白菜(Brassica chinensis L.)镉积累及生理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜是人们喜食的绿叶蔬菜之一,由于长期自然和人工选择,现存在丰富的品种类群。随农田污染日益严重,不结球白菜生产易受镉(Cd)污染危害。因此,筛选低Cd积累不结球白菜品种,能为生产安全蔬菜提供重要保证。同时,已有证实植物对Cd的吸收、积累与生长环境有关,因此通过改进农艺条件也可降低不结球白菜对Cd的吸收、积累。目前有关植物对Cd的吸收、积累的基因型差异机理尚存在争议,因此有必要进行相关研究。本论文从不结球白菜基因型差异筛选入手,利用水培试验,较为系统地研究了Cd影响不结球白菜生长及其Cd积累基因型差异的生理机制,并探索了某些外源物质如硅(Si)、硒(Se)对减少不结球白菜Cd吸收、积累的影响机理。
     1、不结球白菜Cd积累不同基因型差异
     于春夏和秋冬两生长季节在Cd污染(6 mg·kg~(-1) Dry soil)土壤中进行87个品种不结球白菜Cd积累差异研究。结果表明,不同品种Cd积累存在明显的基因型差异,同一品种春夏季Cd积累量高于秋冬季。品种、生长季节、季节与品种互作间差异均达极显著水平,表明小白菜安全生产应选择适宜品种、适宜栽培条件与栽培季节。
     2、Cd在不同品种小白菜中亚细胞分布的研究
     以差速离心法研究Cd在不同品种小白菜亚细胞的分布情况。结果表明,Cd在各器官中的含量依次为根系>叶片>叶柄,并且存在品种差异。在各器官的细胞中,Cd主要分布在细胞可溶性成分、细胞壁和质体(或叶绿体)中,而在细胞核、线粒体和核糖体中Cd分布量较少。根系与叶片四种重要细胞器(质体(或叶绿体)、细胞核、线粒体和核糖体)中的Cd分配率随Cd处理浓度的增加而增加,沪青一号上升更明显;叶柄中,线粒体和核糖体Cd分配率随Cd处理浓度的增加而增加,但叶绿体和细胞核Cd分配率下降,沪青一号四种细胞器Cd分配率高于苏州青。各细胞器中Cd分配率受Cd处理浓度影响,沪青一号各器官的细胞生命活动均较苏州青受Cd危害严重。
     3、Cd对小白菜光合特性的影响
     微量Cd(0.01mg·L~(-1))促进小白菜生长,对苏州青作用更明显;高浓度Cd显著抑制地上部生长,对根系生长影响相对较小。Cd降低叶绿素含量,苏州青降幅较大。高浓度Cd(1、10 mg·L~(-1))明显降低小白菜净光合速率(Pn),但增加胞间CO_2浓度(Ci),因此高浓度Cd降低Pn可能是由于非气孔限制所引起的。叶绿素荧光测定表明,Cd对小白菜叶片光化学效率(Fv/Fm)影响不大,而高浓度Cd明显降低光合电子传递量子效率(ΦPSⅡ)、光化学淬灭系数(qP)和电子传递速率(ETR)。Cd增加沪青一号非光化学淬灭系数(qNP),而苏州青在高Cd浓度下qNP下降,表明沪青一号具有较强的保护自身光合机构不受Cd伤害的能力,苏州青自身保护能力稍弱。
     4、不同Cd水平对小白菜生长和Cd、养分吸收的影响
     0.1~1 mg·L~(-1)Cd对不同品种小白菜生长影响不同,其中苏州青与湘潭束腰受抑制。0.1 mg·L~(-1)Cd不影响叶绿素含量,但除湘潭束腰外,1 mg·L~(-1)Cd减少叶绿素含量。0.1 mg·L~(-1)Cd减少苏州青和油冬
    
    儿的 挝,但对湘潭来腰、沪歼一号影响不人:及鹏·卜‘U明显减少湘潭范腰、苏州青、油冬儿植株
    的硼g量,但沪青一号U处理前洲蒸腾量反而有所增加。小白菜叶片、叶柄C(!含举及积累量随M处理量
    升高而增加,0-I柄Cd含量、积累量显为低于叫片。0.l。g·L-‘Cd处理时,各品种叶片Cd含量差异未达
    显著水平,而IDWe柄差异达显著水平,油冬儿山含量最高,苏州卉最低。1峪·卜‘M处理时,叶片比含
    量差异仍未达显著水平,而叶柄中差异达显著水平,油冬儿m含量最高,沪青一号剔氏。C(1处理降低小
    白菜地上部P、S的含量。ling·I。-‘Cd处理降低小白剩也上部K、I4g含量,但叶柄Ca含量相对降低而叶
    片相对升高;0.ling·L’Cd处理促进地上部贴积累。小白拟L上部微挝元素含蒸受Cd影响逐渐降低。
    5、不同浓度&对小白菜活性气清除系统的影响
     低剂挝Cd($1 mg·L-’)处理促进小白菜GSH、AsA和脯氨 量升高,苏州青中二者含挝均低于沪青
    一号。比降低可溶蛋白质含量,沪青一号显著低于苏州青。低剂量m处理增加叶片p A含泉,但沪青一
    号峪低了苏州青。低n略促进沪青一号超氧囱由基产生速率,苏州青则先显斡降低随h浓度增加后显著
    升高。低剂挝Cd降低小肉菜 SOD活性,两品种芹异不人;两品种G-pD、CAT。APX和 DIWi活性均受低剂
    钨n促进;低剂烘U促进苏州青朋活性,但抑制沪青一号m活性。
    6、Cd对菜心生长和元素含量基囚型差异研究
     0.5。g·L-’Cd明显抑制全年i巾青生K,但对其它品种影响不人;1。g·L创显达抑制各品种地上部
    生K,且对全年汕青、洲8四九和测a菜起地卜部生K抑制效贝显茗。比(<1峪·丫〕略降低菜心地上
    部含水挝,lllg·L-’Cd显著增加红苔菜与十月细恰冠比。Cd(<1 gig·L‘)显著增加各品种地上部、地
    下部m含堆,除改良黄叶外,1吧·八d处理时各品种地上部、地卜部m含填均显斡高于队加;g·L‘U
    处理。0.5。g·厂’U显垮增加改良询w地V部P、h含挝、十月红地上部S、吨、N、h和m含挝、别8
    四九和红苔剿也上部h含量以洲R问菜途地下部N和h含量,显著?
Pakchoi ( Brassica campestris ssp. chinensis L. ) is a very important green leafy vegetables in China, and has abundant genotypes from long time natural and artificial selection. In the production, pakchoi is easily polluted by Cadmium (Cd), which is one of the most toxic heavy metals to both plants and animals. It is one of best cost-effective and efficient approaches to choose cultivars of pakchoi with low Cd accumulation in edible parts. Meanwhile, it has been demonstrated that growth environmental factors may influence Cd absorption and accumulation in plants. It would thus be beneficial to reduce Cd uptake and accumulation in pakchoi by agronomic practices. The mechanism about the plant genotypic difference in Cd absorption and accumulation still be disputed. These experiments will be carried out to study the physiological mechanism of genotypic difference in effects of Cd on growth of pakchoi, Cd-uptake and accumulation in pakchoi plants, based on the research of genotypic difference of Cd contents in shoots of pakchoi and Cd subcellular distribution in plants of pakchoi. Meanwhile, the possibility to reduce Cd uptake and accumulation in pakchoi plants by application of Silicon (Si) or Selenium (Se) will be also studied. The major results were summarized as fellows:
    1. Investigation of genotypic difference of Cd contents in shoots of pakchoi
    Difference of Cadmium (Cd) contents in shoots of 87 cultivars of pakchoi ( Brassica campestris ssp. chinensis 1.) were studied in a Cd-contaminated soil (6 mg Cd kg-1 ) in two growth seasons. The results showed that significant differences of shoot Cd contents were found among the genotypes (cultivars). Cd contents of pakchoi in spring and summer were higher than in autumn and winter. The results of ANOVA showed highly significant differences of genotype (cultivar), growth season and cultivar growth season interaction for shoot Cd contents. The results indicated the significance to choose suitable cultivars, growth conditions and growth seasons to produce safe pakchoi.
    2. Cd subcellular distribution in plants of pakchoi
    Cd contents in different pakchoi plant parts were as follows: root > blade > petiole. Cd was mainly distributed in fractions of soluble component, cell wall and chloroplast (or plastid in root) and less distributed in fractions of nucleolus, mitochondrion and ribosome. In four important organelles (plastid(or chloroplast), nucleolus, mitochondrion and ribosome) of the root and blade cells, Cd distribution rates were increased with increasing of Cd treated concentrations, especially more significantly in Huqingyihao. In the petioles, Cd distribution rates were increased with Cd concentration in mitochondrion and ribosome, but decreased in chloroplasts and nucleolus. Cd distribution rates in four most important organelles (chloroplast, nucleolus, mitochondrion and ribosome) of Huqingyihao were higher than in Suzhouqing in petiole. Because
    
    
    
    Cd increasing with the increasing of Cd concentration in the important organelles in Huqingyihao was much higher than in Suzhouqing, the damage on cellular life activities by increasing Cd concentration in Huqingyihao would be stronger than in Suzhouqing.
    3. Influence of Cd on photosynthesis of pakchoi
    Low concentrations of Cd (0. 01, 0. 1 mg L"1) promoted plant growth, especially more considerably on Suzhouqing. High concentrations of Cd (10 mg L"1) significantly inhibited the shoot growth, however, didn' t affect the root growth. Cd decreased chlorophyll content, especially on Suzhouqing. High concentrations of Cd (1-, 10 mg L"1) considerably reduced net photosynthesis rate. The reduction on stomatal conductance and increase on intracellular Cft (Ci) under high concentrations of Cd indicated that a non-stomatal restriction resulted in an decrease of net photosynthesis. The determination of chlorophyll fluorescence showed that Cd didn' t influence photochemical efficiency of PSH(Fv/Fm). High concentrations of Cd reduced actual quantum yield of PSIl(PSII), photochemical quenching (qP) and elec
引文
1. 李曙轩,寿诚学.春化及光照对于白菜和芥菜发育的影响.植物学报,1957,6(1):7~23
    2. 王焕校.污染生态学基础[M].昆明:云南大学出版社,1990.3~5,43~63、93~95、179~196
    3. Clesllnski G, Neilser G H, Hoguee J. Effect of soil cadmium application and pH on growth and cadmium accumlation in roots, leaves and fruit of strawberry plants[J]. Plant and Soil, 1996, 180:267~276
    4. Simon L. Cadmium accumulation and distribution in sunflower plant [J]. Plant Nutr, 1998,21:341~352
    5. Moreno-Caselles J, Moral A Perez-Esplnosa R, Perez-Murcia M D. Cadmium accumulation and distribution in cucumber plant[J]. J Plant Nutr, 2000,23(2):243~250
    6. 陈朝明,龚惠群,王凯荣.Cd对桑叶品质、生理生化特性的影响及其机理研究应用生态学报,1996,7(4):417~423
    7. Petrovic N, Kastori R I. Eajcan M L. et al. The effect of cadmium on nitrate reductase activity in sugar beet (Beta vulgaris . Plant-physiology and application. 1990,107~109
    8. Ciecko, Zdzislaw: Wyszkowski, Miroslawa; Krajewski, Wladyslawa; et al. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape . The Science of the Total Environment. 2001, 281(1-3): 37~45
    9. 夏增禄.中国土壤环境容量[M],北京:地震出版社,1982,13~38
    10. Mclaughlin NJ, Parker DR, Clarke JM, et al. Metals and micronutrients - food safety issues. Special issue. Sustainable field crop systems for enhancing human health: agricultural approaches to balanced micronutrient nutrition. Field Crops Research. 1999, 60: 1-2, 143~163
    11. Satarug S, Baker J R, Urbenjapol S, et. al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters. 2003,137(1-2):65~83
    12. 陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1995,71~125.
    13. 傅桂平,衣纯真,张福锁等.潮土中锌对油菜吸收镉的影响.中国农业大学学报,1996,(5):85~88
    14. 陈晓婷,王果,张潮海等.灰泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响.土壤与环境,2002,11(1):17~2l
    15. 王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响.南京农业大学学报,2001,24(4):9~13
    16. Brown S L, Chaney R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspl caerulescens grown in nutrient solutions [J]. Soil Sci. Am. J., 1995,59:125~133
    17. Ebbs S D, Lasat M M, Brady D J, et al. Phytoextration of cadmium and Zinc from a
    
    contaminated soil [J]. J. Environ. Qua1. 1997, 26: 1424~1430
    18. 林君锋,高树芳,陈伟平等.蔬菜对土壤镉铜锌富集能力的研究.土壤与环境,2002,11(3):248~251
    19. 苏德纯,黄焕忠.油菜作为超积累植物修复镉污染土壤的潜力.中国环境科学,2002,22(1):48~51
    20. 胡学玉,李学垣,谢振翅.青菜品种锌效应特性研究.中国农业科学,2001,34(2):227~231
    21. 杨居荣,贺建群,黄翌等.农作物Cd耐性的种内和种间差异Ⅰ.种间差.应用生态学报,1994,5(2):192~196
    22. Arao T, Ae N, Horst WJ et al. Screening of genotypes with low cadmium content in soybean seed and rice grains. Plant nutrition food security and sustainability of agroecosystems through basic and applied research. Fourteenth Int 2001, 292~293
    23. Weigel H J. The effect of Cd~(2+) on photosynthetic reaction of mesophyll protoplasts. Physiol. Plant. 1985, 63, 192-200.
    24. Haynes R J. Active ion uptake and maintenance of cation-anion balance, A critical examination of their role in regulating rhizosphere pH. Plant Soil.1990, 126:247~264
    25. 段昌群,王焕校,曲仲湘.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究.环境科学.1992,13(5):31~35
    26. Siedleka A, Baszynsky T. Inhibition of election flow around photosystem Ⅰ in chloroplasts of cadmium-treated maize plants is due to cadmium-induced iron defiency. Physiol Plant. 1993, 87: 199~202
    27. 秦天才,吴玉树,王焕校,镉、铅及其相互作用对小白菜根系生理生化特性的研究[J].生态学报,1994,14(1):46~50
    28. 黄玉山,罗广华,关棨文.镉诱导植物的自由基过氧化损伤.植物学报,1997、39(6):522~526
    29. 罗立新,孙铁衍,靳月华,镉胁迫对小麦叶片细胞膜脂过氧化的影响.中国环境科学,1998a,18(1):72~75
    30. 王永锐,周建华.硅营养对缓解水稻幼苗Cd、Cr毒害的生理研究.应用环境生物学报,1999,5(1):11~15
    31. 赵菲佚,翟禄新,陈荃等.Cd、Pb复合处理下2种离子在植物体内的布及其对植物生理指标的影响.西北植物学报 2002,22(3):595~601
    32. Verma M P. Macromolecular interation with cadmium and the effects of Zinc, Copper, lead and Mercury ions[J].Biological Trace Element Research, 1982, 4: 35~43
    33. 陈平,张伟锋,余土元等.镉对水稻幼苗生长及部分生理特性的影响.仲恺农业技术学院学报,2001,14(4):18~21
    34. 苏孝志,陈耀华.普通化学(第二版),北京农业大学出版社,1988
    35. 江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92~99
    36. 金国贤.镉对植物根系的危害及其作用机理研究.浙江大学硕士学位论文,1997
    37. Assche F, Clijster H. Effect of metal on enzyme activity in plants. Plant Cell Environ.
    
    1990,13:195~206
    38. 李荣春.Cd、Pb及其复合污染对烟叶生理生化指标的影响.云南农业大学学报,1997,12(1):45~50
    39. 孔祥生,张妙霞,郭秀璞.镉对玉米幼苗细胞膜透性及保护酶活性的毒害.农业环境保护,1999a,18(3):133~134
    40. 孔样生,郭秀璞,张妙霞.镉胁迫对玉米幼苗生长及生理生化的影响.华中农业大学学报.1999b,18(2):111~113
    41. 汪洪,周卫,林葆.钙对镉胁迫下玉米生长及生理特性的影响.植物营养与肥料学报,2001,7(1):78~87
    42. 罗立新.镉对小麦细胞膜脂过氧化的效应.河南科学.1999,17(6):47~49
    43. Lamoroaux R J, Chaney W R. Growth and water movement in silver maple seedling affected by cadmium. J Environ Qual. 1977, 6:201~205
    44. Takacs Z, Tuba Z, Smirnoff N. Exaggeration of desiccation stress by heavy metal pollution in Tortula ruralis: a pilot study. Plant growth regul. 2001, 35 (2) :157~160
    45. Hegemeyer J, KahleH, Breckle SW, et al. Cadmium in Fagus sylvatica L. trees and seedings: leaching, uptake and interconnection with transpiration. Water, Air and Soil Pollution. 1986, 29(4):347~359
    46. Prasad M N V. Cadmium toxicity and tolerance in vascular plants[J]. Envir Exper' Botany, 1995, 35(4):525~545
    47. 李俊梅,王焕校.镉胁迫下玉米生理生态反应与抗性差异研究。云南大学学报(自然科学版),2000,22(4):311~317
    48. Costa G, Morel J L. Water relations, gas exchange and amino acid content in Cd -treated lettuce. Plant Physiology and Biochemistry Paris. 1994, 32(4): 561~570
    49. 刘秀梅,王庆仁.芬兰关于在重金属污染下植物生理生态效应的研究.水土保持科技情报,2002,(1):5~7
    50. [奥地利]Walter Laucher,著.翟志席,郭玉海,马永泽等,译.植物生态生理学[M].第5版.北京:中国农业大学出版社,1997,321
    51. Marcelle R. et al. Effect of stress on Photosynthesis. Martinus Nijhoff. Dr. W. Junk, The Hague. 1983, 371~382
    52. Stobart A K, Griffiths W T, Ameen-Bukhari I et al. The effect of Cd~(2+) on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant, 1985 ,63, 293~298
    53. Padmaja K, Parsad D D.K, Parsad A R K. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica, 1990, (24): 399~404
    54. 李功藩,蔡琬平.植物生理学报,1985,11:303~309
    55. 杨丹慧.重金属离子对高等植物光合膜结构与功能的影响.植物学通报,1991,8(3):26~29
    56. 彭鸣,王焕校,吴玉树.镉、铅诱导玉米幼苗细胞超微结构的变化.中国环境科学,1991,11(6):426~431
    57. 杨居荣,贺建群,蒋婉如.镉污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193~
    
    197
    58. 陈国祥,施国新,何兵等.Hg、Cd对莼菜越冬芽光合膜光化学活性及多肽组分的影响.环境科学学报,1999,19(5):521~525
    59. Cagno R di, Guidi L, Stefani A, et al. Effects of cadmium on growth of Helianthus annuus seedlings: physiological aspects. New Phytologist, 1999, 144(1):65~71,32
    60. Greger M, Ogren E. Direct and indirect effects of Cd~(2+) on photosynthesis in sugar beet (Beta vulgaris). Physiologia Plantarum, 1991,83(1):129~135
    61. Baszynski T., Wajda L., Wolinska D., et al. Photosynthetic activities of cadmium-treated tomato plants. Physiol Plant, 1980, (48): 365~370
    62. 孙赛初,王焕校,李启任.水生维管束植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113~12l
    63. Somashekaraiah B V, Padmaja K, Prasa R K. Phytotoxicity of Cadmium ions germination seedling of mung bean(Phaseolus vulgarize) : Involvement of lipid peroxides in chlorophyll degradation. Physiol Plant, 1992, 85:85~89
    64. Nag P. Heavy metal effects in plant tissue involving chlorophyll, chLorophyllase, Hill reaction activity and gelelectrophoretic patterns of soluble proteins. Indian J Exp Bio1, 1981, 19: 702~706
    65. Baryla A, Carrier P, Franck F, et al. Leaf cblorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth. Planta, 2001, 212(5-6): 696~709
    66. 曾广文,蒋德安.植物生理学.成都:成都科技大学出版社,1998
    67. Kumara C, Surinder Kumarb S. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium, Lakshaman Plant Physiology and Biochemistry, 1999, 37 (4): 297~303
    68. Sawhney V., Sheoran I. S., Singh R. Nitrogen fixation, photosynthesis and enzymes of ammonia assimilation and ureide biogenesis in nodules of mungbean (Vigna radiata) grown in presence of cadmium, Indian J. Exp. Biol, 1990, (28): 883~886
    69. Sheoran I. S., Agarwal N., Singh R. Effect of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeonpea (Cajanus cajan L.), Plant Soil, 1990(a): 129, 243~249
    70. Sheoran I. S., Singal H. R., Singh R. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.), Photosynth. Res. 1990(b), (23): 345~351
    71. Pankovic D, Plesnicar M, Arsenijevic Maksimovic I, eta1. Effects of nitrogen nutrition on photosynthesis in Cd-treated sunflower plants. Annals of Botany, 2000, 86: 4, 841 847
    72. Malik D., Sheoran I.S., Singh R. Carbon metabolism in leaves of cadmium treated wheat seedlings, Plant Physiol. Biochem, 1992, (30):223~229
    73. Skorzynska E., Bednara J., Baszynski T., Some aspects of runner bean plant response
    
    to cadmium at different stages of the primary leaf growth, Acta Soc. Bot. Pol. 1995, (64):165~170
    74. Weigel H. J. Inhibition of photosynthetic reactions of isolated intact chloroplast by cadmium. J. Plant Physiol, 1985b,(l19):179~189
    75. Krupa Z, Baszynski T. Some aspects of heavy metals toxicity towards photosynthetic apparatus - direct and indirect effects on light and dark reactions. Acta Physiologiae Plantarum, 1995, 17(2): 177~190
    76. 戴玲芬,高宏,夏建荣.雪松聚球藻(Synechococcus cedrorum)对重金属镉(Cd)的耐受与解毒.环境科学学报,1998,4(3):192~195
    77. Szalontai B, Horvath LI, Debreczeny M, et al. Molecular rearrangements of thylakoids after heavy metal poisoning, as seen by Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopy. Photosynthesis Research. 1999, 61(3):241~252
    78. Barcelo J, Poschenrieder C. Plant water relation as affected by heavy metal stress: a review. J. Plant Nur, 1990,13:1~37
    79. Stiborova M., Doubravova M., Brezinova A. et al. Effect of heavy metal ions on growth and bio-chemical characteristics of photosynthesis of barley (Hordeum vulgare L.), Photosynthetica, 1986(20):418~425
    80. 周卫,汪洪.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335~340
    81. Andreu L, Cornelia U I, Amparo S. Cd~(2+) effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant and Soil, 2000, 219(1/2): 21~28
    82. Prasad M N V, Malec P, Waloszek A, et al. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Science, 2001,161(5):881~889
    83. Mathys M. Vergleicgende Untersuchugen der Zinkaufnahme Von die Sistenten und Sensitiven Popultion Von agrostis tenuis Sibth. Flora. 1973,162: 492~499
    84. Lee K C, Cunningham B A, Paulsen G M, et al. Effects of cadmium on respiration rate and activities of several enzymes in soybean seedlings. Physiol Plant, 1976,36,4~6
    85. Kessler A, Brand M D. The mechanism of the stimulation of state 4 respiration by cadmium inpatato tuber(Solanum tuderosum) mitochondria. Plant Physiol. Biochem, 1995,33:519~528
    86. Yu JianPing, Nickels R, McIntosh L, et al. A genome approach to mitochondrial-nuclear communication in Arabidopsis. Plant Physiology and Biochemistry, 2001, 39 (3-4) :345~353
    87. Skorzynska P E, Baszynski T, Garab G (Editor). The modifying effect of calcium on Cd-treated runner bean plants. The level of carbohydrates. Photosynthesis: mechanisms and effects. Volume Ⅳ. Proceedings of the Ⅺth International Congress on Photosynthesis, Budapest, Hungary, 17-22 August, 1998. 1998, 2673~2676
    
    
    88. Kevresan S, Petrovic N, Popovic M, et al. Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J Plant Nutr, 2001,24(10): 1633~1644
    89. 秦天才,吴玉树,王焕校等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320~325
    90. Hernandez LE, Garate-A, Carpena Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant-and-Soil. 1997, 189 (1) : 97~106
    91. Gouia H, Habib Ghorbal M, Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiology and Biochemistry, 2000, 38(7-8): 629~638
    92. 杨居荣,蒋婉茹.小麦耐受Cd胁迫的生理生化机制探讨.农业环境保护 1996,15(3):97~101
    93. Bazzaz M B, Govindjee. Effects of cadmium nitrate on spectral characteristics and light reactions of chloroplasts. Environ Lett, 1974, 6:1~12
    94. Miller R J, Bittel J E, Koeppe D E. The effect of cadmium on electron and energy transfer reactions in corn mitochondria. Physiol Plant, 1973, 28:166~171
    95. 陈薇,张德颐.植物组织中硝酸还原酶的提取、测定和纯化,植物生理学通讯,1980,4:45~49
    96. Chien H F, Lin C C, Wang J W, et. al. Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul, 2002, 36 (1):41~47
    97. 张义贤,重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报.1997,17(2):199~205
    98. 陈桂珠.重金属对黄瓜籽苗发育影响的研究.植物学通报,1990,7(1):34~39
    99. 赵博生,莫华.镉对蒜根生长的毒害及抗坏血酸,铁盐的解毒效应.武汉植物学研究,1997,15(2):167~172
    100. 段昌群,王焕校.重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨.植物学报,1995,37(1):14~24
    101. Hollenbach B, Schreiber L, Hartung W, et al. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley: implications for the involvement of lipid transfer proteins in wax assembly. Planta, 1997, 203(1): 9~19
    102. 孙大业.植物细胞信号转导研究进展.植物生理学通讯,1995,32(2):81~91
    103. Fuhrer J. Early effects of excess cadmium uptake in Phaseolus vulgaris. Plnat Cell Environ, 1982,(5):263~270
    104. 林慧玲,林兰妃,谢庆昌等.镉离子对四季豆白化下胚轴乙烯生物合成之影响.中国园艺(台湾),2000,46(1):55~64
    105. 荆红梅,郑海雷,赵中秋,等.植物对镉胁迫响应的研究进展.生态学报,2001,21(12):2125~2130
    106. Rich P R, Bonner W D. The sites of superoxide anion generation in higher plant mitochondria [J]. Arch Biochem Biophy 1978, 188:206
    107. Elstner E F. Oxygen activation and oxygen toxicity [J]. Ann Rev Plant
    
    Physiol, 1982, 33: 73~96
    108. Asada K. Production and scavenging of active oxygen in chloroplasts[A]. Molecular Biology of Free Radical Scavenging Systems [M]. CSHL Press, 1992, 173
    109. Baisak R D, Rana P B B, Acharya M K. Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant Cell Physiol, 1994, 35, 489~495
    110. Bowler Chris. Superoxide dismutase and stress tolerance[J]. Ann Rev Plant Physiol Plant Biol, 1992, 43: 83~116
    111. Asada K. Production and action of active oxygen in photosynthetic tissue. CRC press, Bota Raton FL, 1994,77~104
    112.罗立新,孙铁珩,靳月华.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998b,18(5):495~499
    113. Willekens H, Chamnongpol S, Davey M et al. Catalase is a sink for H_2O_2 and is indispensable for stress defense in C_3 plants. EMBO J, 1997, 16: 4806~4816
    114. Asada K, Takahashi M. Production and scavenging of active oxygen in photosynthesis, Elsevier Science Publishers, Amsterdam, 1987, 227~287
    115. Bowler C, Van Montagu M. Superoxide dismutase and stress tolerance [J]. Ann Rev Plant Physio Plant Mol Biol, 1992,43:83
    116. Schutzendubel A, Schwanz P, Teichmann T, et. al. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol., 2001,127 (3): 887~898
    117. Gallgo S M, Benavidas M P, et al. Effect of heavy metal iron excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci.,1996,121:151~159
    118.严重玲,洪业汤,付舜珍等.Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响.生态学报,1997,17(5):488~492
    119. Lagriffoul A, Mocquot B, Mench M et al. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants ( Zea mays L. ) [J]. Plant and Soil, 1998, (20):241~250
    120. Lavid N, Schwartz A, Lewinsohn E, et. al. Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaceae).Planta, 2001, 214 (2):189~195
    121. Vangronsveld J, Chjsters H. Toxic effects of metals [A]. Plants and the chemical elements biochemistry, uptake, tolerance and toxicity [C],1994,152
    122. León Ana M, Palma José M, Corpas Francisco J, et al. Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiology and Biochemistry, 2002,40(10):813~820
    123.李元,王焕校,吴玉树.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报,1992,12(2):147~153
    
    
    124.杨居荣,贺建群.张国祥等.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113~117
    125. Piqueras A; Olmos E; Martinez Solano J R et al. Cd-induced oxidative burst in tobacco BY2 cells: time course, subcellular location and antioxidant response. Free Radical Research, 1999, 31: SUPPL, S33~S38
    126.秦淑琴,黄庆辉.硅对水稻吸收镉的影响.新疆环境保护,1997,19(3):51~53
    127.王永锐,成艺,胡智群等.硅营养抑制钠盐及铜盐毒害水稻秧苗的研究.中山大学学报(自然科学版),1997,36(3):72~75
    128. Chen YiChang, Huerta A J. Effect of sulfur nutrition on photosynthesis in cadmium treated barley seedlings, Journal of Plant Nutrition, 1997, 20(7-8):845~856
    129.徐志防,罗广华,王爱国等.光合作用的光抑制与光合器官的活性氧代谢.植物生理学通讯,1999,35(4):325~332
    130.郭静成,尹顺平.硒对高等植物中谷胱甘肽过氧化物酶活性及谷胱甘肽含量的影响.西北植物学报,1998,18(4):533~537
    131. Andersson A, Nilsson K O. Influence of lime and soil pH and Cd availability to plants [J]. Am. Bio.,1974,3:198
    132. Wei Zhou, Bao Lin. Alleviation of Cd toxicity by Ca for maize (Zea Mays L.) and its machanism [A].In: Zhihong Cao (eds) International Symposium on Soil, Human and Environment Interactions [C]. China Scienceand Technology Press, 1998,267~271
    133.徐勤松,施国新.铜及铜、锌共同作用对水芹菜部分生理特性的影响.南京师大学报(自然科学版),2000,23(4):97~100
    134. Allen R G, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med, 2000, 28: 463~499
    135. Masutani H. Oxidative stress response and signaling in hematological malignancies and HIV infection. Iht J Hematal, 2000,71:25~32
    136.赵春燕,孙军德,宁伟等.重金属对土壤微生物酶活性的影响.土壤通报.2001,32(2):93~94
    137. Kennedy C D, Gonsalves F A N. The action of divalent Zn, Cd, Hg, Pb on the transroot potential and H~+ -efflux of excised roots. J Exp Bot, 1987,38:800~817
    138. Haynes R J. Active ion uptake and maintenance of cation-anion balance, A critical examination of their role in regulating rhizosphere pH. Plant Soil, 1990,126:247~264
    139. Moreno J L, Garcla C, Hernández T, et al. Transference of heavy metals from a calcareous soil amended with sewage-sludge compost to barley plants. Bioresource Technology, 1996, 55(3) :251~258
    140. Tang S, Wilke B M, Brooks R R. Heavy-metal uptake by metal-tolerant Elsholtzia haichowensis and Commelina communis from China. Commun Soil Sci Plant Anal, 2001, 32 (5/6): 895~905
    141. Hagemeyer J, Waisel Y. Uptake of Cd~(2+) and Fe~(2+) by excised roots of Tamariz aphylla. Physiol
    
    Plant,1989,77,247~253
    142.杨景辉.土壤污染与防治.北京:科学出版社,1995
    143.何念祖,孟赐福.植物营养原理.上海:上海科技出版社,1987
    144. Kahle H. Response of trees of heavy metals. Envir Exp Bot, 1993,33:99~119
    145. Cataldo D A, Garland T R, Wildung R E. Cadmium uptake kinetics in intact soybean plants. Plant Physiol, 1983, 68,835~839
    146. Sait D E, Prince R C, Picker I J, et al. Mechanism of cadmium mobbility and accumulation in Indion mustard. Plant Physiol. 1995, 109: 1427~1433
    147. Marschner H. Mineral nutrition of higher plants. 2de. Academic Press, San Diego. CA. USA. 1995
    148. Hatch D J, Jones L H P, Burau R G .The effect of pH on the uptake of cadmium by four plant species grown in flowing solution culture. Plant and Soil 1988,105,121~126
    149. Grill E, Winnacker E L, Zenk M H. Phytochelatins: aclass of heavy-metal-binding peptides from plants are functionally analogous to metallothioneins. Proc Natl Acad Sci U.S.A.,1987,84,439~443
    150. Rauser W E. Phytochelatins and related peptides: Structure, biosynthesis, and function. Plant Physiol, 1995,109:1141~1149
    151. Mengel K, Schubert S. Active extrusion of protons into deionized water by roots of intact maiz plants. Plant Physiol, 1985,79:344~348
    152.杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,1:8~15
    153. Casterline J L Jr, Barnett N M. Cadmium binding components in soybean plants. Plant Physiol, 1982, 69:1004~1007
    154. Hasegawa I, Tarada E, Sunairi M et al. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallthionein gene(CUP1). In: Ando Y, Fujita K, Mae T et al. (eds). Plant Nutrition for Sustainable Food Production and Environment. Netherland: Kuwer Academic Publishers, 1997, 391~395
    155. Florijn P J, VAN Beusichem M L. Uptake and distribution of cadmium in maize inbred lines. Plant Soil, 1993, 150, 25~32
    156. Shah K, Dubey R S. Effect of cadmium on RNA level as well as actvity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiol & Biochem, 1995,33:577~584
    157. Bowling D J F. Release of ions to the xylem in roots. Physiol Plant, 1981,(53):392~397
    158. Florijn P J, Nelemans J A and Van Beusichem M L 1992 The influence of the form of nitrogen nutrition on uptake and distribution of cadmium in lettuce varieties. J. Plant Nutr. 1992,15,2405~2416
    159. Hart J J, Characterization of cadmium binding, uptake, and translocation in inadt
    
    seedlings. Plant Physiol. 1998, 116: 1413~1420
    160. Bomma Y, Hirata H. Kinetics of cadmium and zinc absorption by rice seedling roots. Soil Science and Plant Nutrition, 1984, 30(4):527~532
    161. Florijn P J, Nelemans J A, VAN Beusichem M L. Cadmium uptake by lettuce varieties. Neth J Aagric Sci, 1991, 39, 103~104
    162. Zeng W, Hemmasi B. Solution synthesis of phytochelatins isopepetides from the plant kingdom. Liebigs Ann Chem, 1992, 311~315
    163. Zhang Z W, Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient composition in wheat. J Plant Nutri, 2000. 23(9):1337~1350
    164. Clarke B B, Brennan E. Differential cadmium accumulation and phytotoxicity in sixteen tobacco cultivars. JAPCA, Joural of the Air and Waster Management Association, 1989,39(10):1319~1322
    165. Moustakas N K, Akoumianakis K A, Passam H C. Cadmium accumulation and its effect on yield of lettuce, radish, and cucumber. Commun Soil Sci Plant Anal, 2001,32 (11/12):1793~1802
    166. Bezel V, Zhuikova T V, Pozolotina V N. The structure of dandelion cenopopulations and specific features of heavy metal accumulation. Russian Journal of Ecology, 1998, 29(5)331~337
    167. Vázquez M D, Poschenrieder C, Madico J, et a]. Location of zinc and cadmium in Thlaspi caerulescens(Brassicacease). A metallophyte that can hyperaccumulate both metals. J Plant Physiol, 1992,140: 350~355
    168. Van Balen E, Van Geijn D E, Desmet G.M. Autoradiographic evidence for the incorporation of cadmium into calcium oxalate crystals. Z Pflanzenphysiol, 1980,97,123~133
    169. Nishizono H, Ichikawa H, Suziki S, et. al. The role of the root cell wall in the heavy metal tolerance of Athyriun yokoscense. Plant Soil, 1987,101,15~20
    170. Zenk M H. Heavy metal detoxification in high plants. Gene, 1996,179,21~30
    171. Hall J L. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot, 2002, 53(366):1~11
    172. Hans J W, Hans J J. Subcellular distribution and chemical form of cadmium in bean plants[J]. Plant Physiology, 1980, 65:480~482
    173. Rathore V S, Bajaj Y P S, Wittwer S H. Subcellular localication of zinc and calcium in bean tissues [J]. Plant Physiology, 1972,49:207-211
    174. 杨明杰.海洲香薷(Elsholtzia splendens Nakai)对铜的超积累机理研究.浙江大学博士学位论文. 2001
    175. 柴团耀,张玉秀,Gérand Burkard.菜豆重金属胁迫响应基因:cDNA克隆及其表达分析.植物生理学报,1998, 24(4):399~404
    176. Schachtman D P, Baker S J. Molecular approaches for increasing the micronutrient density in edible protion of food crops. Field Crops Research, 1999, 60:81~92
    
    
    177. Guerinot M L, Eide D. Zeroing in on zinc uptake in yeast and plants. Current Opinion in Plant Biology, 1999, 2: 244~249
    178. 李玉浸主编.集约化农业的环境问题与对策.中国农业科技出版社,北京,2001
    179. Robinson B, Russell C, Hedley M, et. al. Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland. Agrie Ecosyst Environ, 2001, 87 (3): 315 321
    180. Jarvis S C, Jones L H P and Hopper M J. Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and Soil, 1976, 44: 179~191
    181. John M K. Cadmium uptake by eight food crops as influenced by various soil levels of cadmium. Environ. Pollut, 1973,4:7~15
    182. Bogess S F, Willavize S and Koeppe D E 1978 Differential response of soybean varieties to soil cadmium. Agron. J. 70,756~760
    183. Florijn P J, Van Beusichem M L. Cadmium distribution in mauze inbred lines: Effects of pH and level of Cd supply. Plant and Soil, 1993, 153: 79~84
    184. Hinesly T D, Alexander D E, Redborg K E, et al. Differential accumulations of cadmium and zinc by corn hybrids grown on soil amended with sewage sludge. Agron. J, 1982,74,469~474
    185. 吴启堂,陈卢,王广寿.水稻不同品种对Cd吸收累积的差异和机理研究.生态学报,1999,19(1):104~107
    186. 徐红宁,杨居荣,许嘉琳.作物对出的吸收与根系阳离子交换容量[J].农业环境保护,195,34(4):150~153,177
    187. Tu ShuI, Patterson D, Shen SiYuan, et al. NADH-linked electron transfer induces Cd2+ movement in corn root plasma membrane vesicles. Plant and Cell Physiology. 1996, 37: 2, 141~146
    188. 龙新宪.东南景天(Sedum alfredii Hance)对锌的耐性和超积累机制研究.2002浙江大学博士学位论文
    189. Smolders E. Cadmium uptake by plants. International Journal of Occupational Medicine and Environmental Health. 2001,14(2):177~183
    190. Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British population of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicacceae). New Phytol, 1994.127,61~67
    191. Francis C W, Davis E C, Goyer J C. Plant uptake trace element from coal gasification ashes. Journal of Environmental Qualital, 1985,14(4):561~569
    192. HegemeyerJ, Kahle H, Breckle S W, et al. Cadmium in Fagus sylvaticaL. trees and seedings: leaching, uptake and interconnection with transpiration. Water, Air and Soil Pollution. 1986, 29 (4) :347~359
    193. Eklind Y, Ramer B, Wivstad M. Evaluation of growing media containing farmyard manure compost, household waste compost or chicken manure for the propagation of lettuce
    
    (Lactuca sativa L.) transplants .Biol Agric Hortic, 2001,19(2):157~181
    194.孙波,骆永明.超积累植物吸收重金属机理的研究进展土壤,1999,3:113~119
    195. Hyun H N et al. J. Environ. Qual.,1998,27:329~334
    196. Van Beusichem R, Kirchman R, Impens R. Cadmium contamination in agriculture and zootechnology. Experieotia, 1984, 40, 43~52
    197.王玮,袁大伟,汪雅各.土壤重金属的形态特征及其对蔬菜重金属含量的影响.上海农业学报1991,7(4):54~63
    198. Hatch D J, Jones L H P, Burau R G .The effect of pH on the uptake of cadmium by four plant species grown in flowing solution culture. Plant and Soil 1988, 105, 121~126
    199. Morel J L, et al. Measurement of Pb++, Cu++, and Cd++ binding with mucilage exudates from maize(Zeo mays L.) roots. Biol, Fertil. Soils, 1986, 2: 29~34
    200. Sldiqi M Y, Glass A D M. Simultaneous consideration of tissue and substrate potassium concentration in K~+ uptake kinetics: A model. Plant physiol., 1982 ,69: 283~285
    201. Narwal R P , Singh M ,Dahiya D J. Effect of cadmium on plant growth and heavy metals content of corn (Zea mays L.). Corp Research Hisar. 1990, 3(1):13~20
    202. Mench M J Cadmium availability to plants in relation to major long-term changes in agronomy systems. Agriculture, Ecosystems and Environment. 1998, 67(2-3):175~187
    203. Lavado RS, Porcelli CA, et al. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil and Tillage Research, 2001, 62(1-2):55~60
    204. Moreno D A,Villora G, Hernandez J, et. al. Accumulation of Zn, Cd, Cu, and Pb in Chinese cabbage as influenced by climatic conditions under protected cultivation. J Agric Food Chem., Washington, D.C. : American Chemical Society. 2002,50 (7):1964~1969
    205.熊礼明.施肥与植物的重金属吸收.农业环境保护,1993,12(5):217~222
    206.衣纯真,傅桂平,张福锁.施用钾肥(KCl)的土壤对作物吸收累积镉的影响.中国农业大学学报,1996,(5):79~84
    207.曾清如,周细红,毛小云.不同氮肥对铅锌矿尾矿污染土壤中重金属的溶出及水稻苗吸收的影响.土壤肥料,1997(3):7~11
    208.张敬锁,李花粉,张福锁,等.不同形态氮素对水稻体内镉形态的影响.中国农业大学学报,1998,3(5):90~94
    209. Wang, Wen-Xiong, Dei Robert C H. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 2001,111(2):233~240
    210.马建军,朱京涛,于瑞芹.单一稀土处理油菜种子对其吸收镉的影响.河北农业技术师范学院学报,1998,12(4):13~16
    211.周青,黄晓华,黄纲业,等.镉对大豆苗期素质的影响与镧的防护作用.农村生态环境,1998,14(1):58~60
    212.任继凯,陈清朗.土壤中镉、铅、锌及其相互作用对作物的影响.植物生态学与地植物学丛刊,1982,(4):320~329
    
    
    213.游植粼.受镉污染土壤增施磷锌对水稻吸镉的影响.农业环境保护,1993,12(3):143~144
    214. Bloss T, Clemens S, Nies D H. Characterization of the ZATlp zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta, 2002,214 (5) :783~791
    215.李花粉,张福锁,李春俭,等.Fe对不同品种水稻吸收Cd的影响.应用生态学报,1998,9(1):110~112
    216.郑志宇,张福锁,毛达如.铁对小麦吸收不同形态镉的影响.生态学报,1999,9(2):170~173
    217.[德]K.蒙格尔 [英]E.A.克尔克贝 著 张宜春,刘同仇,谢振翅等译;史瑞和,裴保义,胡保堂校.植物营养原理.农业出版社出版,1987,p566~570.p586~588.p590~592
    218.蔡德龙,陈常友,小林均.硅肥对水稻镉吸收影响初探.地域研究与开发,2000,19(4):69~71 马同生.我国水稻土硅素养分与硅肥施用研究现状.土壤学进展,1990,18(4):1~5
    219.臧惠林,郑春荣,陈怀满.控制镉污染土壤上作物吸镉的研究Ⅰ.对水稻和白菜的控制效果.农业环境保护,1987,6(3):28~29,27
    220.马有华,丁瑞兴,张继榛,等.植物体内硒和硫的相互作用.植物生理学通讯,2001,37(2):161~ levels 166
    221.谭周磁、陈嘉勤、薛海霞.硒[Se]对降低水稻重金属Pb,Cd,Cr污染的研究.湖南师范大学自然科学学报.2000,23(3):80~83
    222.邬飞波.大麦镉积累和耐镉基因型差异的机理研究.浙江大学博士学位论文.2002
    223. Kaplan D, Heimer Yair M, Abeliovich A, et. al. Cadmium toxicity and resistance in Chlorella sp. Plant Science, 1995, 109(2): 129~137
    224. Greger M, Kautsky L, Sandberg T. A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity. Environmental and Experimental Botany, 1995, 35(2):215~225
    225. Zurayk R A, Khoury N F, Talhouk S N. et al. Salinity-heavy metal interactions in four salt-tolerant plant species. J Plant Nutr, 2001, 24 (11) :1773~1786
    226. Zhao H, Edie D. The yeast ZRTI gene encodes the zinc transport protein of a high affinity uptake system induced by zinc limitation. Proceedings of the National Academy of Sciences. USA, 1996,93:2454~2458
    227. Edie D, Broderius M, Fett J, et al. A noval iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Sciences. USA, 1996,93:5624~5628
    228.柴团耀,张玉秀.菜豆富脯氨酸蛋白质基因在生物和非生物胁迫下的表达.植物学报,1999,41(1):111~113
    229. Lasat M M, Pence N S ,Garvin D F , et al. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulesscens.J.Exp. Bot.,2000,51:71~79
    230. Pence S N, Larsen P B, Ebbs S D, et al. The molecular physiology of heavy metal transport in Zn/Cd hyperaccumulator Thlaspi caerulesscens. Proceedings of the National Academy of Sciences. USA, 2000, 97: 4956~4960
    231. Assunco A.G,L,,Costa Martins P.D.A.,Foleter S.D.E. et al . Elevated expression of
    
    metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulesscens. Plant, Cell and Environment, 2001, 24: 217~226
    232. Baker A J M. Metal tolerance. New Phytol, 1987, 106(suppl), 93~111
    233. Bruns I, Sutter K, Menge S, et. al. Cadmium lets increase the glutathione pool in bryophytes. J Plant Physiol, 2001,158(1):79~89
    234. Choi Y E, Harada E, Wada M, et al. Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta, 2001, 213(1) :45~50
    235.华珞.土壤污染的治理方法研究.农业工程学报.1991.8(增刊):90~99
    236.傅显华,吴启堂.不同物科对叶菜吸收Cd和Pb的影响.农业环境保护,1995,14:145~149
    237. Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health, Advance in Agronomy, 1991, 51: 173~212
    238. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environmental and Experimental Botany, 1999, 41: 105~130
    239. Cobbett C S, Goldsbrough P B. Mechanism of metal resistance: phytochelatins and metallothioneins. In: Phytoremediation of contaminated soil and water. Terry N, and Banuelos G. (eds). Lewis publishers, Boca Raton, FL. 2000, 247~269
    240. Cobbett C S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Cuuent Opinion in Plant Biology, 2000, 3:211~216
    241. Cobbett C S. Phytochelatin and their roles in heavy metal detoxification. Plant Physiology, 2000, 123: 825~832
    242. Costa G, Morel J. Water relations, gas exchange and amino acid content in Cd - treated lettuce. Plant Physiology and Biochemistry Paris.1994, 32: 4, 561~570
    243. Costa G, Michaut J C, Guckert A. Amino Acida Exuded from Axenic Roots of Lettuce and White Lupin Seedlings Exposed to Different Cadmium Concentrations. JOURNAL OF PLANT NUTRITION, 1997,20(7&8):883~900
    244. Oven M, Raith K, Neubert R H H, et. al. Homo-phytochelatins are synthesized in response to cadmium in azuki beans. Plant Physiol, 2001, 126(3): 1275~1280
    245. Xiang C, Oliver D J. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. The Plant cell (USA). 1998, 10(9) : 1539~1550
    246. Casterline J L, Barnett N M. Isolation and Characterization of cadmium-binding Components in Soybean Plant, Plant Physiol, 1977, 59(Suppl): 124
    247.龚雨松等.小麦幼苗根系镉螯合素.植物生理学报,1990,16(1):77~86
    248.安志装,王校常,严蔚东,等.植物螯合肽及其在重金属胁迫下的适应机制.植物生理学通讯,2001,37(5):463~467
    249.赵博生,莫华.镉对蒜根生长的毒害及抗坏血酸,铁盐的解毒效应.武汉植物学研究,1997,15(2):167~172
    250. Kang Y J. Exogenous glutathione decreases cellular cadmium uptake and toxicity. Drug
    
    Metab Dispos, 1992, 20, 714~718
    251.王宏镔,王焕校,文传浩等.镉处理下不同小麦品种几种解毒机制探讨.环境科学学报,2002,22(4):523~523
    252.唐启义,冯明光著.实用统计分析及其计算机处理平台.北京:中国农业出版社,1997
    253. Wu J, Norvell W A, Hopkins D G, et al. Spatial variability of grain cadmium and soil characteristics in a durum wheat field. Soil Science Society of America, 2002, 66 (1) : 268~275
    254. Moya J L, Ros R, Picazo I. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Res, 1992, 36:75~80
    255.王凯荣,周建林,龚惠群.土壤镉污染对苎麻的生长毒害效应.应用生态学报,2000,11(5):773~776
    256. Zhu Z, Joska Gerendas and Burkhard Sattelmacher. Effects of replacing of nitrate with urea or chloride on the growth and nitrate accumulation in pak-choi in the hydroponics. Plant nutrition - for sustainable food production and enviroment, 1997, 963~964
    257.胡文海.强光对番茄低温弱光胁迫后不同叶片恢复的影响.井冈山师范学院学报.2002,23(5):34~36,49
    258. Truong P N V, Claridge J. Effects of heavy metals toxicities on vetiver growth. Vetiver Newsletter, 1996, 15, 32~36
    259.吴永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响,南京农业大学学报(自然科学版),2002,26(3):19~22
    260. Edwards G E, Baker N R. Can CO_2 assimilation in maize leaves be predicted accurately from chlorophyll analysis. Photosynth Res, 1993, 37: 89~102
    261. Van Kooten O, Snel J F H. 1990. Photosynthesis Research, 25:147~150
    262.张守仁,叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448
    263. Larsson E H, Bornman J F, ASP H. Influence of UV-B radiation and Cd~(2+) on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp. Bot. Oxford University Press. June 1998, 49 (323):1031~1039
    264. Gabbrielli R, Panddfini T, Vergnano O. Comparsion of two serpentine spentine species with different nickel tolerance strategies. Plant and Soil, 1990, 122: 271~277
    265. Yazgan A, Ozcengiz G. Subcellular distribution of accumulated heavy metals in Saccharomyces cerevisiae and Kluyveromxces marxianus. Biotechnology Letters, 1994, 16(8): 871~874
    266. Hayens R J. Ion exchange properties of roots and ionic interactions within the root POPLsm: Their role in ion accumulation by plants. Bot. Rev.,1980, 46: 75~99
    267. Leita L, Nobili M De, Cesco S. Analysis of intercellular cadmium forms in roots and leaves of bush bean. J. Plant Nutr,,1996, 19(3&4):527~533
    268. Carroll M. Oganelles. The Guilford Press, London, 1989
    269.韩贻仁.分子细胞生物学,北京:科学出版社,2000
    
    
    270. Kabata-Pendias A, Pendias Ⅱ. Trace elements in soil and plant [Z]. CRC Press, Boca Raton, F L 1992
    271.宋菲,郭玉义,刘孝义等.锡、锌、铅复合污染对菠菜的影响,农业环境保护,1996,15(1):9~14
    272.李德明,朱祝军,钱琼秋.不结球白菜镉积累基因型差异研究.园艺学报(待发表)
    273. Zdzislaw C, Miroslawa W, Wladyslawa K, et al. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed rape . The Science of the Total Environment, 2001, 281 (1-3): 37~45
    274.杜秀敏,殷文璇,赵彦修等.植物中活性氧的产生及其清除机制.生物工程学报,2001,17(2):121~125
    275.蒋德安,朱诚.植物生理学实验指导.成都:成都科技大学出版社,1999,92~93
    276.曾韶西,王以柔.低温胁迫对黄瓜叶抗坏血酸过氧化物酶活性和各肽含量的影响.植物生理学报,1990,16(1):37~42
    277. Cakmak I,Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol, 1992, 98: 1222~1227
    278.张殿忠,汪沛洪,赵会贤.测定小麦叶片游离脯氨酸含量的方法.植物生理学通讯,1990,(4):62~65,32
    279. Braford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248~254
    280.王爱国,邵从本,罗广华.植物的超氧自由基与羟氨反应的定量关系[J].植物生理学通讯,1990(6):55~57
    281. Giannopolitis C N, Ries S K. Superoxide dismutase I. Occurrence in higher plants. Plant Physiol,1977, 59: 309~314
    282.朱祝军,喻景权,Joska Gereodas,et al.氮素形态和光照强度对烟草的H_2O_2清除酶活性的影响[J].植物营养与肥料学报,1998(4):379~385
    283. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physio, 1981, 19. 867~880
    284. Ye Zhihong, Baker Alan J M, Wong Ming-Hung et al. Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquatic Botany, 1998, 61(1): 55~67
    285.李德明,朱祝军.镉在不同品种小白菜中亚细胞分布的研究.科技通报,2003(待发表)
    286.陈少裕.植物谷胱甘肽的生理作用及其意义.植物生理学通讯,1993,29(3):210~214
    287. Gowrinathan K P, Rao V N R. Reversal of heavy metal toxicity by ascorbic acid in microalgae. J Swamy Bot, 1992, 9: 27~29
    288.中国预防医学科学院标准处编.食品卫生国家标准汇编.中国标准出版社,1988,1995
    289.史吉平,董永华,韩建民.铬对小麦幼苗脯氨酸含量的影响,农业环境保护,1996,15(4):182~
    
    184
    290.浙江农业大学主编.蔬菜栽培学各论 南方本 (第二版).农业出版社,1985,37~83
    291.宁正样,李明启,曹健,等.氮钾营养对菜心核酮糖—1,5—二磷酸羧化酶/加氧酶动力学影响.华南农业大学学报,1992,13(1):41~46
    292.杨暹,关佩聪.干旱胁迫与菜心叶片活性氧代谢的研究.华南农业大学学报,1998,19(2):81~85,111
    293.杨暹,陈晓燕,杨运英.涝害逆境对菜心的菜蔓形成与细胞保护系统的影响.中国蔬菜,2000,(2):7~10
    294. Welch R M. Micronutrient nutrition of plants. Critical Rev. Plant Sci, 1995, 14:49~82
    295. Arnon D I. Copper enzymes in isolated chloroplasts. Potyphenol oxidase in beta vulgaris. Plant Physiol, 1949, 24: 1~15
    296.林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H_2O_2的积累与膜脂过氧化的关系[J].植物生理学报,1988(1):16~22
    297.浙江农业大学主编.作物营养与施肥.北京:农业出版社,1990,123~125
    298. Hammond K E, Evans D E, Hodson M J. Aluminum/silicon interaction in barley(Hordeum vulgare L.) seedling[J].Plant Soil, 1995, 173: 89~95
    299. Anderson A, Nilsson K O. Influence of lime and soil pH and Cd availability to plants [J]. Am Bio, 1974, 3: 198
    300.张兴梅,迁忠祥,刘水菁等.春小麦硅肥效应的研究.土壤肥料,1997,(1):39~41,45
    301. Winslow M D, Okada K, Correa-Victutia F. Silicon deficiency and the adaptation of tropical rice ecotypes. Plant and Soil, 1997,188(2):239~248
    302.吴求亮,杨玉爱.微量元素与生物健康.贵阳:贵州科技出版社,2000,30~46
    303. Gillham D J, Codge A D. Hydrogen-peroxide-saving systems with pea chloroplasts: A quantitative study. Planta, 1986, 167: 343~347
    304. LIU Yuang-ying, SUN Lei , LUO Sheng-guo. Effects of Se on Reducing Membrane Lipid Peroxidation of Soybean under Continuous Cropping Stress, Journal of Northeast Agricultural University (东北农业大学学报:英文版) ,2002,9(1):1~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700