanking transposable elements in host and heterologous plants: a tool for transposon tagging and genome characterization. Nucleic Acids Research, 1990, 18(11): 3271-3279
    El-Din El-Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M. A QTL for flowering time in Arabidopsisreveals a novel allele of CRY2. Nat Genet, 2001, 29, 435-440
    Elisabetta Frascaroli, Maria Angela Cane, Pierangelo Landi, Giorgio Pea Marzio Villa.Classical. Genetic and Quantitative Trait Loci Analyses of Heterosisin a Maize Hybrid Between Two Elite Inbred Lines. Genetics, 2007, 176: 625-644
    Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radialpatterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol, 2003, 13(20): 1768-1?774
    Ertao Wang,Jianjun Wang, Xudong Zhu, Wei Hao, Linyou Wang, Qun Li, Lixia Zhang, Wei He Baorong Lu, Hongxuan Lin, Hong Ma, Guiquan Zhang& Zuhua He. Control of rice grain-filling and yield by a gene with a potential signature of domestication nature, 2008, 40(11): 1370-1374
    Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development, 2004, 131(12): 29973?006
    Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
    Fedoroff N V, Furtek D B, Nelson O E. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element activator (Ac}. Proc. Nail. Acad. Sci. USA, 1984, 81(12):3825-3829
    Fellner, M, Horton, LA, Cocke, AE, Stephens, NR, Ford, ED, Van Volkenburgh. Light interacts with auxin during leaf elongation and leaf angle development in young corn seedlings. Planta, 2003, 216:366-376
    Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 2000, 97: 4718-4723
    Frova C, Krajewski P, di Fonzo N. Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor Appl Genet, 1999, 99: 280-288
    Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, W. Fraaije M, Sekiguchi H. NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics, 2008, 279: 499-507
    Fu X, Sudhakar D, Peng J, Richards DE, Christou P, Harberd NP. Expression of Arabidopsis GA1 in transgenic rice represses multiple gibberellin responses. Plant Cell, 2001, 13: 1791-1802
    Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, et al. GID2, an F-box subunit of the SCFE3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J. 2004, 37:626-34
    Grigg SP, Canales C, Hay A, Tsiantis M. SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature, 2005, 437(7061): 1022-?1026
    Hedden P, Kamiya Y. Gibberellin biosynthesis: enzymes, genes and their regulation. Annu RevPlant Physiol Plant Mol Biol, 1997, 48: 431-460
    Hedden P, Phillips AL: Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci, 2000, 5:523-530
    Hedden P, Phillips AL: Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol, 2000, 11:130-137
    Hinderhofer K, Zentgraf U. Iden6ficatian of a transcription factor specifically expressed at the onset of leaf senescene. Planta. 2001, 213(3): 469-473
    Holland, J. B. Genetic architecture of complex traits in plants. Curr. Opin. Plant Bio., 2007, 10: 156–161
    Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15:2900–10
    Hospital F C and Chevalet P M. Using markers in gene introgression breeding programes. Genetics, 1992, 132:1199-1210
    Hunter C, Willmann MR, Wu G, Yoshikawa M, de la Luz Gutierrez-Nava M, Poethig SR. trans-acting siRNA- mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development, 2006, 133(15): 29732?981
    Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1gene, an ortholog of the height-regulating gene GA1/RGA/RHT/D8. Plant Cell, 2001, 13: 999-1010
    Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M: The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 2002, 14: 57-70
    Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M: Cloning and functional analysis of gibberellin 3β-hydroxylase genes that are differently expressed during the growth of rice. Proc. Natl. Acad. Sci. USA, 2001, 98: 8909-9814
    Izhaki A, Bowman JL. KANADI and Class III HD-Zip gene families regulate embryo patternig and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell, 2007, 19(2): 4955?08
    Jansen R C. Quantitative trait loci in inbred lines. In: Balding D J, Bishop M, Cannings C, eds. Handbook of Statistical Genetics.Chichester, UK: John Wiley & Sons, 1999, 567-597
    Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping.Genetics, 1994, 136: 1447-1455
    Jiang C, Zeng ZB. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 1995, 140: llll-ll27
    Jin J, Huang W, Gao JP, Yang J, Shi M, Zhu MZ, Luo D, Lin HX. Genetic control of rice plant architecture under domestication. Nature Genet, 2008, 40: 1365-1369
    Jones JW, Acair CR. A“lazy”mutation in rice. J. Hered. 1938, 28:315–18
    JOURJON, M.-F., S. JASSON, J. MARCEL, B. NGOM and B. MANGIN. MCQTL: multi-allelic QTL mapping in multi-cross design. Bioinformatics, 2005, 21:128–13
    Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC. MicroRNA-mediated repression of rolled leaf1 specifies maize polarity. Nature, 2004, 428(6978): 848?8
    Juarez MT, Twigg RW, Timmermans MCP. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544
    Kao C H, Zeng Z B, Teasdaler R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 1203-1216
    Kearsey M J. The principles of QTL analysis (a minimal mathematics approach). J Exp Bot, 1998, 49: 619-1623
    Kebrom TH, Brutnell TP. The molecular analysis of the shade avoidance syndrome in the grasses has begun. Journal of Experimental Botany, 2007, 58: 3079-3089
    Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. KANADI regulates organ polarity in Arabidopsis. Nature, 2001, 411(6838): 706 -?709
    Khush GS: Green revolution: preparing for the 21st century. Genome, 1999, 42:646-655
    Khush GS. Modern varieties-their real contribution to food supply and equity. GeoJournal 1995, 35: 275-284
    Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature, 2004, 428(6978): 818?4
    Kim H B, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An C S, Lee I, Hwang I, Choe S. The Regulation of DWARF4 Expression Is Likely a Critical Mechanism in Maintaining the Homeostasis of Bioactive Brassinosteroids in Arabidopsis. Plant Physiology, 2006, 140: 548-557
    Khush GS. Green revolution: the way forward. Nat Rev Genet, 2001, 2: 815-822
    Knapp S J, Stroup WW and Ross WM. Exact confidence intervals for heritability on a progeny mean basis. Crop Sci, 1985, 25: 192-194
    Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43, 1096-1105
    Kroymann J, Donnerhacke S, Schnabelrauch D, Mitchell Olds T. Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait loci. Proc Natl Acad Sci USA, 2003, 100: 14587-14592
    Kubo T, Nakamura K, Yoshimura A. Development of a series of Indica chromosome segment substitution lines in Japonica background of rice. Rice Genet Newslett, 1999, 16: 104-106
    Lambert RJ, Johnson RR. Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci, 197, 818: 499-502
    Lander ES. Green P, Abrahamson J, Barlow A., Daly MJ, Lincoln SE, Newburg L. MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174- 181
    Lander E S, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    Lee YK, Kim GT, Kim IJ, Park J, Kwak SS, Choi G, Chung WI. LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development, 2006, 133, 4305-4314
    Li DH. History and review of the prospect of compact maize breeding. J Laiyang Agric Coll 2001, 18(1): 1- 6
    Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell, 2005, 17(8): 2157-?2171
    Lima MLA, Souza CL Jr, Bento DAV, Souza AP, Carlini-Garcia LA. Mapping QTL for grain yield and plan t traits in a tropical maize population. Molecular Breeding 2006, 17(3): 227-239
    Li P J, Wang YH, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X and Li J. LAZY1 controls rice shoot gravitropism through regulating polar anxin transport. Cell Res, 2007, 17: 402-410
    Liu HL, Xu YY, Xu ZH, Chong K. A rice YABBY gene, OsYABBY4, preferentially expresses in developing vascular tissue. Dev Genes Evol, 2007, 217(9): 6296?37
    Li X, QianQ, FuZ, WangY, Xiong G, Zeng D, Wang X, Liu X, Teng S, Ujimoto H et al.Control of tillering in rice. Nature, 2003, 422: 618-621
    Li Yuling, Dong Yongbin, Niu Suzhun, Cui Dangqun. The genetic relationship among plant-height traits found using multiple-traits found using multiple-trait QTL mapping of a dent corn and pop corn cross. Genome, 2007, 50(4): 357-364
    Liu YqMitsukawa N, Oosumi T, et al. Efficient isolation and mapping of Arabidopsis thaliana T -DNA insert junctions by thermal asymmetric interlaced PCR.The plant joumal. 1995, 8(3):457-46
    Li Z K, Paterson AH, Pinson SRM, Stansei JW. RFLP facilitated analysis of tiller and leaf angles in rice (Oryza sativa L.). Euphytica, 1999, 109: 79-84
    Li Z, Paterson AH, Pinson SRM and G.S. Khush. A major gene, Tal and QTLs affecting tiller and leaf angles in rice. Crop Sci, 1998, 38:12-19
    Lu M, Zhou F, Xie CX, Li MS, Xu YB, Marilyn W, Zhang SH () Construction of a SSR linkage map and mapping of quantitative trait loci(QTL)for leaf angle and leaf orientation with an elite maize hybrid. Heredita, 2007, 29:1131—113
    Maiyata M, Komori T, Yamamoto T, Ueda T, Yano M, Nitta N. Fine scale and physical mapping of Spk(t) controlling spreading stub in rice. Breed. Sci.2005, 55:237–39
    Martinez O, Curnow R N. Estimation the locations and the sizes ofthe effects of quantitative trait loci using flanking markers. TheorAppl Genet, 1992, 85: 480-488
    McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411(6838): 709-7?13
    McHale NA, Koning RE. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. Plant Cell, 2004, 16(7): 17301?740
    Mickelson S M, C Stuber S, Senior L and Kaeppler S M. Quantitative Trait Loci Controlling Leaf and Tassel Traits in a B73×Mo17 Population of Maize. Crop Sci, 2002, 42: 1902-1909
    Michelle TJ, Richard WT et al. Specification of adaxial cell fate during maize leaf development. Development, 2004, 131: 4533-4544
    Mickelson SM, Stuber CS, Senior L, Kaeppler SM. Quantitative trait loci controlling leaf and tassel traits in a B73×M o17 population of maize. Crop Sci, 2002, 42: 1902-1909
    Milena de Luna Alves Lima, Cla′udio Lopes de Souza Jr, Dyeme Antonio Vieira. Maize simple repetitive DNAs equences: Abundance andallele variatio. Genome, 1996, 39: 866-873
    Milena L, Souza C, Bento D, Souza A, Carlini-Gracia L. Mapping QTL for grain yield and plant traits in a tropical maize population. Molecular Breeding, 2006, 17: 227?239
    Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M. Liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize organogenesis. Genes Dev, 1997, 11(5): 6166?28
    Mouchel CF, Briggs GC, Hardtke CS. Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev, 2004, 18: 700-714
    Nagasaki H, Itoh JI, Hayashi K, Hibara KI et al. The small interfering RNA production pathway isrequired for shoot meristem initiation in rice. PNAS 2007, 104(37): 14867-14871
    Nelson JM, Lane B, Freeling M. Expression of a mutant maize gene in the ventral leaf epidermis is sufficient to signal a switch of the leaf’s dorsoventral axis. Development, 2002, 129(19): 4581-4?589
    Nogueira FT, Madi S, Chitwood DH, Juarez MT, Timmermans MC. Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev, 2007, 21(7): 7507?55
    Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell, 2005, 17(11): 28992?910
    Pelleschi S, Leonardi A, Rocher J P, Cornic G. Analysis of the relationships between growth, photosynthesis and carbohydratemetabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation. Molecular Breeding, 2006, 17: 21-39
    Pendleton JW, Smith GE, Winter SR, Johnston TJ. Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agron J, 1968, 60: 422–424
    Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, et al.‘Green revolution’genes encode mutant gibberellin response modulators. Nature, 1999, 400: 256–61
    Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP. The Arabidopsis GA1 gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997, 11: 3194-3205
    Pepper G E, Pearce R B, Mock J J. Leaf orientation and yield of maize .Crop Science, 1977, 17: 883-886
    Pepper GE, Pearce RB, Mock JJ. Leaf orientation and yield of maize. Crop Sci, 1977, 17:883-886
    Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev, 2004, 18(19): 23682?379
    Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J, 1999, 18: 111-119
    Qian Q, He P, Teng S, Zeng DL, Zhu LH. QTLs analysis of tiller angle in rice (Oryza sativa L.). Acta Genetica Sinica, 2001, 28(1): 29-32
    Reinhardt D. and Kuhlemeier C. Plant architecture. EMBO Rep. 2002, 3: 846-851
    Ren C, Han C-Y, Peng W, Huang Y, Peng Z-H, Xiong X-Y, Zhu Q, Gao B-D, Xie D-X. A Leaky Mutation in DWARF4 Reveals an Antagonistic Role of Brassinosteroid in the Inhibition of Root Growth by Jasmonate in Arabidopsis. Plant Physiology, 2009, 151: 1412-1420
    Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141-1146
    Reymond M, Muller B, Tardieu F. Dealing with the genotype3environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. Journal of Experimental Botany, 2004, 55(40): 2461–2472
    Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet, 1996, 92: 905–914
    Rodney G. W. Tim H. The Maize Dwarf3 Gene Encodes a Cytochrome P450-Mediated Early Step in Gibberellin Biosynthesis. The Plant Cell, 1995, 7: 1307-1317
    Russell WA. Agronomic performance of maize cultivars representing different eras of breeding. Maydica, 1984, 29: 375-390
    Russell WA. Evaluations for plant, ear, and grain traits of maize cultivars representing 7 eras of breeding. Maydica, 1985, 30: 85-96
    Russell WA. Genetic-improvement of maize yields. Advances in Agronomy, 1991, 46 :245-298
    Sakamoto T, Kobayashi M, Itoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant physiol, 2001, 125: 1508-1516
    Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S et al. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 2006, 24(1):105-109
    Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H. Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol, 2003, 21: 909-913
    Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS et al. Green revolution: a mutant gibberellin-synthesis gene in rice. Nature, 2002, 416: 701-702
    Sanguineti MC, Duvick DN, Smith S, Landi P, Tuberosa R. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 2006, 24: 105–109
    Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999, 96:290-295
    Sch?n CC, Utz FH, Groh S, Truberg B, Openshaw S. Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics, 2004, 167: 485–498
    Shen S, Zhuang J, Bao J, Zheng K, Xia Y, Shu Q. Analysis of QTLs with additive, epistasis and G×E interaction effects of the tillering angle trait in rice. J Agri Biotec, 2005, 13:16-20
    Shi ZY, Wang J, Wan XS, Shen GZ, Wang XQ, Zhang JL. Over-expression of rice OsAGO7 gene induces upward curling of the leaf blade that enhanced erect-leaf habit. Planta, 2007, 226(1): 99-1?08
    Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development, 1999, 126(18): 4117-4?128
    Silverstone AL, Ciampaglio CN, Sun TP: The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 1998, 10: 155-169
    Sinclair TR, Sheehy JE. Erect leaves and photosynthesis in rice. Science, 1999, 283: 1455
    Sommer H, Beltran J P, Huijser P, et al. Ikficiens, a homeotic gene involved in the control of Hower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 1990, 9: 605- 613
    Song XJ, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39, 623-630
    Spielmeyer W, Ellis MH, Chandler PM. Semidwarf (sd-1),’green revolution’rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA, 2002, 99: 9043-9048
    Stuber C W, Edwards M D and Wendel J. F1 Molecular marker facilitated investigations of quantitative trait loci in maize, Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648
    Stuber CW, Polacco M, Senior ML. Synergy of empirical breeding, marker-assisted selection, and genomics to increase crop yield potentia1. Crop Sci, 1999, 39:l57l-l583
    Suge H, Turkan I. Can plants normally produce seeds under microgravity in space? Crop Sci. 1991, 60: 427–33
    Sun SX. Introduction on America corn yield contest in 2002. J Maize Sci, 2003, 12:102
    Sylvester, AW, Cande ZW, Freeling M. Division and differentiation during normal and liguleless1 maize leaf development. Development, 1990, 110(3): 985-1000
    Takeda T, Suwa Y, Suzuki M, Kitano M, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C. The OsTB1 gene negatively regulates lateral branching in rice. Plant L, 2003, 33: 513-520
    Takahashi M. Linkage groups and gene schemes of some striking morphologicalcharacters in Japanese rice. In Symp. Genet. Cytogenet. Int. Rice Inst. 1963, 215-36
    Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the -subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98, 7922-7927
    Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-90
    Tang G, Reinhart BJ, Bartel DP, Zamore PD. A biochemical framework for RNA silencing in plants. Genes Dev, 2003, 17(1): 4-96?3
    Tang Ji-hua, Teng Wen-tao, Yan Jian-bing, Ma Xi-qing, Meng Yi-jiang, Dai Jin-rui, Li Jian-Sheng. Genetic dissection of plant height by molecular markersusing a population of recombinant inbred lines in maize. Euphytica, 2007, 155: 117-124
    Tang JH, Teng WT, Yan JB, Ma XQ, Meng YJ, Dai JR, Li JS. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 2007, 155:117-124
    Tan LB, Li XR, Liu FG et al, Control of a key transition from prostrate to erect growth in rice domestication. Nature Genet, 2008, 40(11): 1360-1364
    Tan LB1, Li XR, Liu FX, Sun XY, Li CG, Zhu ZF, Fu YC, Cai HW, Wang XK, Xie DX, Sun CQ. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genet, 2008, 40(11): 1360-1364
    Tollenaar M, Wu J. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Science 1999, 39, 1597–1604.
    Tomoaki S, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Miyako UT, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnology, 2006, 24: 105-109
    Troyer F. Temperate corn-background, behavior, and breeding. In: Hallauer AR, ed. Specialty corns. Boca Raton, FL: CRC Press, 2001, 393–466
    Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298-1301
    Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, et al. GIBBERELLIN INSENSITIVEDWARF1 encodes a soluble receptor for gibberellin. Nature, 2005, 437: 693-98
    VAN OOIJEN, J. W. and R. E. VOORRIPS. JoinMap? version 3.0: software for the calculation of genetic linkage maps. Wageningen: Plant Research International. 2001
    Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments: Grain yield and yield components. Crop Sci, 1996, 36(5): 1310-1319
    Veldboom LR, Lee M, Woodman WL. Molecular marker facilitated studies of morphological traits in maize. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet, 1994, 89(4): 451-458
    Waites R, Hudson A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development, 1995, 121(7): 2143-2154
    Walsh J, Waters CA, Freeling M. The maize gene liguleless2 encodes a basic leucine zipper protein involved in the establishment of the leaf blade-sheath boundary. Genes Dev, 1998, 12(2): 208-?218
    Wang L, Xu YY, Zhang C, Ma QB et al. OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PloS ONE 2008, 10: e3521
    Wang S, Basten CJ, Zeng ZB. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. 2007 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) Werner JD, Borevitz JO, Warthmann N, Trainer GT, Ecker JR, Chory J, Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA, 2005, 102: 2460-2465
    Williams L, Carles CC, Osmont KS, Fletcher JC. A database analysis method identifies an endogenous transacting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA, 2005, 102(27): 97039?708
    Xu Y, McCouch SR, Shen Z. Transgressive segregation of tiller angle in rice caused by complementary gene action. Crop Sci 1998, 38:12-19
    Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell, 2004, 16(2): 5005?09
    Yamamoto T, Lin HX, Sasaki T and Yano M. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000, 154: 885-891
    Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell, 2000, 12: 1591-606
    Yang JS, Wang YJ, Li DH. Study on cultiva tion of super-high yield summer maize. J Qingdao Agric Univ (Natural Science), 2007, 24: 97-100
    Yamamoto T, Kuboki Y, Lin SY, Sasaki T and Yano M. Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet, 1998, 97: 37-44
    Yang X-C, Hwa C-M. Genetic modification of plant architecture and variety improvement in Rice. Heredity,2008,101:396-404
    Yano M, Kojima S, Takahashi Y, Lin HX and Sasaki T. Genetic control of flowering time in rice, a short-day plant. Plant Physiology, 2001, 127: 1425-1429
    Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y and Sasaki T. Identification of quantitative trait loci controlling HD in rice using a high-density linkage map. Theor Appl Genet, 1997, 95: 1025-1032
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L,Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y and Sasaki T. A major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopisis flowering time gene CONSTANS. Plant Cell 2000, 12: 2473-2484
    Yu BS, Lin ZG, Li HX et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J, 2007, 52:891-898
    Yu YT, Zhang JM, Shi YS, Song YC, Wang TY, Li Y. QTL analysis for plant height and leaf angle by using different populations of maize. J Maize Sci 2006, 14(2): 88-92
    Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    Zeng Z B. Theoretical basis for separation of multiple linked gene efects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of USA, 1993, 90: 10972-10976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700