鼻咽癌的miRNA组学动态表达特征及miR-18a通过Dicer1介导的致癌机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MicroRNAs (miRNAs,小非编码RNA)能够与下游靶基因mRNA的3’UTR碱基配对并引导沉默复合物(RISC)降解mRNA或抑制:mRNA的翻译,参与生物合成和肿瘤的发展,其生物学功能机制是目前研究的热点领域之一。miRNA组学(microRNomics)属于基因组学的分支,包括miRNAs差异筛选、动态表达、分子结构、表达调控、靶基因预测及生物学功能分析等研究。鼻咽癌(Nasopharyngeal carcinoma, NPC)发生、发展及转移是一个多步骤多因素参与的复杂过程。迄今为止,对鼻咽癌组织进行niRNA分子差异表达谱分析的研究也是十分有限。在本论文中,我们旨在阐明鼻咽癌不同临床阶段的miRNA组学时空变化趋势以及miR-18a调控miRNAs组学作用的研究机制。
     [鼻咽癌不同临床阶段miRNA组学动态表达规律]
     利用显微切割分离纯化不同临床阶段的鼻咽癌组织标本和对照鼻咽上皮标本,采用illumina的miRNA芯片分析,MultiClassDif统计软件筛选出48个miRNAs分子在鼻咽癌不同临床阶段组学中表达存在差异。进一步运用生物学软件cluster3.0软件,将差异miRNA组的表达分为6种动态模式:其中3类差异miRNA组的模式归纳为不同的下降模式;另外3类差异miRNA组是不同的上升模式。进而运用targetScan软件,分析并预测差异miRNAs组靶基因,用数据库ftp://ftp.ncbi.nih.gov/repository/UniGene/组织特异性筛选差异miRNA组靶基因。然后与NCBI中鼻咽癌cDNA数据库(GEO: GSE12452)数据整合,得到以Smad2等为代表的差异miRNAs组的靶基因,并通过real-time PCR验证部分(?)niRNAs和靶基因在不同临床分期的鼻咽癌组织标本和对照样本中的表达。通过GO和pathway分析,上调差异miRNAs组的靶基因GO功能主要集中在粘附、凋亡和细胞死亡;下调差异miRNAs组的靶基因GO功能主要集中在细胞增殖、死亡和凋亡;上调差异miRNAs组的靶基因pathway主要集中在Adherens junction、Focal adhesion等与肿瘤转移相关的pathway,而下调差异miRNAs组的靶基因pathway主要集中在Pathways in cancer等。利用miRNAs与靶基因的负相关性,绘制了差异miRNAs组与靶基因的niRNAs-Genes网络图。miRNAs调控除了直接受Dicerl和Drosha的作用外,还受到转录因子的调控,因此,我们利用UCSC寻找差异miRNAs编码基因在基因组上的位置,确定ETS2等转录因子在调控miRNAs编码基因表达发挥循环反馈调控作用;并绘制差异miRNAs和转录因子的调控网络关系。为鼻咽癌发生、发展的分子机制研究提供新的思路。
     [MiR-18a具有促进鼻咽癌增殖、迁移和侵袭转移功能]
     MiRNA芯片筛选发现(?)niR-18a在鼻咽癌不同临床分期及淋巴结转移癌中存在显著差异。利用real-time PCR证实miR-18a随着临床分期进展而表达逐渐增加,并且在鼻咽癌细胞中高表达,原位杂交结果显示miR-18a与鼻咽癌的临床分期、淋巴结转移、EBV感染以及预后相关。MTT、伤口愈合实验以及transwell基质胶侵袭实验证明miR-18a过表达分别能够促进鼻咽癌细胞HK1、5-8F和6-10B的增殖、迁移能力和侵袭转移能力;反之抑制miR-18a则减少或降低鼻咽癌细胞的增殖、迁移能力和侵袭转移能力。采用慢病毒系统构建miR-18a的过表达和knockdown的稳定鼻咽癌HKl细胞系并通过real-time PCR验证。采用活体荧光示踪技术模拟miR-18a在裸鼠体内的促进鼻咽癌增殖和转移模型,揭示miR-18a能够促进裸鼠体内皮下移植瘤的增殖,miR-18a能够促进鼻咽癌细胞在裸鼠体内转移能力。
     [MiR-18a通过Dicerl促进鼻咽癌发展的致癌机制]
     通过targetScan等软件预测、以及荧光素酶报告基因实验证明Dicerl是miR-18a的靶基因,并采用real-time和western验证miR-18a能降低内源性Dicerl的表达。通过miRNA芯片miRNA Dicerl检测发现miR-18a能够下调78%的其他表达,恢复则逆转80%的miRNA的表达。其中miR-18a下调miR-143和miR-200家族表达最为显著。通过niR-18a处理Dicer1的过表达和knockdown的细胞,从正反两面证实miR-18a作为一个癌基因通过Dicer1发挥生物学功能。real-time PCR和western验证miR-18a可以调控miR-200家族及EMT标志物分子的变化;另外验证miR-18a通过Dicer1调控miR-143及靶基因K-Ras的表达,促进鼻咽癌的发展。
     综上所述,我们通过miRNA芯片筛选到一组与不同临床分期发展及淋巴转移可能起关键作用的miRNAs,揭示了鼻咽癌不同临床阶段的差异miRNAs组学变化趋势,通过与网络GEO数据整合,阐述了鼻咽癌差异miRNAs的靶基因的GO和pathway分析,进一步分析差异miRNAs表达调控的因素,利用USCS数据寻找调控差异miRNAs组学的转录因子以及他们之间的反馈调控关系。阐述了miR-18a能够促进鼻咽癌细胞的增殖,侵袭转移功能及促进裸鼠体内的成瘤速度和转移转移能力。揭示niR-18a通过Dicerl调节miRNAs组学的表达,通过生物学功能实验证明miR-18a通过Dicer1促进鼻咽癌的发生发展。阐述了miR-18a与niR-200家族和miR-143以及其他miRNAs之间的关系,揭示了miR-18a与Dicerl在鼻咽癌的临床分期、淋巴结转移、EBV感染以及预后的相关性。
MicroRNAs,(or 'miRNAs', which are small noncoding RNA molecules), can bind to the complementary sequences in the3'UTR of multiple target mRNAs by regulating mRNA stability and translation through the action of the RNA-induced silencing complex (RISC), miRNAs have been a hotspot in research for their involvement in biological processes and tumour development."MicroRNomics" is to describe a novel subdiscipline of genomics that studies including the identification, expression, structure, expression regulation, targets, and biological functions of miRNAs. The tumorigenesis and development of Nasopharyngeal Carcinoma (NPC) is a multistep process involving multiple genetic and environment factors. However, there has been limited research on microRNomics and the interaction of miRNAs in NPC. In this study, we are aiming to elucidate the spatiotemporal roles of miRNAs in different clinical stages of NPC and related regulatory mechanism on the microRNomics scale. We are also going to study the regulatory roles of miR-18a on the microRNomics of NPC.
     [The dynamic expression of miRNomics in Multi-stages of Nasopharyngeal Carcinoma]
     Laser capture microdissection (LCM) was used to separate the cancer tissues from the normal tissues. Illumina's miRNA expression arrays were used for searching the differentially expressed miRNAs between the NPC and control samples.48miRNAs with significant change were obtained by the MultiClassDif statistical software. The differentially expressed miRNAs were clustered into the six expression models by the biology software cluster3.0software based on their similar expression patterns,3of which were divided into down-regulated patterns in Multi-stages and Lymphoid node metastasis of Nasopharyngeal Carcinoma; and3of which were divided into up-regulated models. The targetScan software was used for searching and predicting the target genes of these differentially expressed miRNAs. As more than thousands target genes were predicted and predicted target gene lists were then narrowed down by searching the data from ftp://ftp.ncbi.nih.gov/repository/UniGene/to find the nasopharyngeal-specific gene. We further performed data reduction strategy to overlay these nasopharyngeal-specific target genes with cDNA expression data (GEO:GSE12452). As the results, several representative target genes were selected, some of which were verified by real-time PCR in different clinical stages samples. The selected target genes were analyzed in the Gene Ontology (GO) biological process and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway. The most enriched GO terms in the predicted target genes of up-regulated miRNAs were cell adhesion, apoptosis and cell death; in the predicted target genes of down-regulated miRNAs the enriched GO terms were focused on cell proliferation, death and apoptosis. The target genes of up-regulated miRNAs were mainly involoved in the adherens junction, Focal adhesion, which were related with cancer metastasis pathway. The target genes of down-regulated miRNAs were mostly implicated in pathways in cancer. Based on the inverse correlation of miRNAs and their target genes, we built miRNAs-Genes interactions into a bipartite network. The expression of miRNAs is directly regulated not only by Drosha and Dicer1, but also by transcription factors (TF). We then used UCSC Genome database to analyze the promoter regions of miRNA genes for the transcription factor (TF) binding sites. We then constructed TF-miRNA networks. We further investigated the TF-miRNAs-target genes feedback loop by integrating the TF-miRNA networks and miRNA-target genes networks. We found that some TFs such as ETS2could regulate the expression of miRNA expression and the miRNAs in turn suppress the expression of TF, forming feedback loops. These works will provide new ideas for the research in nasopharyngeal carcinoma.
     [MiR-18a promotes nasopharyngeal carcinoma cell growth, migration and invasion]
     MiR-18a was found significantly highly expressed in multistages and lymphoid node metastasis of NPC by using miRNAs array. The differential expression of miR-18a was verified by real-time PCR in the NPC samples and cancer cell lines. The in situ hybridization revealed that the expression of miR-18a was correlated with the clinical stages, the lymph node metastasis, EBV infection and prognosis of NPC patients. MTT, wound healing and transwell with matrix assays proved that miR-18a promoted HK1,5-8F and6-10B cell proliferation, mobility, invasion and metastasis ability, while inhibiting the expression of miR-18a decreased the ability of NPC cell to proliferate, migrate, invade and metastase. We then constructed the miR-18a overexpressed and knockdown cell lines by lentivirus based vectors. The efficency of transfection was verified by real-time PCR. In vivo roles of miR-18a in the cell growth and migration were assessed by the tumor formation following subcutaneous or intravenous injection into nude mice. The nude mice formed bigger subcutaneous tumors in mice which the cells overexpressed with miR-18a compared to the control group. The mobility and metastasis of cells in vivo were examined at different time points by using the IVIS imaging system (xenogen).
     [The carcinogenic mechanism of miR-18a mediated by Dicerl in Nasopharyngeal Carcinoma]
     We used three TargetScan to search for miRNA binding sites in the3'UTR of Dicerl. The luciferase assay, real-time PCR and western blot were performed to confirm that miR-18a binds to the3'UTR of Dicerl, suppressing the endogenous expression of Dicerl in NPC cell lines HK1and5-8F. MiRNA array assay were performed to investigate the miRNA profiles change caused by miR-18a. The overexpression of miR-18a caused78%globally downregulated expression of miRNAs and the global downregulation of miRNAs were restored by overexpression of Dicer1. MiR-200families and miR-143were shown significantly suppressed by miR-18a in the miRNA array. The oncogenic roles of miR-18a through targeting Dicer1were verified in the Dicer1overexpressed and knockdown cell. Real-time PCR and western blot assay showed that miR-18a can regulate the expression miR-200families and the EMT biomarkers. It also showed that miR-18a can regulate the expression of miR-143and its target gene K-Ras expression, accelerating the development of NPC.
     As described aboved, we obtained a group of miRNAs that may play important roles on development of NPC by using the data reduction strategies and we also revealed the dynamic expression profiles of these miRNAs. The selected target genes were analyzed in the GO biological process and KEGG biological pathway. We further investigated the mechanisms of miRNAs expression regulation by analyzing the TF binding sites of miRNA genes using UCSC Genome database. We also investigated the miRNAs expression regulation by miR-18a. MiR-18a showed obvious promoting effect on tumorigenesis of NPC by targeting Dicerl, in turn impairing the biogenesis of microRNome. In this paper, we elucidate the relationship of miR-18a and miR-200families and miR-143. The clinical features of NPC such as clinical stages of NPC, EB virus infection were also shown correlated to the expression of miR-18a.
引文
[1]Chou, J., Y.C. Lin, J. Kim, et al., Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck,2008.30(7):p.946-63.
    [2]Cao, Y., R.A. DePinho, M. Ernst, et al., Cancer research:past, present and future. Nat Rev Cancer,2011.11(10):p.749-54.
    [3]Jia, W.H.H.D. Qin, Non-viral environmental risk factors for nasopharyngeal carcinoma:A systematic review. Semin Cancer Biol,2012.22(2):p.117-26.
    [4]Hildesheim, A.C.P. Wang, Genetic predisposition factors and nasopharyngeal carcinoma risk:A review of epidemiological association studies,2000-2011: Rosetta Stone for NPC:Genetics, viral infection, and other environmental factors. Semin Cancer Biol,2012.22(2):p.107-16.
    [5]Tao, Y., F. Bidault, J. Bosq, et al., Distant metastasis of undifferentiated carcinoma of nasopharyngeal type. Onkologie,2008.31(11):p.574-5.
    [6]Lin, S.L., D. ChangS.Y. Ying, Asymmetry of intronic pre-miRNA structures in functional RISC assembly. Gene,2005.356:p.32-8.
    [7]Maniataki, E.Z. Mourelatos, A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev,2005.19(24):p.2979-90.
    [8]Miyoshi, K., T.N. Okada, H. Siomi, et al., Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA,2009.15(7):p.1282-91.
    [9]Garzon, R.C.M. Croce, MicroRNAs and cancer:introduction. Semin Oncol, 2011.38(6):p.721-3.
    [10]Baranwal, S.S.K. Alahari, miRNA control of tumor cell invasion and metastasis. Int J Cancer,2009.126(6):p.1283-90.
    [11]Barker, E.V., N.K. Cervigne, P.P. Reis, et al., microRNA evaluation of unknown primary lesions in the head and neck. Mol Cancer,2009.8:p.127.
    [12]Landau, D.A.F.J. Slack, MicroRNAs in mutagenesis, genomic instability, and DNA repair. Semin Oncol,2011.38(6):p.743-51.
    [13]Hanahan, D.R.A. Weinberg, Hallmarks of cancer:the next generation. Cell, 2011.144(5):p.646-74.
    [14]Hanahan, D.R.A. Weinberg, The hallmarks of cancer. Cell,2000.100(1):p.57-70.
    [15]Sotiropoulou, G., G. Pampalakis, E. Lianidou, et al., Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell.
    RNA,2009.15(8):p.1443-61.
    [16]Baraniskin, A., J. Kuhnhenn, U. Schlegel, et al., Identification of microRNAs in the cerebrospinal fluid as marker for primary diffuse large B-cell lymphoma of the central nervous system. Blood,2011.117(11):p.3140-6.
    [17]Kong, X., Y. Du, G. Wang, et al., Detection of differentially expressed microRNAs in serum of pancreatic ductal adenocarcinoma patients:miR-196a could be a potential marker for poor prognosis. Dig Dis Sci,2010.56(2):p. 602-9.
    [18]Ng, E.K., W.W. Chong, H. Jin, et al., Differential expression of microRNAs in plasma of patients with colorectal cancer:a potential marker for colorectal cancer screening. Gut,2009.58(10):p.1375-81.
    [19]Schee, K., O. FodstadK. Flatmark, MicroRNAs as biomarkers in colorectal cancer. Am J Pathol,2010.177(4):p.1592-9.
    [20]Sengupta, S., J.A. den Boon, I.H. Chen, et al., MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl Acad Sci U S A,2008.105(15):p. 5874-8.
    [21]Chen, H.C., G.H. Chen, Y.H. Chen, et al., MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma. Br J Cancer,2009.100(6):p. 1002-11.
    [22]Li, T., J.X. Chen, X.P. Fu, et al., microRNA expression profiling of nasopharyngeal carcinoma. Oncol Rep,2011.25(5):p.1353-63.
    [23]Luo, Z., L. Zhang, Z. Li, et al., An in silico analysis of dynamic changes in microRNA expression profiles in stepwise development of nasopharyngeal carcinoma. BMC Med Genomics,2012.5:p.3.
    [24]Li, G., Z. Wu, Y. Peng, et al., MicroRNA-10b induced by Epstein-Barr virus-encoded latent membrane protein-1 promotes the metastasis of human nasopharyngeal carcinoma cells. Cancer Lett,2010.299(1):p.29-36.
    [25]Deng, M., H. Tang, Y. Zhou, et al., miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J Cell Sci,2011. 124(Pt 17):p.2997-3005.
    [26]Yu, H., J. Lu, L. Zuo, et al., Epstein-Barr Virus Downregulates MicroRNA 203 through the Oncoprotein Latent Membrane Protein 1:a Contribution to Increased Tumor Incidence in Epithelial Cells. J Virol,2011.86(6):p.3088-99.
    [27]Olaru, A.V., F.M. Selaru, Y. Mori, et al., Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm Bowel Dis,2010.17(1):p.221-31.
    [28]Mao, Y.P., W.F. Li, L. Chen, et al., [A clinical verification of the Chinese 2008 staging system for nasopharyngeal carcinoma]. Ai Zheng,2009.28(10):p. 1022-8.
    [29]Yang, H., N. Crawford, L. Lukes, et al., Metastasis predictive signature profiles pre-exist in normal tissues. Clin Exp Metastasis,2005.22(7):p.593-603.
    [30]Clarke, R., H.W. Ressom, A. Wang, et al., The properties of high-dimensional data spaces:implications for exploring gene and protein expression data. Nat Rev Cancer,2008.8(1):p.37-49.
    [31]Cho, J.H., R. Gelinas, K. Wang, et al., Systems biology of interstitial lung diseases:integration of mRNA and microRNA expression changes. BMC Med Genomics,2011.4:p.8.
    [32]Jaskiewicz, L.W. Filipowicz, Role of Dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol,2008.320:p.77-97.
    [33]Ketting, R.F., S.E. Fischer, E. Bernstein, et al., Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev,2001.15(20):p.2654-9.
    [34]Macrae, I.J., F. Li, K. Zhou, et al., Structure of Dicer and mechanistic implications for RNAi. Cold Spring Harb Symp Quant Biol,2006.71:p.73-80.
    [35]Pisareva, V.P., A.V. Pisarev, A.A. Komar, et al., Translation initiation on mammalian mRNAs with structured 5'UTRs requires DExH-box protein DHX29. Cell,2008.135(7):p.1237-50.
    [36]Dlakic, M., DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics,2006.22(22):p.2711-4.
    [37]Qin, H., F. Chen, X. Huan, et al., Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA.16(3):p.474-81.
    [38]Kolb, F.A., H. Zhang, K. Jaronczyk, et al., Human dicer:purification, properties, and interaction with PAZ PIWI domain proteins. Methods Enzymol, 2005.392:p.316-36.
    [39]Soifer, H.S., M. Sano, K. Sakurai, et al., A role for the Dicer helicase domain in the processing of thermodynamically unstable hairpin RNAs. Nucleic Acids Res,2008.36(20):p.6511-22.
    [40]Chendrimada, T.P., R.I. Gregory, E. Kumaraswamy, et al., TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 2005.436(7051):p.740-4.
    [41]Rossi, L., A. Salvetti, A. Lena, et al., DjPiwi-1, a member of the PAZ-Piwi gene family, defines a subpopulation of planarian stem cells. Dev Genes Evol, 2006.216(6):p.335-46.
    [42]Morlando, M., M. Ballarino, N. Gromak, et al., Primary microRNA transcripts are processed co-transcriptionally. Nat Struct Mol Biol,2008.15(9):p.902-9.
    [43]Gregory, R.I., K.P. Yan, G. Amuthan, et al., The Microprocessor complex mediates the genesis of microRNAs. Nature,2004.432(7014):p.235-40.
    [44]Han, J., Y. Lee, K.H. Yeom, et al., Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell,2006.125(5):p. 887-901.
    [45]Davis, B.N., A.C. Hilyard, G. Lagna, et al., SMAD proteins control DROSHA-mediated microRNA maturation. Nature,2008.454(7200):p.56-61.
    [46]Lund, E.J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol,2006.71:p. 59-66.
    [47]Bohnsack, M.T., K. CzaplinskiD. Gorlich, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004.10(2):p.185-91.
    [48]Suzuki, H.I., M. Arase, H. Matsuyama, et al., MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell,2011.44(3):p.424-36.
    [49]Asirvatham, A.J., C.J. Gregorie, Z. Hu, et al., MicroRNA targets in immune genes and the Dicer/Argonaute and ARE machinery components. Mol Immunol, 2008.45(7):p.1995-2006.
    [50]Guo, X., Q. Liao, P. Chen, et al., The microRNA-processing enzymes:Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol,2011.138(1):p.49-56.
    [51]Lu, L., L. Zhou, E.Z. Chen, et al., A Novel YY1-miR-1 Regulatory Circuit in Skeletal Myogenesis Revealed by Genome-Wide Prediction of YY1-miRNA Network. PLoS One,2012.7(2):p. e27596.
    [52]Wang, H., R. Garzon, H. Sun, et al., NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell,2008. 14(5):p.369-81.
    [53]Lu, L., L. Zhou, E.Z. Chen, et al., A Novel YY1-miR-1 regulatory circuit in skeletal myogenesis revealed by genome-wide prediction of YY1-miRNA network. PLoS One.7(2):p. e27596.
    [54]Bandyopadhyay, S.M. Bhattacharyya, PuTmiR:a database for extracting neighboring transcription factors of human microRNAs. BMC Bioinformatics, 2010.11:p.190.
    [55]Megraw, M., V. Baev, V. Rusinov, et al., MicroRNA promoter element discovery in Arabidopsis. RNA,2006.12(9):p.1612-9.
    [56]Peng, X., Y. Li, K.A. Walters, et al., Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics,2009.10:p.373.
    [57]Diosdado, B., M.A. van de Wiel, J.S. Terhaar Sive Droste, et al., MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer,2009.101(4):p.707-14.
    [58]Robertus, J.L., G. Harms, T. Blokzijl, et al., Specific expression of miR-17-5p and miR-127 in testicular and central nervous system diffuse large B-cell lymphoma. Mod Pathol,2009.22(4):p.547-55.
    [59]Chen, J.A., Y.P. Huang, E.O. Mazzoni, et al., Mir-17-3p controls spinal neural progenitor patterning by regulating Olig2/Irx3 cross-repressive loop. Neuron, 2011.69(4):p.721-35.
    [60]Li, L., J.Y. Shi, G.Q. Zhu, et al., MiR-17-92 cluster regulates cell proliferation and collagen synthesis by targeting TGFB pathway in mouse palatal mesenchymal cells. J Cell Biochem.
    [61]Liu, M., Z. Wang, S. Yang, et al., TNF-alpha is a novel target of miR-19a. Int J Oncol.38(4):p.1013-22.
    [62]Cox, M.B., M.J. Cairns, K.S. Gandhi, et al., MicroRNAs miR-17 and miR-20a inhibit T cell activation genes and are under-expressed in MS whole blood. PLoS One,2010.5(8):p. e12132.
    [63]Manni, I., S. Artuso, S. Careccia, et al., The microRNA miR-92 increases proliferation of myeloid cells and by targeting p63 modulates the abundance of its isoforms. FASEB J,2009.23(11):p.3957-66.
    [64]He, L., J.M. Thomson, M.T. Hemann, et al., A microRNA polycistron as a potential human oncogene. Nature,2005.435(7043):p.828-33.
    [65]He, S., S. Yang, G. Deng, et al., Aurora kinase A induces miR-17-92 cluster through regulation of E2F1 transcription factor. Cell Mol Life Sci,2010.67(12): p.2069-76.
    [66]Martello, G., A. Rosato, F. Ferrari, et al., A MicroRNA targeting dicer for metastasis control. Cell,2010.141(7):p.1195-207.
    [67]Hata, A.B.N. Davis, Control of microRNA biogenesis by TGFbeta signaling pathway-A novel role of Smads in the nucleus. Cytokine Growth Factor Rev, 2009.20(5-6):p.517-21.
    [68]Chan, S., P.G. Murray, J.A. Franklyn, et al., The use of laser capture microdissection (LCM) and quantitative polymerase chain reaction to define thyroid hormone receptor expression in human 'term' placenta. Placenta,2004. 25(8-9):p.758-62.
    [69]Akiyama, K., T. Miyashita, A. Matsubara, et al., Specific RNA collection from the rat endolymphatic sac by laser-capture microdissection (LCM):LCM of a very small organ surrounded by bony tissues. Methods Mol Biol.755:p.441-8.
    [70]Aaltonen, K.E., A. Ebbesson, C. Wigerup, et al., Laser capture microdissection (LCM) and whole genome amplification (WGA) of DNA from normal breast tissue---optimization for genome wide array analyses. BMC Res Notes.4:p. 69.
    [71]Wright, G.W.R.M. Simon, A random variance model for detection of differential gene expression in small microarray experiments. Bioinformatics, 2003.19(18):p.2448-55.
    [72]Pe'er, D.N. Hacohen, Principles and strategies for developing network models in cancer. Cell.144(6):p.864-73.
    [73]Shinozaki, K.K. Yamaguchi-Shinozaki, Gene networks involved in drought stress response and tolerance. J Exp Bot,2007.58(2):p.221-7.
    [74]Yosef, N.A. Regev, Impulse control:temporal dynamics in gene transcription. Cell.144(6):p.886-96.
    [75]Hildesheim, A.C.P. Wang, Genetic predisposition factors and nasopharyngeal carcinoma risk:A review of epidemiological association studies,2000-2011: Rosetta Stone for NPC:Genetics, viral infection, and other environmental factors. Semin Cancer Biol.22(2):p.107-16.
    [76]Kriegel, A.J., Y. Liu, Y. Fang, et al., The miR-29 family:genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 44(4):p.237-44.
    [77]Yang, C.C., P.S. Hung, P.W. Wang, et al., miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma. J Oral Pathol Med. 40(5):p.397-404.
    [78]Loven, J., N. Zinin, T. Wahlstrom, et al., MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A.107(4):p.1553-8.
    [79]Takakura, S., N. Mitsutake, M. Nakashima, et al., Oncogenic role of miR-17-92 cluster in anaplastic thyroid cancer cells. Cancer Sci,2008.99(6):p.1147-54.
    [80]Vinci, S., S. Gelmini, N. Pratesi, et al., Genetic variants in miR-146a, miR-149, miR-196a2, miR-499 and their influence on relative expression in lung cancers. Clin Chem Lab Med.
    [81]Luo, Z., L. Zhang, Z. Li, et al., miR-149 promotes epithelial-mesenchymal transition and invasion in nasopharyngeal carcinoma cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban.36(7):p.604-9.
    [82]Adams, B.D., D.M. CoweeB.A. White, The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-alpha (ERalpha) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol,2009.23(8):p.1215-30.
    [83]Shan, Z.X., Q.X. Lin, C.Y. Deng, et al., miR-1/miR-206 regulate Hsp60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett.584(16):p.3592-600.
    [84]Adhikari, N., D.L. Basi, D. Townsend, et al., Heparan sulfate Ndstl regulates vascular smooth muscle cell proliferation, vessel size and vascular remodeling. J Mol Cell Cardiol.49(2):p.287-93.
    [85]Crawford, B.E., O.B. Garner, J.R. Bishop, et al., Loss of the heparan sulfate sulfotransferase, Ndstl, in mammary epithelial cells selectively blocks lobuloalveolar development in mice. PLoS One.5(5):p. e10691.
    [86]Meng, J., W. Xie, L. Cao, et al., shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer. Acta Biochim Biophys Sin (Shanghai).42(1):p.52-7.
    [87]Sasaki, Y., H. Negishi, M. Idogawa, et al., p53 negatively regulates the hepatoma growth factor HDGF. Cancer Res.71(22):p.7038-47.
    [88]Wang, B., F. Jin, Z. Yang, et al., HSPG2 gene C/A polymorphism does not confer susceptibility to Alzheimer's disease in Chinese. Dement Geriatr Cogn Disord,2007.23(5):p.312-5.
    [89]Suzuki, H., Y. Arakawa, M. Ito, et al., MLF1-interacting protein is mainly localized in nucleolus through N-terminal bipartite nuclear localization signal. Anticancer Res,2007.27(3B):p.1423-30.
    [90]Yoneda-Kato, N.J.Y. Kato, Shuttling imbalance of MLF1 results in p53 instability and increases susceptibility to oncogenic transformation. Mol Cell Biol,2008.28(1):p.422-34.
    [91]Damodharan, U., R. GanesanU.C. Radhakrishnan, Expression of MMP2 and MMP9 (gelatinases A and B) in human colon cancer cells. Appl Biochem Biotechnol.165(5-6):p.1245-52.
    [92]Mossbock, G., M. Weger, C. Faschinger, et al., Role of functional single nucleotide polymorphisms of MMP1, MMP2, and MMP9 in open angle glaucomas. Mol Vis.16:p.1764-70.
    [93]Kawasaki, T., S. Yokoi, H. Tsuda, et al., BCL2L2 is a probable target for novel 14q11.2 amplification detected in a non-small cell lung cancer cell line. Cancer Sci,2007.98(7):p.1070-7.
    [94]Mayr, D., A. Hirschmann, S. Marlow, et al., Analysis of selected oncogenes (AKT1, FOS, BCL2L2, TGFbeta) on chromosome 14 in granulosa cell tumors (GCTs):a comprehensive study on 30 GCTs combining comparative genomic hybridization (CGH) and fluorescence-in situ-hybridization (FISH). Pathol Res Pract,2008.204(11):p.823-30.
    [95]Altmann, S., E. Murani, M. Schwerin, et al., Somatic cytochrome c (CYCS) gene expression and promoter-specific DNA methylation in a porcine model of prenatal exposure to maternal dietary protein excess and restriction. Br J Nutr. 107(6):p.791-9.
    [96]Savoia, A., P. Noris, S. Perrotta, et al., Absence of CYCS mutations in a large Italian cohort of patients with inherited thrombocytopenias of unknown origin. Platelets,2009.20(1):p.72-3.
    [97]O'Neill, C.J., H.A. McBride, L.E. Connolly, et al., Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology,2007.50(7):p.851-8.
    [98]Revelos, K., C. Petraki, A. Gregorakis, et al., p27(kip1) and Ki-67 (MIB1) immunohistochemical expression in radical prostatectomy specimens of patients with clinically localized prostate cancer. In Vivo,2005.19(5):p.911-20.
    [99]Norton, J.A., C.M. Ham, J. Van Dam, et al., CDH1 truncating mutations in the E-cadherin gene:an indication for total gastrectomy to treat hereditary diffuse gastric cancer. Ann Surg,2007.245(6):p.873-9.
    [100]Ghaffari, S.R., J. Dastan, M. Rafati, et al., Novel human pathological mutations. Gene symbol:CDH1. Disease:gastric cancer. Hum Genet,2009.125(3):p.337.
    [101]Han, D., H. Zhao, C. Parada, et al., A TGFbeta-Smad4-Fgf6 signaling cascade controls myogenic differentiation and myoblast fusion during tongue development. Development.
    [102]Yang, G.X. Yang, Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci.6(1):p.1-8.
    [103]Lin, C., S. Meng, T. Zhu, et al., PDCD10/CCM3 acts downstream of{gamma}-protocadherins to regulate neuronal survival. J Biol Chem.285(53):p.41675-85.
    [104]Chen, P.Y., W.S. Chang, Y.K. Lai, et al., c-Myc regulates the coordinated transcription of brain disease-related PDCD10-SERPINI1 bidirectional gene pair. Mol Cell Neurosci,2009.42(1):p.23-32.
    [105]Bandyopadhyay, S.M. Bhattacharyya, Analyzing miRNA co-expression networks to explore TF-miRNA regulation. BMC Bioinformatics,2009.10:p. 163.
    [106]Carver, T.J.L.J. Mullan, JAE:Jemboss Alignment Editor. Appl Bioinformatics, 2005.4(2):p.151-4.
    [107]Carver, T.A. Bleasby, The design of Jemboss:a graphical user interface to EMBOSS. Bioinformatics,2003.19(14):p.1837-43.
    [108]Wu, H., S. ZhuY.Y. Mo, Suppression of cell growth and invasion by miR-205 in breast cancer. Cell Res,2009.19(4):p.439-48.
    [109]Gregory, P.A., A.G. Bert, E.L. Paterson, et al., The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol,2008.10(5):p.593-601.
    [110]Sun, D., Y.S. Lee, A. Malhotra, et al., miR-99 family of MicroRNAs suppresses the expression of prostate-specific antigen and prostate cancer cell proliferation. Cancer Res.71(4):p.1313-24.
    [111]Liao, Y.L., L.Y. Hu, K.W. Tsai, et al., Transcriptional regulation of miR-196b by ETS2 in gastric cancer cells. Carcinogenesis.
    [112]Oettgen, P., Functional redundancy of Ets1 and Ets2. Blood,2009.114(5):p. 934-5.
    [113]Dwyer, J.M.J.P. Liu, Ets2 transcription factor, telomerase activity and breast cancer. Clin Exp Pharmacol Physiol.37(1):p.83-7.
    [114]Su, B., B. Xiang, L. Wang, et al., Profiling and comparing transcription factors activated in non-metastatic and metastatic nasopharyngeal carcinoma cells. J Cell Biochem.109(1):p.173-83.
    [115]Loyd, M.R., Y. Okamoto, M.S. Randall, et al., Role of AP1/NFE2 binding sites in endogenous alpha-globin gene transcription. Blood,2003.102(12):p.4223-8.
    [116]Favreau, A.J., E.L. CrossP. Sathyanarayana, miR-199b-5p directly targets PODXL and DDR1 and decreased levels of miR-199b-5p correlate with elevated expressions of PODXL and DDR1 in acute myeloid leukemia. Am J Hematol.87(4):p.442-6.
    [117]Sangodkar, J., J. Shi, A. DiFeo, et al., Functional role of the KLF6 tumour suppressor gene in gastric cancer. Eur J Cancer,2009.45(4):p.666-76.
    [118]Agell, L., S. Hernandez, S. de Muga, et al., KLF6 and TP53 mutations are a rare event in prostate cancer:distinguishing between Taq polymerase artifacts and true mutations. Mod Pathol,2008.21(12):p.1470-8.
    [119]Cheloufi, S., C.O. Dos Santos, M.M. Chong, et al., A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature,2010. 465(7298):p.584-9.
    [120]Boominathan, L., The tumor suppressors p53, p63, and p73 are regulators of microRNA processing complex. PLoS One.5(5):p. e10615.
    [121]Suzuki, H.I., K. Yamagata, K. Sugimoto, et al., Modulation of microRNA processing by p53. Nature,2009.460(7254):p.529-33.
    [122]Zhang, Z.W., Y. AnC.B. Teng, [The roles of miR-17-92 cluster in mammal development and tumorigenesis]. Yi Chuan,2009.31(11):p.1094-100.
    [123]Dews, M., J.L. Fox, S. Hultine, et al., The myc-miR-17-92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Res,2010.70(20):p.8233-46.
    [124]Loven, J., N. Zinin, T. Wahlstrom, et al., MYCN-regulated microRNAs repress estrogen receptor-alpha (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Natl Acad Sci U S A,2010.107(4):p.1553-8.
    [125]Liu, W.H., S.H. Yeh, C.C. Lu, et al., MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology,2009.136(2):p.683-93.
    [126]Castellano, L., G. Giamas, J. Jacob, et al., The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci U S A,2009.106(37):p.15732-7.
    [127]Song, L., C. Lin, Z. Wu, et al., miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. PLoS One.6(9):p. e25454.
    [128]Ayala de la Pena, F., K. Kanasaki, M. Kanasaki, et al., Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. J Biol Chem.286(23):p.20778-87.
    [129]Morimura, R., S. Komatsu, D. Ichikawa, et al., Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer. 105(11):p.1733-40.
    [130]Tsang, W.P.T.T. Kwok, The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis,2009.30(6):p.953-9.
    [131]Li, J.M., R.H. Zhao, S.T. Li, et al., Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J.33(1):p.24-9.
    [132]Liu, L., X. Yu, X. Guo, et al., miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Report.5(3):p.753-60.
    [133]Pekow, J.R., U. Dougherty, R. Mustafi, et al., miR-143 and miR-145 are downregulated in ulcerative colitis:putative regulators of inflammation and protooncogenes. Inflamm Bowel Dis.18(1):p.94-100.
    [134]Chen, X., X. Guo, H. Zhang, et al., Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene,2009.28(10):p.1385-92.
    [135]Kent, O.A., R.R. Chivukula, M. Mullendore, et al., Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev.24(24):p.2754-9.
    [136]Xu, B., X. Niu, X. Zhang, et al., miR-143 decreases prostate cancer cells proliferation and migration and enhances their sensitivity to docetaxel through suppression of KRAS. Mol Cell Biochem.350(1-2):p.207-13.
    [137]Clape, C., V. Fritz, C. Henriquet, et al., miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One,2009. 4(10):p. e7542.
    [138]Hinkal, G.W., G. Grelier, A. Puisieux, et al., Complexity in the regulation of Dicer expression:Dicer variant proteins are differentially expressed in epithelial and mesenchymal breast cancer cells and decreased during EMT. Br J Cancer.104(2):p.387-8.
    [139]Merritt, W.M., Y.G. Lin, L.Y. Han, et al., Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med,2008.359(25):p.2641-50.
    [140]Senba, M., X.Y. Zhong, M.I. Senba, et al., EBV and nasopharyngeal carcinoma. Lancet,1994.343(8905):p.1104.
    [141]Barth, S., G. MeisterF.A. Grasser, EBV-encoded miRNAs. Biochim Biophys Acta.1809(11-12):p.631-40.
    [142]Li, Z., X. Chen, L. Li, et al., EBV encoded miR-BHRF1-1 potentiates viral lytic replication by downregulating host p53 in nasopharyngeal carcinoma. Int J Biochem Cell Biol.44(2):p.275-9.
    [143]Lo, A.K., K.F. To, K.W. Lo, et al., Modulation of LMP1 protein expression by EBV-encoded microRNAs. Proc Natl Acad Sci U S A,2007.104(41):p. 16164-9.
    [144]Hacker, G., S. Kromer, M. Falk, et al., V delta 1+ subset of human gamma delta T cells responds to ligands expressed by EBV-infected Burkitt lymphoma cells and transformed B lymphocytes. J Immunol,1992.149(12):p.3984-9.
    [145]Nasheri, N., R. Singaravelu, M. Goodmurphy, et al., Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. Virology. 410(2):p.336-44.
    [146]Henke, J.I., D. Goergen, J. Zheng, et al., microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J,2008.27(24):p.3300-10.
    [147]Babu, S.G., S.S. Ponia, D. Kumar, et al., Cellular oncomiR orthologue in EBV oncogenesis. Comput Biol Med,2011.41(10):p.891-8.
    [148]Skalsky, R.L., M.A. Samols, K.B. Plaisance, et al., Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol,2007.81(23): p.12836-45.
    [149]Gottwein, E., N. Mukherjee, C. Sachse, et al., A viral microRNA functions as an orthologue of cellular miR-155. Nature,2007.450(7172):p.1096-9.
    [150]Skalsky, R.L., D.L. Corcoran, E. Gottwein, et al., The viral and cellular microRNA targetome in lymphoblastoid cell lines. PLoS Pathog.8(1):p. e1002484.
    [1]Hammond, S.M., A.A. CaudyG.J. Hannon, Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet,2001.2(2):p.110-9.
    [2]Hannon, G.J., RNA interference. Nature,2002.418(6894):p.244-51.
    [3]Ullu, E., A. Djikeng, H. Shi, et al., RNA interference:advances and questions. Philos Trans R Soc Lond B Biol Sci,2002.357(1417):p.65-70.
    [4]Meister, G.T. Tuschl, Mechanisms of gene silencing by double-stranded RNA. Nature,2004.431(7006):p.343-9.
    [5]Denli, A.M.G.J. Hannon, RNAi:an ever-growing puzzle. Trends Biochem Sci, 2003.28(4):p.196-201.
    [6]Salmena, L., L. Poliseno, Y. Tay, et al., A ceRNA hypothesis:the Rosetta Stone of a hidden RNA language? Cell.146(3):p.353-8.
    [7]Hanahan, D.R.A. Weinberg, The hallmarks of cancer. Cell,2000.100(1):p.57-70.
    [8]Hanahan, D.R.A. Weinberg, Hallmarks of cancer:the next generation. Cell, 2011.144(5):p.646-74.
    [9]Garzon, R.C.M. Croce, MicroRNAs and cancer:introduction. Semin Oncol, 2011.38(6):p.721-3.
    [10]Cho, W.C., MicroRNAs:potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol,2009.42(8):p.1273-81.
    [11]Miyoshi, K., T.N. Okada, H. Siomi, et al., Characterization of the miRNA-RISC loading complex and miRNA-RISC formed in the Drosophila miRNA pathway. RNA,2009.15(7):p.1282-91.
    [12]Olsen, P.H.V. Ambros, The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol,1999.216(2):p.671-80.
    [13]Bagga, S., J. Bracht, S. Hunter, et al., Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell,2005.122(4):p.553-63.
    [14]Lagos-Quintana, M., R. Rauhut, W. Lendeckel, et al., Identification of novel genes coding for small expressed RNAs. Science,2001.294(5543):p.853-8.
    [15]Sotiropoulou, G., G. Pampalakis, E. Lianidou, et al., Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA,2009.15(8):p.1443-61.
    [16]Maniataki, E.Z. Mourelatos, A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev,2005.19(24):p.2979-90.
    [17]O'Connell, M.A.L.P. Keegan, Drosha versus ADAR:wrangling over pri-miRNA. Nat Struct Mol Biol,2006.13(1):p.3-4.
    [18]Wostenberg, C., W.G. NoidS.A. Showalter, MD simulations of the dsRBP DGCR8 reveal correlated motions that may aid pri-miRNA binding. Biophys J. 99(1):p.248-56.
    [19]Bielewicz, D., J. Dolata, A. Zielezinski, et al., mirEX:a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acids Res.40(Database issue):p. D191-7.
    [20]Tsutsumi, A., T. Kawamata, N. Izumi, et al., Recognition of the pre-miRNA structure by Drosophila Dicerl-1. Nat Struct Mol Biol.18(10):p.1153-8
    [21]Lehrbach, N.J.E.A. Miska, Regulation of pre-miRNA Processing. Adv Exp Med Biol.700:p.67-75
    [22]Martin, R., P. Smibert, A. Yalcin, et al., A Drosophila pasha mutant distinguishes the canonical microRNA and mirtron pathways. Mol Cell Biol, 2009.29(3):p.861-70
    [23]PASHA:a collection of promising teen pregnancy and STD/HIV/AIDS prevention programs-in-a-box. Arch Report,1996(40):p.1-2.
    [24]Fabre, A.J., [The three lives of the Count de Bonneval, alias Osman Pasha (1675-1747)]. Vesalius,2008.14(2):p.78-85.
    [25]Fan, S., E.L. Whiteman, T.W. Hurd, et al., Induction of Ran GTP drives ciliogenesis. Mol Biol Cell.22(23):p.4539-48.
    [26]Simula, M.P., M.D. Marin, L. Caggiari, et al., Comment re:Ran-GTP control of tumor cell mitosis. Cancer Res,2009.69(3):p.1240; author reply 1240.
    [27]Saric, M., X. Zhao, C. Korner, et al., Structural and biochemical characterization of the Importin-beta.Ran.GTP.RanBD1 complex. FEBS Lett, 2007.581(7):p.1369-76.
    [28]Yamaguchi, R.J. Newport, A role for Ran-GTP and Crml in blocking re-replication. Cell,2003.113(1):p.115-25.
    [29]Wang, X., X. Xu, Z. Ma, et al., Dynamic mechanisms for pre-miRNA binding and export by Exportin-5. RNA.17(8):p.1511-28.
    [30]Shibata, S., M. Sasaki, T. Miki, et al., Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res,2006.34(17):p.4711-21.
    [31]Lund, E.J.E. Dahlberg, Substrate selectivity of exportin 5 and Dicer1 in the biogenesis of microRNAs. Cold Spring Harb Symp Quant Biol,2006.71:p. 59-66.
    [32]Yoda, M., T. Kawamata, Z. Paroo, et al., ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol.17(1):p.17-23.
    [33]Tijsterman, M.R.H. Plasterk, Dicerls at RISC; the mechanism of RNAi. Cell, 2004.117(1):p.1-3.
    [34]Joshua-Tor, L., siRNAs at RISC. Structure,2004.12(7):p.1120-2
    [35]Hayashida, Y., T. Nishibu, K. Inoue, et al., A useful approach to total analysis of RISC-associated RNA. BMC Res Notes,2009.2:p.169.
    [36]Matsubara, H., T. Takeuchi, E. Nishikawa, et al., Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene,2007.26(41):p.6099-105
    [37]Bonauer, A.S. Dimmeler, The microRNA-17-92 cluster:still a miRacle? Cell Cycle,2009.8(23):p.3866-73.
    [38]Liu, W.H., S.H. Yeh, C.C. Lu, et al., MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology,2009.136(2):p.683-93
    [39]Tsang, W.P.T.T. Kwok, The miR-18a* microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis,2009.30(6):p.953-9.
    [40]Marton, S., M.R. Garcia, C. Robello, et al., Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia,2008.22(2):p.330-8.
    [41]Cummins, D.M., S.G. TyackT.J. Doran, Characterisation and comparison of the chicken H1 RNA polymerase Ⅲ promoter for short hairpin RNA expression. Biochem Biophys Res Commun.416(1-2):p.194-8.
    [42]Mi, J., X. Zhang, Z.N. Rabbani, et al., H1 RNA polymerase Ⅲ promoter-driven expression of an RNA aptamer leads to high-level inhibition of intracellular protein activity. Nucleic Acids Res,2006.34(12):p.3577-84.
    [43]Abrahamyan, A., E. NagyS.P. Golovan, Human H1 promoter expressed short hairpin RNAs (shRNAs) suppress avian influenza virus replication in chicken CH-SAH and canine MDCK cells. Antiviral Res,2009.84(2):p.159-67.
    [44]Ansaloni, S., N. Lelkes, J. Snyder, et al., A streamlined sub-cloning procedure to transfer shRNA from a pSM2 vector to a pGIPZ lentiviral vector. J RNAi Gene Silencing.6(2):p.411-5.
    [45]Slanchev, K., J. Stebler, M. Goudarzi, et al., Control of Dead end localization and activity--implications for the function of the protein in antagonizing miRNA function. Mech Dev,2009.126(3-4):p.270-7.
    [46]Scherr, M., L. Venturing K. Battmer, et al., Lentivirus-mediated antagomir expression for specific inhibition of miRNA function. Nucleic Acids Res,2007. 35(22):p. e149.
    [47]Pekarik, V., Design of shRNAs for RNAi-A lesson from pre-miRNA processing:possible clinical applications. Brain Res Bull,2005.68(1-2):p. 115-20.
    [48]Wang, L., J.Y. Zhou, J.H. Yao, et al., U6 promoter-driven siRNA injection has nonspecific effects in zebrafish. Biochem Biophys Res Commun.391(3):p. 1363-8.
    [49]Ebert, M.S., J.R. NeilsonP.A. Sharp, MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells. Nat Methods,2007.4(9):p.721-6.
    [50]Loya, C.M., C.S. Lu, D. Van Vactor, et al., Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods,2009.6(12): p.897-903.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700