过渡金属氧化物对高氯酸铵催化热分解反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体推进剂的燃烧性能是装药技术的核心,通过催化剂对推进剂主要组分的热分解性能的影响可以预估其对推进剂燃烧性能的影响。本论文主要有两方面工作,一是纳米过渡金属氧化物的制备、表征及催化AP热分解的应用,为进一步开发催化性能优异的催化剂提供实验和理论基础;二是利用催化剂原位生成技术的机理,研究微米级的过渡金属草酸盐和乙酸盐对AP热分解的催化,为制备AP体系催化剂提供一个新思路。主要研究内容如下:
     通过微乳液法制备了正交晶系的NdCrO_3和立方晶系的NdCoO_3纳米晶。用XRD,TEM,HRTEM,SEM,EDS,BET等手段对产物进行表征,产物与原料的投入比例一致。利用DSC/TG-MS热分析方法研究了NdCrO_3和NdCoO_3两种催化剂对AP热分解的催化作用。研究表明,在NdCrO_3催化剂的作用下,AP的热分解反应峰值温度下降了87℃,表观分解反应热从655 J·g~(-1)增加到到1073 J·g~(-1);在NdCoO_3催化剂的作用下,AP的热分解反应峰值温度下降了100℃,表观分解反应热从655 J·g~(-1)增加到到1363 J·g~(-1)。
     通过TG-MS研究发现,产生的气态逸出物一步产生,主要分解物质为H_2O(m/z=18),NH_3(m/z=17),O_2(m/z=16,32),HCl(m/z=35,36,37,38),Cl_2(m/z=70,72,74),NO(m/z=30),N_2O(m/z=44)和NO_2(m/z=46)。在NdCrO_3催化剂的作用下,逸出气态产物在336℃左右大量产生,产生的最大离子流强度大幅度升高,峰型尖锐,分解反应在很短的时间内完成;NdCoO_3催化AP的热分解,逸出气态产物在318℃左右大量产生,与NdCrO_3催化AP比较峰型较宽。
     由于纳米催化剂具有较大的比表面,提供了大量的表面反应活性中心,通过反应活性中心的吸附作用,加速AP的分解和氨的氧化,使反应放热量得到大幅度的增加。在金属氧化物表面吸附氧生成过氧化离子(O_2~-)和氧离子(O~-,O~(2-)),这是加速AP分解反应的主要原因。由于在活性中心大量吸附氧而生成大量的过氧化离子(O_2~-)和氧离子(O~-,O~(2-)),它们作为质子接受体可以加速AP的热分解,同时可以简化分解反应的步骤,使热分解反应瞬间完成。
     通过自蔓延燃烧法制备了ReCrO_3(Re=Y,Sm,Er)等系列钙钛矿型结构的纳米晶。用XRD,TEM,HRTEM,SEM,EDS等手段对产物进行表征,产物与原料的投入比例一致,没有偏析现象。通过热分析法考察了ReCrO_3(Re=Y,Sm,Er)纳米晶对AP热分解的催化作用,结果表明这些纳米氧化物均能不同程度的催化AP。YCrO_3使AP高温分解峰降低68℃,表观放热量增加595J.g~(-1);SmCrO_3使AP高温分解峰降低82℃,表观放热量增加551J.g~(-1);ErCrO_3使AP高温分解峰降低79℃,表观放热量增加758J.g~(-1)。通过TG-MS研究发现这类催化剂在达到分解温度时,分解产生的离子流强度峰型尖锐,说明ReCrO_3(Re=Y,Sm,Er)纳米晶均能快速催化分解AP,使反应瞬间完成。
     通过盐助溶液燃烧法,以硝酸铜、硝酸铬和硝酸钴为原料,尿素为燃烧剂,KCl为反应惰性盐制备尖晶石型纳米钴酸铜和铬酸铜。使用XRD,FT-IR、Raman,TEM等检测手段对于纳米钴酸铜和铬酸铜的结构和形貌进行表征。结果表明,制得的纳米粒子具有较完美的立方晶体结构,分散性较好,粒径较小。利用DTA和DSC研究了纳米钴酸铜和铬酸铜对高氯酸铵热分解的催化性能。结果表明:特有的尖晶石结构使纳米钴酸铜和铬酸铜具有较高的催化活性,催化效果明显优于单一组分的纳米金属氧化物。
     采用沉淀法制备了Cu、Co、Er、La的草酸盐,通过XRD、Raman、FT-IR、SEM等检测手段对草酸盐粒子的结构和形貌进行表征。采用DSC/TG-MS联用技术研究了草酸钴对高氯酸铵的原位催化。结果表明,草酸钴原位分解生成的钴氧化物对高氯酸铵有较强的催化作用,添加2%的草酸钴使高氯酸铵的分解温度降低104℃,分解放热量从655 J/g增大到1469 J/g。分解的气相产物主要有H_2O,NH_3,O_2,HCl,Cl_2,NO,N_2O和NO_2。由于氧在新生态的纳米钴氧化物表面形成过氧化活性离子(O_2~-)和氧离子(O~-,O~(2-)),使氨氧化在钴氧化物的过氧化表面活性中心进行,加速了高氯酸铵的热分解,使其表观放热量大幅度增加。草酸铜也能强烈催化AP的热分解,使分解温度降低119℃,分解放热量从655 J/g增大到1560 J/g。
     研究了过渡金属乙酸盐对AP热分解的影响。研究表明乙酸钴使高氯酸铵的分解温度大幅度降低,分解温度提前119℃,放热量增大985 J/g;乙酸铜对AP的低温分解温度没有影响,使AP的高温分解温度提前69℃,放热量增大919 J/g。乙酸钴和乙酸铜原位催化AP,纳米级的钴氧化物和CuO在催化介质中直接生成,生成的新生态金属氧化物催化活性高,比表面积大,即时参与催化反应,最大程度发挥了纳米催化剂的催化效能。
The solid propellant of combustion properties composes the core part in the technology of powders and explosives.According to the thermal decomposition of the predominant components in composite propellants,the behavior of the catalysts can be derived.This dissertation contains two aspects of works.Firstly,a series of nano-sized compound transition metal oxides are prepared and characterized,and their catalytic effects on the thermal decomposition of ammonium perchlorate(AP) are studied.This work affords the experimental and theoretical basis for developing catalysts which have good catalytic performance.Secondly,the catalytic effects of micron-sized transition metal oxalates and acetates on the thermal decomposition of AP via the in situ catalytic mechanism are studied,to afford a new way of preparing the catalysts for the thermal decomposition of AP.Main research contents are shown as follows.
     Orthorhombic structural perovskite NdCrO_3 nanocrystals and cubic structural perovskite NdCoO_3 were prepared by microemulsion method,and characterized by XRD, TEM,HRTEM,SEM,EDS and BET.The catalytic effects of NdCrO_3 and NdCoO_3 for thermal decomposition of AP were investigated by differential scanning calorimetry(DSC) and thermogravimetry-mass spectrometry(TG-MS).The results revealed that the NdCrO_3 nanoparticles had effective catalysis on the thermal decomposition of AP.Adding 2%of NdCrO_3 nanoparticles to AP decreased the temperature of thermal decomposition by 87℃and increased the heat of decomposition from 655 J g~(-1) to 1073 J g~(-1);adding 2%of NdCoO_3 nanoparticles to AP decreased the temperature of thermal decomposition by 100℃and increased the heat of decomposition from 655 J g~(-1) to 1363 J g~(-1).
     Gaseous products during thermal decomposition of AP were NH_3(m/z=17), H_2O(m/z=18),O_2(m/z=16,32),HCl(m/z=35,36,37,38),N_2O(m/z=30),NO(m/z=44),NO_2 (m/z=46)and Cl_2(m/z=70,72,74).With the catalysis of NdCrO_3,the gaseous products were produced at around 336℃.The ion current intensities increased greatly and the curves exhibited shaper shape.The decomposition process was finished in shorter times;with the catalysis of NdCoO_3.the gaseous products were produced at around 318℃and the curves had broader shape comparing to the curves under the catalysis of NdCrO_3 on the thermal decomposition of AP.
     The oxidation reaction is occurred colliding with ammonia and oxygen adsorbed by NdCrO_3.Besides,the catalytic activity is dependent on the specific surface area of NdCrO_3. Due to the large area and more reaction active centers of NdCrO_3 nanoparticles,it is beneficial for the adsorption of NH_3 and O_2 on the surface of NdCrO_3.The nanocrystalline can produce large numbers of the reaction active center.Nanosized NdCrO_3 should be considered to be the catalyst accelerating both the decomposition of perchloric acid and oxidation of ammonia.The mechanism of catalytic action is based on the presence of superoxide ion(O_2) and oxygenic ion(O~-,O~(2-)) on the surface of NdCrO_3.The O_2~-,O~- and O~(2-).ions formed during decomposition of perchlorates and the surface of the oxides itself are proton traps.Thus they simplify thermal decomposition of AP.When the partial pressure of oxygen is increased,the formation of O_2~- covered sites on NdCrO_3 is increased, and then the presence of oxygen accelerates the thermal decomposition process of AP as well as the oxidation of NH_3.
     The self-propagating combustion synthesis method was used to synthesis YCrO_3, SmCrO_3 and ErCrO_3 nanocrystals.The products were characterized by XRD,TEM, HERTEM,SEM,EDS and BET.The catalytic effect of YCrO_3,SmCrO_3 and ErCrO_3 for thermal decomposition of AP was investigated by DSC and TG-MS.The results revealed that the ReCrO_3(Re=Y,Sm,Er) nanoparticles had effective catalysis on the thermal decomposition of AP.Adding 2%of YCrO_3 nanoparticles to AP decreased the temperature of thermal decomposition by 68℃and increased the heat of decomposition by 595 J g~(-1); adding SmCrO_3 nanoparticles to AP decreased the temperature of thermal decomposition by 82℃and increased the heat of decomposition by 551 J g~(-1);adding ErCrO_3 nanoparticles to AP decreased the temperature of thermal decomposition by 79℃and increased the heat of decomposition by 758 J g~(-1).With the catalysis of ReCrO_3(Re=Y,Sm, Er),the ion current intensities increased greatly,the curves exhibited shaper shape at around the decomposition temperatures and the decomposition process was finished in shorter times.
     Nano-CuCo_2O_4 and nano-CuCr_2O_4 were prepared by salt-assisted solution combustion synthesis.The prepared nano-CuCo_2O_4 and nano-CuCr_2O_4 were characterized by XRD,TEM,FT-IR,Laser Raman Spectroscopy(LRS) and SEM.The results showed that the nanocrystalline of CuCo_2O_4 and CuCr_2O_4 were almost cubic-like,and the sizes were about 50nm and 150nm,respectively,with good dispersion.The catalysis performance of the thermal decomposition of AP by nano-CuCo_2O_4 and nano-CuCr_2O_4 was studied by differential thermal analysis(DTA).It was found that their catalytic performance on thermal decomposition of AP were superior to a single-component nano-metal oxides,such as CuO,Co_3O_4 and Cr_2O_3,etc.This was probably related to the specific spinel structure of metal oxides.
     Transition metal and rare earth oxalates were prepared by co-precipitation.The prepared oxalates were characterized by XRD,FT-IR,Raman and SEM.In situ catalytic thermal decomposition of AP was investigated over COC_2O_4.The catalytic activity measurements were carried out by DSC and TG-MS.The results show that the new ecological nano-cobalt oxides exhibit better catalytic performance in thermal decomposition of AP.Adding 2%of COC_2O_4 to AP decreases the decomposition temperature by 104℃and increases the heat of decomposition from 655 J/g to1469 J/g. Products of thermal decomposition of AP are H_2O,NH_3,O_2,HCl,Cl_2,NO,N_2O,and NO_2.The oxidation of adsorbed ammonia by cobalt oxides via the superoxide active centers takes place on the surface of cobalt oxide.The presence of oxygen can accelerate the oxidation of thermal decomposition process of AP,with a clear increase in DSC heat release.Adding 2%of CUC_2O_4 to AP decreases the decomposition temperature by 119℃and increases the heat of decomposition from 655 J/g to 1560 J/g.
     The influence of metal acetates on the thermal decomposition of AP was studied. Results showed that cobalt acetate decrease the thermal decomposition temperature greatly. The decomposition temperature was decreased by 119℃and the heat was increased by 985J/g;copper acetate has little influence at lower decomposition temperatures during the thermal decomposition of AP.After adding copper acetate,the decomposition temperature was decreased by 69℃and the heat was increased by 919J/g.Cobalt acetate and copper acetate have in-situ catalytic performance on the thermal decomposition of AP.During the decomposition process,the nano-sized cobalt oxides and copper oxides were formed directly among the catalytic mediums media.The new-ecology catalysts had better catalytic effects as well as greater surface area,and took part in the catalytic reaction directly,which full play the catalytic effects of nano-sized catalysts.
引文
[1]张立德,牟季美.纳米材料和纳米结构.第1版.北京:科学出版社,2001
    [2]Fendler J H,Dekany I.Nanoparticles in solids and solution.Netherlands:Kluwer Academic Publishers,1996
    [3]徐如人.无机合成与制备化学.北京:高等教育出版社,2001
    [4]Liu T,Zhang Y H,Shao H Y.Synthesis and characteristic of Sm_2O_3 and Nd_2O_3nanopaticles,langmuir.2003,19(18):7569-7572
    [5]Fokema M D,Chiu E,Ying J Y.Synthesis and characterization ofnanocrystalline yttrium oxide Prepared with tetraalkylammonium hydroxides.Langrnuir 2000,16(7):3154-3159
    [6]Subramanian R,Shankar P.Synthesis of nanocrystalline yttda by sol-gel method.Mater Lett.2001,48(6):342-346
    [7]Xia B,Lenggoro I W,Okuyama K.Novel route to nanoparticle synthesis by salt-assisted aerosol decomposition.Adv.Mater.2001,13(20):1579-1582
    [8]Yu S H,Han Z H,Yang J,et al.Synthesis and formation mechanism of La_2O_2S via a novel solvothermal pressure-relief process.Chem.Mater.1999,11(2):192-194
    [9]Brian L,Cushing,Vladimir L,et al.Recent advances in the liquid-phase syntheses of inorganic nanopartieles.Chem.Rev.,2004,104,3893-3946
    [10]Patil K C,Aruna S T,Ekambaram S.Combustion synthesis.Curr.Opin.Solid St.M.1997,2(2):158-165
    [11]张端庆.火药用原材料性能与制备.第1版.北京:北京理工大学出版社,1995
    [12]张柏生.火药燃烧导论.南京:华东工学院,1988
    [13]王克秀.固体火箭推进剂及燃烧.北京:国防工业出版社,1983
    [14]Galwey A K,Jacobs P,Thermal decomposition of ammonium perchlorate at low-temperatures,Proc.Roy.Soc.A.1960,254:455-469.
    [15]Galwey A K,Jacobs P,High-temperature thermal decomposition of ammonium perchlorate,J.Chem.Soc.1959:837-844.
    [16]Svetlov B S,Koroban V A,On the inhibition of thermal decomposition of ammonium perchlorate by the products of decomposition,Kinetika i kataliz.1967,8:456-459.
    [17]Svetlov B S,Koroban V A,On the mechanism of thermal decomposition of ammonium perchlorate,Fizika goreniya i vzryva.6(1)(1970) 12-18,in Russian.
    [18]Dedgaonkar V G,Sarawade D B,Effect of different additives on thermal decomposition of ammonium perchlorate,J.Thermal Anal.1990,36(1):223-229.
    [19]Pellet G L,Corer W R,Thermal decomposition of ammonium perchlorate by rapid heating.Seventh AIAA Aerospace Science Meeting,New York,1969:141
    [20]Jacobs P W,Russel-Jones A,Sublimation of ammonium perchlorate,J Phys Chem,1968,72(1):202-207.
    [21]Hackman Ⅲ E E,Hesser H H,Beachell H C,Detection of species resulting from condensed phase decomposition of ammonium perchlorate,J Phys Chem,1972,76(24):3545-3554
    [22]Kishore K,Vemeker V R P,Sunitha M R.Effect of manganese dioxide on the thermal decomposition of ammonium perchlorate.J.Appl.Chem.Biotech,1977,27:415-422
    [23]Solymosi F,Dobu K.The effect of impurities on the thermal decomposition of ammonium perchlorate.Proceedings of the 5st intermational symposium on reactibity of solids Munich,FRG.1964
    [24]Jacobs P W M,Jones R A,The thermal decomposition and ignition of mixtures of ammonium perchlorate and copper chromite.Proceedings of the 11st Symposium on Combustion.The Combustion Institute,Pittsburgh,1967:457-462
    [25]Santacesaria E,Thermal decomposition of ammonium perchlorate in the presence of manganese dioxide.Ribista dei Combustibili,1973,27:468-473
    [26]Solymosi F,Revesz L,Thermal decomposition of ammonium perchlorate in presence of zinc oxide,Nature 1961,192:64-65
    [27]Solymosi F,Fonagy K,The effect of cadmium oxide and cadmium perchlorate on decomposition and ignition of ammonium perchlorate,in:Proceedings of the 11th International Symposium on Combustion,The Combustion Institute,Pittsburgh,PA,1966,p.268
    [28]Patil K C,Vemeker V R P,Jain S R,The role of lithium and magnesium perchlorate amines in ammonium perchlorate decomposition,Combustion Flame,1976,27(3):295-298
    [29]Acheson R J,Jacobs P,Thermal decomposition of magnesium perchlorate and of ammonium perchlorate mixtures,J.Phys.Chem.1970,74:281-288
    [30]Wang Y P,Zhu J W,Yang X J,et al.Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate.Thermochim.Acta.2005,437(1-2):106-109
    [31]杨毅,刘宏英,李凤生,张秀艳.过渡金属/稀土金属氧化物纳米粒子催化AP热分 解研究.推进技术,2006,27(1):92-96
    [32]Zhenzhao Pei,Yi Zhang.A novel method to prepare Cr_2O_3 nanoparticles.Materials Letters,2008,62:504-506
    [33]朱俊武,张维光,王恒志,杨绪杰,陆路德,汪信.纳米CuO的形貌控制合成及其性能研究.无机化学学报,2004,20(7):863-867
    [34]陈伟凡,李凤生,刘建勋.纳米Co_3O_4的制备及其对高氯酸铵热分解的催化性能.催化学报,2005,26(12):1073-1077
    [35]马振叶,李凤生,陈爱四,白华萍.纳米Fe_2O_3/高氯酸铵复合粒子的制备及其热分解性能研究.化学学报,2004,62:1252-1255
    [36]张汝冰,刘宏英,李凤生.含能催化复合纳米材料的制备研究.火炸药学报,2000,23(3):9-14
    [37]陈爱四,李凤生,马振叶等.纳米CuO/AP复合粒子的制备及催化性能研究.固体火箭技术,2004,27(2):123-140
    [38]Survase D V,Gupta M,Asthana S N.The effect of Nd_2O_3 on thermal and ballistic properties of ammonium perchlorate based compostite propellants.Prog.Cryst.Growth Ch,2002,45:61-165
    [39]徐宏,刘剑洪,陈沛等.纳米氧化镧对黑索今热分解的催化作用.推进技术,2002,23(4):329-331
    [40]徐宏,蔡弘华,罗仲宽等.纳米氧化钕的制备及其催化性能的研究.无机化学学报,2003,19(6):627-630
    [41]徐宏,刘剑洪,蔡弘华.纳米氧化铈的制备及其催化性能研究.深圳大学学报,2002,19(2):3-16
    [42]张秀艳,刘宏英,李凤生等.纳米Nd_2O_3/AP高氯酸铵复合粒子的制备及催化性能的研究.材料科学与工程学报,2005,23(5):42-544
    [43]段碧林,曾令可,刘平安.稀土钙钛矿型复合氧化物催化剂研究现状.陶瓷,2006,15(8):5-8
    [44]徐科.钙钛矿型稀土复合氧化物催化活性研究进展.化工时刊,2007,21(1):70-72
    [45]Wang Y P,Zhu J W,Lu L D,et al.Experimental study on preparation of LaMO_3(M=Fe,Co,Ni) nanocrystals and their catalytic activity on NH_4ClO_4 Decomposition.Thermochim.Acta,2006,443:234-239
    [46]洪伟良,刘剑洪,田德余等.纳米铁酸铜的制备及对RDX热分解的催化作用.推进技术,2003,24(6):560-562
    [47]洪伟良,刘剑洪,田德余等.纳米PbSnO_3的制备及其燃烧催化性能的研究.无机化学学报,2004,20(3):278-283
    [48]洪伟良,刁立惠,刘剑洪等.纳米SnO_2-CuO粉体的制备、表征及对环三次甲基三硝胺热分解的催化性能.应用化学,2004,21(8):775-778
    [49]Zhao F Q,Chen P,Li S W.Effect of ballistic modifiers on thermal decomposition characteristics of RDX/AP/HTPB propellant.Thermochim.Acta,2004,416(1-2):75-78
    [50]Said A A,Qasmi R Al.The role of copper cobaltite spinal,Cu_xCo_(3-x)O_4 during the thermal decomposition of ammonium perehlorate.Yhermochim.Acta,1996,275(1):83-91
    [51]Giovanoli,R.;Luenberger,U.Oxidation of manganese oxide hydroxide.Helv.Chim.Acta.1969,58:2333-2347.
    [52]Zitomer F.Thermogravimetric-mass spectrometric analysis.Anal.Chem.1968,40:1091-1095
    [53]Meisel T.Review on problems,techniques and trends in thermal analysis.Fresenius Z Anal.Chem.1982,312:83-95
    [54]Dollimore D,Gamlen G A,Taylor T J.Mass spectrometric evolved gas analysis-An overview.1984,75:59-69
    [55]陆昌伟,奚同庚.热分析质谱法的发展历史沿革、现状和展望.上海计量测试,2002 29(2):8-11
    [56]Perng L H,Tsai C J,Ling Y C,Wang S D,Hsu C Y.Thermal decomposition characteristics of poly[diethyl-2-(methacryloyloxy)ethyl phosphate]using thermogravimetric analysis/Mass Spectrometry.J.Appl.Polym.Sci.2002,85:821-830
    [57]Xie W,Heltsley R,Cai X H,Deng F Q,Liu J M,Lee C,Pan W P.Study of Stability of High-Temperature Polyimides Using TG/MS Technique.J.Appl.Polym.Sci.,2002,83:1219-1227
    [58]Gupta Y N,Chakraborty A,Pandey G D,Setua D K.Thermal and Thermooxidative Degradation of Engineering Thermoplastics and Life Estimation.J.Appl.Polym.Sci.2004,92:1737-1748
    [59]P(?)rez F J,and Castaneda S I.TG-mass spectrometry studies in coating design for supercritical steam turbines.Mater.Corros.2008,59:409-413
    [60]Guo Y Z,Weiss R,Epple M.A Straightforward Route to Copper/Zinc Oxide Nanocomposites:The Controlled Thermolysis of Zn[Cu(CN)3].Eur.J.Inorg.Chem.2005,34:3072-3079
    [61]闫金定,崔洪,杨建丽,刘振宇.热重-质谱联用(TG-MS)技术应用进展.分析测 试学报.2003,22(4):104-107
    [62]Chen L J,Li G S,Qi P,Li L P.Thermal decomposition of ammonium perchlorate activated via addition of NiO nanocrystals.J.Therm.Anal.Cal.2008,23:765-769
    [63]常海.DSC-TG-MS联用技术研究PNIMMO的热分解.火工品.2007(2):32-35
    [64]董林茂,李晓东,杨荣杰.HNIW的热重-质谱(TG-MS)研究.含能材料.200715(6):660-663
    [65]Femnades J D G,Melo D M A,Zinner L B,Salustiano C M,Silva Z R,Martinelli A E,Ceruaeda M,Junior C A,Longo E,Bemardi M I B.Low-temperature synthesis of single-phase crystalline LaNiO_3 perovskite via Pechini method.Mater.Lett.200253:122-125
    [66]Pe(?)a M A,Fierro J L G.Chemical structure and performance of perovskite oxides.Chem.Rev.2001,101:1981-2017
    [67]Stephen J,Skinner.Recent advances in perovskite-type materials for solid oxide fuel cell cathodes.Int.J.Inorg.Mater.2001,3:113-121
    [68]Nomma A K,Morris M A.The preparation of the single-phase perovskite LaNiO_3.J.Mater.Process.Tech.1999,92-93:91-96
    [69]Meadowcroft D B.Low-cost oxygen electrode material.Nature,1970,226:847-848
    [70]Libby W F.Promising catalyst for auto exhaust.Science.1971,171:499-500
    [71]Voorhoeve R J H,Remeika J P,Johnson D W J.Rare-earth manganites:catalysts with low ammonia yield in the reduction of nitrogen oxides.Scienee.1973,180:62-64
    [72]Belessi V C,Trikalitis P N,Ladavos A K,et al.Structure and catalytic activity of La_(1-x)FeO_3 system(x=0.00,0.05,0.10,0.15,0.20,0.25,0.35) for the NO+CO reaction.Appl.Catal.A.1999,177(1):53-68
    [73]Simonot L,Garin F,Maire G.A comparative study of LaCoO_3,Co_3O_4 and a mix of LaCoO_3-Co_3O_4 Ⅱ.Catalytic properties for the CO+NO reaction.Appl.Catal.B 1997,11(2):181-191
    [74]Agarwal D D,Goswami H S.Toluene oxidation on LaCoO_3,LaFeO_3 and LaCrO_3 perovskite catalysts a comparative study.React.Kinet.Catal.Lett.1994,53(2):441-449
    [75]王海,朱永法,谭瑞琴等.非晶态配合物法制备钙钛矿型纳米粉体催化剂及其CO 催化氧化性能.化学学报.2003,61(1):13-16
    [76]贾立山,秦永宁,马智等.含氧气氛下预硫化钙钛矿LaCoO_3上的CO还原SO_2反应.催化学报.2003,24(10):751-754
    [77]Norman A K,Morris M A.The preparation of the single-phase perovskite LaNiO_3.J.Mater.Process.Tech.1999,92-93:91-96
    [78]Zhu Y G,Tan R Q.Preparation of nanosized LaCoO_3 perovskite oxide using amorphous heteronuclear complex as a precursor at low temperature.J.Mater.Sci.2000,35:5415-5420
    [79]Qi X W,Zhou J,Yu Z X,Gui Z L,Li L T.Auto-combustion synthesis of nanocrystalline LaFeO_3.Mater.Chem.Phy.2002,78:25-29
    [80]Zheng W J,Liu R H,Peng D K,Meng G Y.Hydrothermal synthesis of LaFeO_3 under carbonate-containing medium.Mater.Lea.2000,43:19-22
    [81]Liu Y.New methods to prepare ultrafme particles of some perovskite-type oxides.Chem.Eng.J.2000,78:205-209
    [82]Popa M,Hong L V,Kakihana M.Nanopowders of LaMeO_3 perovskites obtained by a solution-based ceramic processing teehnique.Physica B.2003,327:233-236
    [83]Brian L,Cushing,Vladimir L,et al.Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem.Rev.,2004,104:3893-3946
    [84]Masui T,Fujiwara K,Peng Y M,et al.Characterization and catalytic properties of CeO_2-ZrO_2 ultrafine particles prepared by the microemulsion method.J.Alloys and Compd.,1998,269:116.
    [85]薛屏,沈岳年.La_(0.8)Sr_(0.2)MnO_3和La_(0.8)Sr_(0.2)CoO_3在γ-Al_2O_3上的载体效益研究.分子催化,1998,12(6):271
    [86]Cui X L,Liu Y.New methods to prepare ultrafine particles of some perovskite -type oxides.Chemical Engineering,2000,78:205.
    [87]Lim G K,Wang J,Ng S C.Nanosized hydroxyapatite powders from microemulsion and emulsions stabilized by a biodegradable surfactant.J Mater Chem,1999,9:1635-1639
    [88]王笃金,吴瑾光.反胶团或微乳液法制备超细颗粒的研究进展.化学通报,1995,9:1-5
    [89]Fang X L,Yang C F.An experimental study on the relationship between the physical properties of CTAB/hexano/water reverse mieelles and ZrO_2-Y_2O_2 nanoparticals prepared.J Colloid.Interf.Sci.,1999,212:242-251
    [90]H.F.Johnstone,E.T.Houvouras,W.R.Schowalter,Low Temperature Catalytic Oxidation of Ammonia.Ind Eng Chem,1954,46:702-708
    [91]Seiyama T,Egashira M,Iwamoto M.Some Theoretical problem of Catalysis.Tokyo:Tokyo University Press,1973:35
    [92]吴越.催化化学.北京:科学出版社,1998:1135
    [93]McCarthy G J,Gallagher P V,Sipe C,Crystal chemistry of catalyst materials.I.Composition and unit cell parameters of "REMnO3" phases prepared in air.Mater.Res.Bull.,1973,8:1277-1284.
    [94]Savchenko V F,Rubinchik Ia S,Study of the Reaction of Formation of Neodymium Chromite from Oxides.Neorg Mater,1979,15:122-124.
    [95]Galdon A,Guillem M C,Preparation of mixed oxides MNdO_3,with M=Cr,Fe.Comparison of several methods Solid State Ionics,1993,63:66-70
    [96]Devi P S,Citrate gel processing of the perovskite lanthanide chromites J Mater Chem,1993,3:373-379.
    [97]Kingsley J J,Pederson L R,Combustion synthesis of perovskite LnCrO_3 powders using ammonium dichromate.Mater Lett,1993,18:89-96
    [98]Manoharan S S,Patil K C,Combustion Route to Fine Particle Perovskite Oxides J Solid State Chem,1993,102:267-276
    [98]高勇.Ce_(1-x)Nd_xO_(2-X/2)固溶体纳米粉体的低温燃烧合成研究.湖南大学硕士论文.2005
    [100]Hwang C C,Wu T Y,Wan J,Tsai J S.Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders.Mat.Sci.Eng.B.2004,111:49-56
    [101]Zhang Z J,Wang Z L.Temperature dependence of cation distribution and oxidation State in magnetic Mn-Fe ferrite nanocrystals.J.Am.Chem.Soc,1998,120:1800-1804
    [102]高官俊,王克冰.溶胶-凝胶法制备CuCo_2O_4催化剂及性能研究.内蒙古石油化工,2003,29:10-11
    [103]Wang Y C,Ding J,Yi J B,et al.Higlrcoercivity Co-ferdte thin films on 100-SiO_2substrate.Applied Physics Letters,2004,84(14):2596-2598
    [104]Gu B X.Magnetic properties and magneto-optical effect of Co_(0.5)Fe_(2.5)O_4nanostructured films.Applied Physics Letters,2003,82(21):3707-3709
    [105]Chov J H,Kim D H,Kwon CW,et al.Physical and electrochemical characterization of nanocrvstalline LiMn_2O_4 prepared by a modified citrate route.J Power Sources,1999,77(1):1-11
    [106]Xian Fei(鲜飞).Electronic Components Mater(电子元件与材料),2002,21(5):31-34
    [107]杨项军,马志刚,韦群燕.低热固相反应制备Ni_(0.6)Cu_(0.2)Zn_(0.2)Fe_2O_4纳米铁氧体.应用化学,2007,24(2):183-184
    [108]华正和,鲍恩波,姬保卫.CoFe_2O_4纳米管的合成与表征.淮阴师范学院学报(自然科学版),2007,6(1):32-34
    [109]Mao-hua Wang,Chao Yao,Nan-fa Zhang.Degradation characteristics of low-voltage ZnO varistor manufactured by chemical coprecipitation processing.Journal of Materials Processing Technology,2008,202(2):406-411
    [110]方道来,郑翠红,朱伟长,等.NiFe_2O_4纳米晶的制备及表面效应对其比饱和磁化强度的影响.材料科学与工程,2001,19(1):86-89
    [111]王卫兵.共沉淀Cu-Co催化剂结构性能表征.运城学院学报,2005,23(2):58-59
    [112]张变芳,闫宗林,唐贵德.几种尖晶石铁氧体的制备及磁性研究.机械工程材料,2005,29(8):55-61
    [113]曹峰,李新勇,曲振平.铁酸锌纳米晶的合成及其催化脱色性能研究.环境污染与防治,2006,28(12):891-894
    [114]石晓波,李春根,汪德先.铁酸锌纳米微粒的制备及其催化性能.化学世界,2002,43(9):451-453
    [115]李东风,贾振斌,魏雨.尖晶石型软磁铁氧体纳米材料的制备研究进展.电子元件与材料,2003,22(6):37-40
    [116]Kajomsak Faungnawakij,Naohiro Shimoda,Tetsuya Fukunaga.Cu-based spinel catalysts CuB_2O_4(B=Fe,Mn,Cr,Ga,Al,Fe_(0.75)Mn_(0.25)) for steam reforming of dimethyl ether.Applied Catalysis A:General,2008,341(1):139-145
    [117]肖旭贤,黄可龙,卢凌彬.微乳液法制备纳米CoFe_2O_4.中南大学学报(自然科学版),2005,36(1):65-68
    [118]Saadi S,Bouguelia A,Trari M.Photoassisted hydrogen evolution over spinel CuM_2O_4(M= Al,Cr,Mn,Fe and Co).Renewable Energy,2006,31:2245-2256
    [119]Y.Li,W.Liu,M.Z.Wu.Oxidation of 2,3,5-trimethylphenol to 2,3,5-trimethylbenzoquinone with aqueous hydrogen peroxide in the presence of spinel CuCo_2O_4.Journal of Molecular Catalysis A:Chemical,2007,261:73-78
    [120]W.Li,H.Cheng.Bi_2O_3/CuCr_2O_4-CuO core/shell structured nanocomposites:Facile synthesis and catalysis characterization.Journal of Alloys and Compounds,2008,448:287-292
    [121]易华兵,彭天右,李思敏.燃烧法合成CuAl_2O_4及其光催化性能的研究.功能材料,2007,38:2447-2449
    [122]Patil K C,Aruna S T,Mimani T.Combustion synthesis:an update.Curr.Opin.Solid St.M,2002,6(6):507-512
    [123]易华兵,彭天右,李思敏.燃烧法合成CuAl_2O_4及其光催化性能的研究.功能材料,2007,38:2447-2449
    [124]Mahata T,Das G,Mishrac R K,etal.Combustion synthesis of gadolinia doped ceria powder.J.Alloy.Compd,2005,391(1-2):129-135
    [125]Fu Y P,Lin C H,Hsu C S.Preparation of ultrafine CeO_2 powders by microwaveinduced combustion and precipitation.J.Alloy.Compd,2005,397(1-2):110-114
    [126]王世华.无机化学教程.北京:科学出版社,2000
    [127]Aruna S T,Patil K C.Combustion synthesis and properties nanostructured of ceria-zirconia solid solutions.Nanostruct Mater,1998,10(6):955-964
    [128]S.Gopalan,A.V.Virkar.Thermodynamic stabilities of SrCeO_3 and BaCeO_3 using molten salt method and galvanic cells.Electrochem.Soc,1993,140(4):1060-1065
    [129]V.L.Cherginets,T.P.Rebrova.Studies of some acid-base equilibria in the molten eutectic mixture KCl-LiCl at 700 ℃.Electrochim.Acta,1999,45(3):469-476
    [130]Congkang Xu,Yingkai Liu,Guoding Xu.Preparation and characterization of CuO nanorods by thermal decomposition of CUC204 precursor.Materials Research Bulletin,2002,37:2365-2372
    [131]Suraj Kumar Tripathy,Maria Christy.Hydrothermal synthesis of single-crystalline nanocubes of Co_3O_4.Materials Letters,2008,62:1006-1009
    [132]G.Calvarin,A.M.Huntz.Oxide scale stress determination by ramanspectroscopy application to the NiCr/Cr_2O_3 system and influence of yttrium.Scripta Matedalia,1998,38:1649-1658
    [133]S.K.Saxena.An in situ Raman spectroscopic study of pressure induced dissociation of spinel NiCr_2O_4.Journal of Physics and Chemistry of Solids,2003,64:425-431
    [134]Shusser M,Culick F E C,Cohen N S.Combustion response of ammonium perchlorate composite propellants Journal of Propulsion and Power,2002,18:1093-1100
    [135]Fitzgerald R P,Brewster M Q.Flame and surface structure of laminate propellants with coarse and fine ammonium perchlorate.Combustion and Flame,2004,136:313
    [136]黄春辉.稀土配位化学.北京:科学出版社,1997
    [137]大连理工大学无机化学教研室.无机化学实验(第二版).北京:高等教育出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700