淀粉及淀粉基材料的热降解性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉的热降解在食品加工与非食品加工中是一个普遍现象,例如在淀粉基食品的油炸和烘焙过程中,淀粉基食品和材料的挤出加工中也都会产生热降解。另一方面,通过淀粉的热降解也可得到各种有用的产品,如糊精等。因此,全面理解淀粉的热降解和热稳定性对于食品的热加工,淀粉及淀粉基材料的生产与性能评估和淀粉基废料的热处理与能源转化都有着重要的工业应用意义。另外,研究淀粉的热降解和热稳定性对于完善淀粉的相变理论,深入理解淀粉的化学改性有着重要的理论意义。
     人们对于淀粉的热降解和热稳定性已进行了相当广泛和深入的研究,但是这些成果并不能满足以淀粉为原料的新型产品的开发,同时一些基础性问题依然存在争议。淀粉热降解和热稳定的复杂性源于其结构的复杂性和亲水性(保持一定的水分含量)。不同于合成高分子,淀粉来源于天然植物,其结构取决与植物的种类和种植环境。淀粉从化学结构上可分为两大类:直链淀粉和支链淀粉。淀粉中的链支比对于淀粉的物理化学性能起关键作用。另外,淀粉基产品中的水分含量对其性能也起着重要作用。因此,通过系统的研究一系列不同链支比的同一种天然淀粉,找出其热降解和热稳定的规律,将对该领域的研究起指导作用。另一方面,以往对于淀粉的热降解和热稳定的研究都是在开放环境中进行的,最常用的方法就是热重分析仪(TGA)。在实际中,淀粉的热加工很多是在密闭环境中,因此,建立一个能够研究淀粉在密闭体系中的热降解和热稳定的方法将对这一领域的研究具有突破性的意义。
     本论文以不同链支比的天然玉米淀粉(0/100,蜡玉米; 23/77,普通玉米; 50/50,高直链玉米G50; 80/20,高直链玉米G80)为模型材料,采用热重分析仪(TGA)、傅里叶红外光谱(FTIR)、核磁共振(NMR)、热裂解-气质联用(Py-GC/MS)、热重气质联用(TGA-GC/MS)、热重质谱联用(TGA-MS)、热重红外光谱技术(TG-FTIR)系统地研究了不同链支比的淀粉在开放环境中的热稳定性行为及热降解机理;首次通过构建封闭环境,利用差示扫描量热仪(DSC)研究了淀粉在恒定水份中的热稳定性行为;利用凝胶色谱-多角度激光光散射技术(GPC-MALLS)和密炼机研究了剪切力环境下淀粉的分子量的变化。通过新的研究方法的建立,对不同链支比的玉米淀粉的热稳定性进行了系统的研究,主要成果如下:
     1、多尺度系统的研究了玉米淀粉的链支比对其结构的影响,在颗粒结构上,光学显微镜和SEM的研究发现高支链淀粉颗粒比高直链淀粉在形状上更规则,随着直链淀粉含量的增多,颗粒尺寸越来越小;在半结晶层结构上,SAXS,FTIR,FT-Raman结果表明直链淀粉含量影响淀粉的晶体结构,随着直链淀粉含量的增大,SAXS光散射的强度降低,半结晶层重复单元的厚度(d-space)减少,晶体的相对结晶程降低,有序程度减少,原因是直链淀粉影响了淀粉结晶区的生成;在链结构水平上,GPC-MALLS结果表明随着直链淀粉含量的增多,淀粉的分子量降低。DSC和激光共聚焦显微镜(CLSM)表明直链淀粉的含量影响淀粉的糊化行为,在一定的增塑剂含量下,淀粉的糊化温度随着直链淀粉含量的增多而上升。
     2、使用TGA系统的研究各种因素,如初始水分含量、热降解气氛等,对不同链支比的玉米淀粉的热降解行为的影响。研究结果表明,淀粉在开放环境中的热降解行为与升温速率,热降解气氛和直链淀粉的含量有关,初始水分含量并不影响淀粉的热降解温度。淀粉的热降解温度随着直链淀粉含量的增大而减少。相比惰性气氛,氧气的参与加速了淀粉的热降解,并在550°C左右处出现了灼热燃烧(glowing combustion)。基于自由模型的活化能的计算结果表明,在惰性环境下,其热降解活化能随着直链淀粉的含量增多而降低。
     3、使用FTIR,NMR和TGA-FTIR,TGA-MS,TGA-GC/MS和Py-GC/MS等先进仪器对淀粉降解过程中的固体残渣和气体产物进行系统的定性或者定量的分析。研究结果确认淀粉在降解过程中会产生呋喃、小分子的酮醛物质以及CO_2,CO,H_2O等气体,并定量描述了CO_2,CO,H_2O等随着温度的变化趋势。该结果表明淀粉的热降解一个复杂的多步的化学反应过程,主要的机理可能是分子内或者分子间的脱水造成的自由基反应。
     4、通过DSC不锈钢高压盘构建封闭环境,在世界上首次利用DSC研究了不同链支比的玉米淀粉在封闭环境下的热降解行为。这一封闭系统可以保证升温过程中恒定水份。结果表明淀粉在封闭环境下有两个热降解温度,第一个在相对低的温度,为淀粉分子链的断裂,第二个在相对高的温度,为葡萄糖环的热降解。淀粉在水分含量保持一致的情况下,在大约260°C时会发生氧化和降解反应,葡萄糖在该温度的热降解验证了该论断。另一方面,淀粉在较低的温度下表现为分子链的断裂,随着直链淀粉含量的增多,降解温度移向低温区。DSC结果还表明热降解行为受加热速率和水分含量的影响,水分含量加速了淀粉的热降解行为,其原因是水在高温下提供了大量的自由基,加速了淀粉的自
     由基降解反应。5、利用带双转子的密炼机研究了淀粉在剪切力下的相变行为,并利用GPC-MALLS对不同挤出时间收集的淀粉样品进行分析。结果表明密炼机可以用于淀粉的相变研究,初始温度影响淀粉的最终扭矩和最终温度。GPC-MALLS结果表明,高直链淀粉(G80)和高支链淀粉(Waxy)在剪切力下发生分子量的降解,高温加速了分子链的降解程度。高支链淀粉的降解速率大于高直链淀粉,该结果可能与支链淀粉的分子尺寸和支叉结构有关。
     6、按照AS ISO 14855生物降解性能测定方法和TGA热降解法研究了淀粉和木粉对聚乳酸的生物降解性能和热降解性能的影响,使用TGA-FTIR研究这些有机填料的热降解产物对于聚乳酸热稳定性的影响。结果表明,聚乳酸/淀粉共混物和聚乳酸/木粉共混物生物降解速率要低于纯纤维素但是高于纯聚乳酸。淀粉和木粉都可以加速聚乳酸的降解,主要是因为淀粉和木粉在降解过程中产生的极性基团,如CO, CO_2, H_2O, C_2H_4O_2和CH_2O等可以加速聚乳酸分子链的断裂。另外,聚乳酸/淀粉共混物的热降解温度要低于聚乳酸/木粉共混物。一个原因是淀粉的热降解温度低于木粉。淀粉的尺寸较小,和聚乳酸的接触面积更大,是加速混合物的热降解的另一个可能原因。
The thermal decomposition of starch is an important and common issue for food and non-food industries. It has been widely observed during thermal processing of foods, such as frying or baking of starch-based foods, and extrusion of starch-based foods and materials. On the other hand, the thermal decomposition of starch can also be used to produce some useful products, such as dextrin. The study of the thermal decomposition and stability of starches has great commercial benefits as it will provide a useful practical guideline to manufacture starch-based products, and to predict the properties of these products. On the other hand, the study of thermal decomposition of starch also has significant scientific importance since it will help to further understand the phase transitions and decomposition mechanisms of starch during thermal processing, and mechanisms of starch modifications.
     Actually the thermal decomposition of starch has been widely and extensively studied. However, the results and conclusion cannot meet the requirements of developing new starch-based products. Due to its complexity starch exhibits characteristics of complex thermal stability. Unlike synthetic polymers, starch derived from natural plants and its structure depends on the species and growing environments of plants. Starch can be chemically fractionated into two types of glu-can polymer: amylose and amylopectin. The amylose/amylopectin ratio plays a critical role in the chemical and physical properties of starch. Therefore, the investigation of the mechanisms on the thermal decomposition of same kind of starches with different amylose/amylopectin ratios can provide a useful practical guideline to other types of starch. In the other hand, previous research works mainly focus on the thermal decomposition and thermal stability based on an open system, such as thermogravimetric analysis (TGA). Development a new method to monitor the thermal decomposition and thermal stability of starch in a sealed system can make a significant breakthrough in the thermal process area as most of thermal processes are performed in a sealed system.
     In this dissertation, the native cornstarches with different amylose/amylopectin ratio (0/100, Waxy; 23/77, Maize; 50/50, G50; 80/20, G80) was used as a model materials. The TGA, Fourier Transform Infrared Spectrometry (FTIR), Nuclear magnetic resonance (NMR), Pyrolysis Gas Chromatography Mass Spectrometry (Py-GC/MS), TGA-GC/MS, TGA-MS, TGA-FTIR was used to study the thermal decomposition behavior and the thermal decomposition mechanism in an open system; High-pressure stainless steel pans with a gold-plated copper seal were used to establish the sealed system, the thermal decomposition behavior with constant moisture in a sealed system was firstly studied by Differential scanning calorimetry (DSC); The Gel Permeation Chromatography-Mutil-Angle Laser Light Scattering (GPC-MALLS) was used to investigate the molecular weight under shear system which was provided by a mixer with twin-roller rotors as a function of different extrusion time. The new methods has been developed and applied to study the starches. The main achievements can be concluded as following:
     1. The physical and chemical properties of a certain starch depend on its amylose/amylopectin ratio. The SEM and optical microscopy were used to further study the granule structure of starch. The results show that the granules of the amylopectin-rich starches were more regular in shape than those of amylose-rich starches, and the particle size of granules were waxy>maize>G50>G80. The SAXS, FTIR and GPC-MALLS show that the intensions of SAXS decrease with increased amylose content; the d-space (repeat distances of an amorphous and crystalline lamellae), relative crystallinity, order of starch and molecular weight decrease with increasing amylose content. The results of DSC and confocal laser scanning microscopy (CLSM) revealed that the gelatinization of starch was a multi-phase process, and affected by plastics, such as water or glycerol. Generally, the gelatinization temperature decreases with increasing amylose content.
     2. TGA has been widely used to study the thermal decomposition of starch in an open system. TGA results show that heating rate, heating condition and amylose content can affect the thermal decomposition temperature. Under inert gas condition, dehydration and decomposition have generally been considered as two separate processes associated with the degradation mechanisms of starch, the initial moisture content did not affect the decomposition temperature. Oxygen accelerated the decomposition. When the temperature is more than 550℃glowing combustion will happen. Apparent activation energy of starch decomposition under nitrogen gas condition calculated by Model-free model is Waxy>Maize>G50>G80.
     3. The FTIR and NMR was used to character the finial products after thermal decomposition of starch, while the advanced technologies such as TGA-FTIR, TGA-MS, TGA-GC/MS, Py-GC/MS were used to study the gases from thermal decomposition. The result showed that some small molecular such as ketone, aldehyde, and CO. CO_2, H_2O were produced during the thermal decomposition process. The main decomposition mechanism of starch is probably the free radical reaction which is introduced by the dehydration reaction between starch hydroxyls.
     4. DSC with high-pressure stainless steel pan sealed by gold-plated copper to form a sealed system, was firstly used to study the thermal degradation of starch in a sealed system. The system keeps moisture constant during heating. The result showed that the two decomposition temperatures were observed in the sealed system: the first at lower temperature represents long chain scission; and the second at higher temperature involves decomposition of the glucose ring. The starches were oxidized and decomposed at temperatur≥e 260℃with constant moisture content while the decomposition of glucose appeared at the same temperature. On the hand, the endotherm at lower temperature was assumed to be resulted from the breakage of chains. Glucose did not show this endotherm, which supports this conclusion. The temperature of the chain decomposition increases with increasing amylopectin content, which may be due to the higher molecular weight and the stable microstructure of amylopectin. DSC results also showed that the water accelerated the thermal decomposition of starch, which could be explained by the free radical created due to higher temperature.
     5. Hakke mixer with twin-roller rotors was used to study the rheological properties and phase transition of starch under shear condition. The GPC-MALLS was used to determine the molecular weight of starch during the different extrusion time. The result shows that the initial temperature affects the finial torque and temperature. The GPC-MALLS shows that the molecular weight of both G80 and waxy can decrease with increased extrusion time, the initial temperature accelerate the degradation of starch. Moreover, the degradation rato of waxy is high than G80. It maybe due to the larger molecular size and branched structure of waxy.
     6. Effect of starch and wood flour on the bio- and thermal degradation of polylactic acid (PLA) was studied by composting under controlled conditions in accordance with AS ISO 14855 and TG respectively. TG-FTIR was used to investigate the effect of degraded products from these fillers on the thermal degradation of PLA. It was found that the biodegradation rate of PLA/starch blends and PLA/wood-flour composites were lower than that of pure cellulose but higher than that of pure PLA. Both starch and wood-flour can accelerate the thermal decomposition of PLA by releasing chemicals, in particular, those with polar groups, such as CO, CO_2, H_2O, C_2H_4O_2 and CH_2O, which act as chain scissors for PLA. The lower decomposition temperature of starch compared with that of wood-flour resulted in the lower decomposition temperature of PLA/starch blends compared with that of PLA/WF composites. In comparison with wood-flour, the smaller particle size of starch also accelerated the decomposition of PLA as it provided a larger contact interface with the PLA matrix, which enhanced its function.
引文
[1] Pandey JK, Reddy KR, Kumar AP, et al. An overview on the degradability of polymer nanocomposites. Polymer Degradation and Stability[J]. 2005, 88:234-50.
    [2] Pielichowski K, Njuguna J. Thermal Degradation of Polymeric Materials. Shropshire: Rapra Technology Limited; 2005.
    [3] Andersson T, Wesslén B, Sandstr?m J. Degradation of low density polyethylene during extrusion. I. Volatile compounds in smoke from extruded films. Journal of Applied Polymer Science[J]. 2002, 86:1580-6.
    [4] Liu HS, Xie FW, Yu L, et al. Thermal processing of starch-based polymers. Progress in Polymer Science[J]. 2009, 34:1348-68.
    [5] Liu W-C, Halley PJ, Gilbert RG. Mechanism of Degradation of Starch, a Highly Branched Polymer, during Extrusion. Macromolecules[J]. 2010, 43:2855-64.
    [6] McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresource Technology[J]. 2002, 83:47-54.
    [7] Tomasik P. starch: progress in structural studies, modifications and applications. Polish Society of Food Technologists; 2004.
    [8] Ricardo Acioli-Moura XSS. Thermal degradation and physical aging of poly(lactic acid) and its blends with starch. Polymer Engineering & Science[J]. 2008, 48:829-36.
    [9] Sin LT, Rahman W, Rahmat AR, et al. Determination of thermal stability and activation energy of polyvinyl alcohol-cassava starch blends. Carbohydrate Polymers[J]. 2011, 83:303-5.
    [10]陈佩.不同链/支比玉米淀粉的形态及其在有/无剪切力下糊化的研究.广州:华南理工大学; 2010.
    [11]刘宏生.玉米淀粉糊化和重结晶行为及其机理的研究.广州:华南理工大学; 2008.
    [12]谢丰蔚.淀粉及其与可降解聚酯共混物的流变性能研究.广州:华南理工大学; 2009.
    [13]薛涛.淀粉在剪切力作用下的糊化和相变过程的研究.广州:华南理工大学; 2008.
    [14] Moad G. Chemical modification of starch by reactive extrusion. Progress in Polymer Science[J]. 2011, 36:218-37.
    [15] Greenwood CT. The Thermal Degredation of Starch. Advances in Carbohydrate Chemistry and Biochemistry[J]. 1967, 22:483-515.
    [16] Zhong-min YR-gD. The Study Progress in Biosynthesis of Plant Starch. Journal of Anhui AgriSci[J]. 2007, 35:8791-3.
    [17] Morell MK, Myers AM. Towards the rational design of cereal starches. Current Opinion in Plant Biology[J]. 2005, 8:204-10.
    [18] Buléon A, Colonna P, Planchot V, et al. Starch granules: structure and biosynthesis. International Journal of Biological Macromolecules[J]. 1998, 23:85-112.
    [19] Bertocchi F, Paci M. Applications of High-Resolution Solid-State NMR Spectroscopy in Food Science. Journal of Agricultural and Food Chemistry[J]. 2008, 56:9317-27.
    [20] Tan I, Flanagan BM, Halley PJ, et al. A Method for Estimating the Nature and Relative Proportions of Amorphous, Single, and Double-Helical Components in Starch Granules by 13C CP/MAS NMR. Biomacromolecules[J]. 2007, 8:885-91.
    [21] Radosta S, Haberer M, Vorwerg W. Molecular Characteristics of Amylose and Starch in Dimethyl Sulfoxide. Biomacromolecules[J]. 2001, 2:970-8.
    [22] Kazarian SG, Chan KLA. Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochimica et Biophysica Acta (BBA) - Biomembranes[J]. 2006, 1758:858-67.
    [23] Bai Y, Shi Y-c, Wetzel DL. Fourier Transform Infrared (FT-IR) Microspectroscopic Census of Single Starch Granules for Octenyl Succinate Ester Modification. J Agric Food Chem[J]. 2009, 57:6443-8.
    [24] Wetzel DL, Shi Y-C, Schmidt U. Confocal Raman and AFM imaging of individual granules of octenyl succinate modified and natural waxy maize starch. Vibrational Spectroscopy[J]. 2010, 53:173-7.
    [25] Liu P, Chen L, Corrigan PA, et al. Application of Atomic Force Microscopy on Studying Micro- and Nano-Structures of Starch. International Journal of Food Engineering[J]. 2008, 4.
    [26] Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch - St?rke[J]. 2010, 9999:NA.
    [27] Vandeputte GE, Delcour JA. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers[J]. 2004, 58:245-66.
    [28] Gallant DJ, Bouchet B, Baldwin PM. Microscopy of starch: evidence of a new level of granule organization. Carbohydrate Polymers[J]. 1997, 32:177-91.
    [29] Salman H, Blazek J, Lopez-Rubio A, et al. Structure-function relationships in A and B granules from wheat starches of similar amylose content. Carbohydrate Polymers[J]. 2009, 75:420-7.
    [30] Chen P, Yu L, Chen L, et al. Morphology and microstructure of maize starches with different amylose/amylopectin content. Starch-Starke[J]. 2006, 58:611-5.
    [31] Glaring MA, Koch CB, Blennow A. Genotype-Specific Spatial Distribution of Starch MBioolmecauclreosm oilnec ultehse[ J ].S 2ta0r0c6h, 7:G23ra1n0u-2le0:.? A Combined CLSM and SEM Approach.
    [32] Chen P, Yu L, Simon G, et al. Morphologies and microstructures of cornstarches with different amylose-amylopectin ratios studied by confocal laser scanning microscope. Journal of Cereal Science[J]. 2009, 50:241-7.
    [33] Fannon JE, Hauber RJ, BeMiller JN. Surface Pores of Starch Granules. Cereal Chemistry[J]. 1992, 69:284-8.
    [34] Huber KC, BeMiller JN. Visualization of Channels and Cavities of Corn and Sorghum Starch Granules. Cereal Chemistry[J]. 1997, 74:537-41.
    [35] Huber KC, BeMiller JN. Channels of maize and sorghum starch granules. Carbohydrate Polymers[J]. 2000, 41:269-76.
    [36] Chung Y-L, Lai H-M. Molecular and granular characteristics of corn starch modified by HCl-methanol at different temperatures. Carbohydrate Polymers[J]. 2006, 63:527-34.
    [37] Benmoussa M, Suhendra B, Aboubacar A, et al. Distinctive Sorghum Starch Granule Morphologies Appear to Improve Raw Starch Digestibility. Starch - St?rke[J]. 2006, 58:92-9.
    [38] Kim H-S, Huber KC. Channels within soft wheat starch A- and B-type granules. Journal of Cereal Science[J]. 2008, 48:159-72.
    [39] Fannon JE, Shull JM, Bemiller JN. Interior Channels of Starch Granules. Cereal Chemistry[J]. 1993, 70:611-3.
    [40] Baldwin PM, Adler J, Davies MC, et al. High Resolution Imaging of Starch Granule Surfaces by Atomic Force Microscopy. Journal of Cereal Science[J]. 1998, 27:255-65.
    [41] Ohtani T, Yoshino T, Hagiwara S, et al. High-resolution Imaging of Starch Granule Structure using Atomic Force Microscopy. Starch - St?rke[J]. 2000, 52:150-3.
    [42] Gidley MJ, Bociek SM. Molecular organization in starches: a carbon 13 CP/MAS NMR study. Journal of the American Chemical Society[J]. 1985, 107:7040-4.
    [43] Liu Z, Chen S, Ouyang Z, et al. Study on the chain structure of starch molecules by atomic force microscopy. Journal of Vacuum Science & Technology B[J]. 2001, 19:111.
    [44] Zhongdong L, Peng L, Kennedy JF. The technology of molecular manipulation and modification assisted by microwaves as applied to starch granules. Carbohydrate Polymers[J]. 2005, 61:374-8.
    [45] Jenkins JPJ, Cameron RE, Donald AM. A iniversal feature in the structure of starch granules from different botanical sources. Starch-St?rch[J]. 1993, 45:417-20.
    [46] Oostergetel GT, Bruggen EFJv. The crystalline domains in potato starch granules are arranged in a helical fashion. Carbohydrate Polymers[J]. 1993, 21:7-12.
    [47] Jenkins PJ, Donald AM. The Effect of Acid Hydrolyis on Native Starch Granule Structure. Starch - St?rch[J]. 1997, 49:262-7.
    [48] Kozlov SS, Krivandin AV, Shatalova OV, et al. Structure of starches extracted from near-isogenic wheat lines - Part II. Molecular organization of amylopectin clusters. Journal of Thermal Analysis and Calorimetry[J]. 2007, 87:575-84.
    [49] Liu HS, Yu L, Xie FW, et al. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers[J]. 2006, 65:357-63.
    [50] Liu HS, Yu L, Chen L, et al. Retrogradation of corn starch after thermal treatment at different temperatures. Carbohydrate Polymers[J]. 2007, 69:756-62.
    [51] Liu P, Yu L, Wang X, et al. Glass transition temperature of starches with different amylose/amylopectin ratios. Journal of cereal science[J]. 2010, in press.
    [52] Liu XX, Yu L, Liu HS, et al. Thermal Decomposition of Corn Starch with Different Amylose/Amylopectin Ratios in Open and Sealed Systems. Cereal Chemistry[J]. 2009, 86:383-5.
    [53] Liu X, Yu L, Xie F, et al. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch - St?rke[J]. 2010, 62:139-46.
    [54] Xie FW, Yu L, Su B, et al. Rheological properties of starches with different amylose/amylopectin ratios. Journal of Cereal Science[J]. 2009, 49:371-7.
    [55] Tester RF, Karkalas J, Qi X. Starch - composition, fine structure and architecture. Journal of Cereal Science[J]. 2004, 39:151-65.
    [56] Manners DJ, Matheson NK. The fine structure of amylopectin. Carbohydrate Research[J]. 1981, 90:99-110.
    [57] Hizukuri S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydrate Research[J]. 1986, 147:342-7.
    [58] Hanashiro I, Abe J-i, Hizukuri S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohydrate Research[J]. 1996, 283:151-9.
    [59] Tomassetti M, Campanella L, Aureli T. Thermogravimetric analysis of some spices and commercial food products : Comparison with other analytical methods for moisture content determination (part 3). Thermochimica Acta[J]. 1989, 143:15-26.
    [60] Soliman AAA, EI-Shinnawy NA, Mobarak F. Thermal behaviour of starch and oxidized starch. Thermochimica Acta[J]. 1997, 296:149-53.
    [61] Aggarwal P, Dollimore D. The effect of chemical modification on starch studied using thermal analysis. Thermochimica Acta[J]. 1998, 324:1-8.
    [62] Guinesi LS, da Roz AL, Corradini E, et al. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochimica Acta[J]. 2006, 447:190-6.
    [63] Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch. Thermochimica Acta[J]. 1998, 319:17-25.
    [64] Aburto J, Alric I, Thiebaud S, et al. Synthesis, characterization, and biodegradability of fatty-acid esters of amylose and starch. Journal of Applied Polymer Science[J]. 1999, 74:1440-51.
    [65] Teramoto N, Motoyama T, Yosomiya R, et al. Synthesis and properties of thermoplastic propyl-etherified amylose. European Polymer Journal[J]. 2002, 38:1365-9.
    [66] Stojanovi? ?, Katsikas L, Popovi? I, et al. Thermal stability of starch benzoate. Polymer Degradation and Stability[J]. 2005, 87:177-82.
    [67] Xu YX, Dzenis Y, Hanna MA. Water solubility, thermal characteristics and biodegradability of extruded starch acetate foams. Industrial Crops and Products[J]. 2005, 21:361-8.
    [68] Lawal OS, Lechner MD, Kulicke WM. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source. Polymer Degradation and Stability[J]. 2008, 93:1520-8.
    [69] O'Connell C. The effects of methylparaben on the gelatinization and thermal decomposition of corn starch. Thermochimica Acta[J]. 1999, 340-341:183-94.
    [70] Thermo-kinetics study of MIM thermal de-binding using TGA coupled with FTIR and mass spectrometry.
    [71] Baker RR, Coburn S, Liu C, et al. Pyrolysis of saccharide tobacco ingredients:a TGA–FTIR investigation. J Anal Appl Pyrolysis[J]. 2005, 74:171-80.
    [72] Cervantes-Uc JM, Espinosa JIM, Cauich-Rodríguez JV, et al. TGA/FTIR studies of segmented aliphatic polyurethanes and their nanocomposites prepared with commercial montmorillonites. Polymer Degradation and Stability[J]. 2009, 94:1666-77.
    [73] Groenewoud WM, Jong Wd. The thermogravimetric analyser - coupled - Fourier transform infrared/mass spectrometry technique. Thermochimica Acta[J]. 1996, 286:341-54.
    [74] Rudnik E, Matuschek G, Milanov N, et al. Thermal stability and degradation of starch derivatives. Journal of Thermal Analysis and Calorimetry[J]. 2006, 85:267-70.
    [75] ?mkovic I, Jakabb E. Thermogravimetry/mass spectrometry study of weakly basic starch-based ion exchanger. Carbohydrate Polymers[J]. 2001, 45:53-39.
    [76] Zhang X, Golding J, Burgar I. Thermal decomposition chemistry of starch studied by 13C high-resolution solid-state NMR spectroscopyq. Polymer[J]. 2002, 43:5791-6.
    [77] Chiang BY, Johnson JA. Gelatinization of Starch in Extruded Products. Cereal Chemistry[J]. 1977, 54:436-43.
    [78] Dean K, Yu L, Wu DY. Preparation and characterization of melt-extruded thermoplastic starch/clay nanocomposites. Composites Science and Technology[J]. 2007, 67:413-21.
    [79] Xie FW, Liu HS, Chen P, et al. Starch Gelatinization under Shearless and Shear Conditions. International Journal of Food Engineering[J]. 2006, 2.
    [80] Yu L, Christie G. Microstructure and mechanical properties of orientated thermoplastic starches. Journal of Materials Science[J]. 2005, 40:111-6.
    [81] Su B, Xie FW, Li M, et al. Extrusion Processing of Starch Film. International Journal of Food Engineering[J]. 2009, 5:7.
    [82] Xie FW, Yu L, Liu HS, et al. Starch modification using reactive extrusion. Starch-Starke[J]. 2006, 58:131-9.
    [83] van den Einde RM, Akkermans C, van der Goot AJ, et al. Molecular breakdown of corn starch by thermal and mechanical effects. Carbohydrate Polymers[J]. 2004, 56:415-22.
    [84] van den Einde RM, Bolsius A, van Soest JJG, et al. The effect of thermomechanical treatment on starch breakdown and the consequences for process design. Carbohydrate Polymers[J]. 2004, 55:57-63.
    [85] Chinnaswamy R, Hanna MA. Macromolecular and Functional Properties of Native and Extrusion-Cooked Corn Starch. Cereal Chemistry[J]. 1990, 67:490-9.
    [86] Chaudhary AL, Torley PJ, Halley PJ, et al. Amylose content and chemical modification effects on thermoplastic starch from maize - Processing and characterisation using conventional polymer equipment. Carbohydrate Polymers[J]. 2009, 78:917-25.
    [87] Robin F, Engmann J, Pineau N, et al. Extrusion, structure and mechanical properties of complex starchy foams. Journal of Food Engineering[J]. 2010, 98:19-27.
    [88] Van Den Einde RM, Van Der Goot AJ, Boom RM. Understanding Molecular Weight Reduction of Starch During Heating-shearing Processes. Journal of Food Science[J]. 2003, 68:2396-404.
    [89] Brümmer T, Meuser F, van Lengerich B, et al. Effect of Extrusion Cooking on Molecular Parameters of Corn Starch. Starch - St?rke[J]. 2002, 54:1-8.
    [90] Chaudhary AL, Miler M, Torley PJ, et al. Amylose content and chemical modification effects on the extrusion of thermoplastic starch from maize. Carbohydrate Polymers[J]. 2008, 74:907-13.
    [91] Pushpadass HA, Kumar A, Jackson DS, et al. Macromolecular Changes in Extruded Starch-Films Plasticized with Glycerol, Water and Stearic Acid. Starch - St?rke[J]. 2009, 61:256-66.
    [92] Willett JL, Millard MM, Jasberg BK. Extrusion of waxy maize starch: melt rheology and molecular weight degradation of amylopectin. Polymer[J]. 1997, 38:5983-9.
    [93] Brümmer T, Meuser F, van Lengerich B, et al. Expansion and Functional Properties of Corn Starch Extrudates Related to their Molecular Degradation, Product Temperature and Water Content. Starch - St?rke[J]. 2002, 54:9-15.
    [94] Barron C, Bouchet B, Della Valle G, et al. Microscopical Study of the Destructuring of Waxy Maize and Smooth Pea Starches by Shear and Heat at Low Hydration. Journal of Cereal Science[J]. 2001, 33:289-300.
    [95] Averous L, Boquillon N. Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydrate Polymers[J]. 2004, 56:111-22.
    [96] Alvarez VA, Vazquez A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polymer Degradation and Stability[J]. 2004, 84:13-21.
    [97] Ge XC, Xu Y, Meng YZ, et al. Thermal and mechanical properties of biodegradable composites of poly(propylene carbonate) and starch-poly(methyl acrylate) graft copolymer. Composites Science and Technology[J]. 2005, 65:2219-25.
    [98] Soares RMD, Scremin FF, Soldi V. Thermal stability of biodegradable films based on soy protein and corn starch. Macromolecular Symposia[J]. 2005, 229:258-65.
    [99] Leblanc N, Saiah R, Beucher E, et al. Structural investigation and thermal stability of new extruded wheat flour based polymeric materials. Carbohydrate Polymers[J]. 2008, 73:548-57.
    [100] Ray D, Roy P, Sengupta S, et al. A Study of Dynamic Mechanical and Thermal Behavior of Starch/Poly(vinylalcohol) Based Films. Journal of Polymers and the Environment[J]. 2009, 17:49-55.
    [101] Wang ZF, Li SD, Fu X, et al. Thermal stability and mechanical properties of modified starch/NR composite. e-polymers[J]. 2010.
    [102] Vasques CT, Domenech SC, Severgnini VLS, et al. Effect of thermal treatment on the stability and structure of maize starch cast films. Starch-Starke[J]. 2007, 59:161-70.
    [103] Liu H, Yu L, Dean K, et al. Starch gelatinization under pressure studied by high pressure DSC. Carbohydrate Polymers[J]. 2009, 75:395-400.
    [104] Liu HS, Yu L, Simon G, et al. Effects of annealing on gelatinization and microstructures of corn starches with different amylose/amylopectin ratios. Carbohydrate Polymers[J]. 2009, 77:662-9.
    [105] Liu HS, Yu L, Simon G, et al. Effect of annealing and pressure on microstructure of cornstarches with different amylose/amylopectin ratios. Carbohydrate Research[J]. 2009, 344:350-4.
    [106] Liu P, Yu L, Liu HS, et al. Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polymers[J]. 2009, 77:250-3.
    [107] Yu L, Christie G. Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydrate Polymers[J]. 2001, 46:179-84.
    [108] Angellier H, Molina-Boisseau S, Belgacem MN, et al. Surface chemical modification of waxy maize starch nanocrystals. Langmuir[J]. 2005, 21:2425-33.
    [109] Chi H, Xu K, Wu X, et al. Effect of acetylation on the properties of corn starch. Food Chemistry[J]. 2008, 106:923-8.
    [110] Azevedo HS, Gama FM, Reis RL. In vitro assessment of the enzymatic degradation of several starch based biomaterials. Biomacromolecules[J]. 2003, 4:1703-12.
    [111] Bello-Perez LA, Ottenhof MA, Agama-Acevedo E, et al. Effect of Storage Time on the Retrogradation of Banana Starch Extrudate. Journal of Agricultural and Food Chemistry[J]. 2005, 53:1081-6.
    [112] Moghaddam L, Rintoul L, Halley PJ, et al. Infrared microspectroscopic mapping of the homogeneity of extruded blends: Application to starch/polyester blends. Polymer Testing[J]. 2006, 25:16-21.
    [113] Gaan S, Rupper P, Salimova V, et al. Thermal decomposition and burning behavior of cellulose treated with ethyl ester phosphoramidates: Effect of alkyl substituent on nitrogen atom. Polymer Degradation and Stability[J]. 2009, 94:1125-34.
    [114] Kamruddin M, Ajikumar P, Dash S, et al. Thermogravimetry-evolved gas analysis-mass spectrometry system for materials research. Bulletin of Materials Science[J]. 2003, 26:449-60.
    [115] Gidley MJ, Hanashiro I, Hani NM, et al. Reliable measurements of the size distributions of starch molecules in solution: Current dilemmas and recommendations. Carbohydrate Polymers[J]. 2010, 79:255-61.
    [116] Hoang N-L, Landolfi A, Kravchuk A, et al. Toward a full characterization of native starch: Separation and detection by size-exclusion chromatography. Journal of Chromatography A[J]. 2008, 1205:60-70.
    [117] Cao X, Sessa DJ, Wolf WJ, et al. Static and Dynamic Solution Properties of Corn Amylose in N,N-Dimethylacetamide with 3% LiCl. Macromolecules[J]. 2000, 33:3314-23.
    [118] Lin J-H, Chang Y-H. Molecular Degradation Rate of Rice and Corn Starches during Acid?Methanol Treatment and Its Relation to the Molecular Structure of Starch. Journal of Agricultural and Food Chemistry[J]. 2006, 54:5880-6.
    [119] Roger P, Bello-Perez LA, Colonna P. Contribution of amylose and amylopectin to the light scattering behaviour of starches in aqueous solution. Polymer[J]. 1999, 40:6897-909.
    [120] Han J-A, Lim S-T. Structural changes of corn starches by heating and stirring in DMSO measured by SEC-MALLS-RI system. Carbohydrate Polymers[J]. 2004, 55:265-72.
    [121] Wyatt PJ. Light scattering and the absolute characterization of macromolecules. Analytica Chimica Acta[J]. 1993, 272:1-40.
    [122] Bruno HZ. The Scattering of Light and the Radial Distribution Function of High Polymer Solutions Journal of Chemical Physics[J]. 1948, 16:1093-101.
    [123] Berry GC. Thermodynamic and Conformational Properties of Polystyrene. I. Light‐Scattering Studies on Dilute Solutions of Linear Polystyrenes Journal of Chemical Physics[J]. 1966, 44:4550-64.
    [124] S.Pikus. Small-angle X-ray scattering(SAXS) studies of the structure of starch and starch products. Fibers &Textiles in Eastern Europe[J]. 2005, 13:82-6.
    [125] Zhang J, Chen F, Liu F, et al. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocolloids[J]. 2010, 24:27-34.
    [126] Lopez-Rubio A, Flanagan BM, Shrestha AK, et al. Molecular rearrangement of starch during in vitro digestion: Toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules[J]. 2008, 9:1951-8.
    [127] Blazek J, Gilbert EP. Effect of Enzymatic Hydrolysis on Native Starch Granule Structure. Biomacromolecules[J]. 2010, 11:3275-89.
    [128] Thys RCS, Westfahl H, Nore?a CPZ, et al. Effect of the Alkaline Treatment on the Ultrastructure of C-Type Starch Granules. Biomacromolecules[J]. 2008, 9:1894-901.
    [129] Cameron RE, Donald AM. A small-angle X-ray scattering study of the annealing and gelatinization of starch. Polymer[J]. 1992, 33:2628-35.
    [130] Daniels DR, Donald AM. An improved model for analyzing the small angle x-ray scattering of starch granules. Biopolymers[J]. 2003, 69:165-75.
    [131] Xie FW, Yu L, Chen L, et al. A new study of starch gelatinization under shear stress using dynamic mechanical analysis. Carbohydrate Polymers[J]. 2008, 72:229-34.
    [132] Sato T, Sakai H, Sou K, et al. Static Structures and Dynamics of Hemoglobin Vesicle (HbV) Developed as a Transfusion Alternative. Journal of Physical Chemistry B[J]. 2009, 113:8418-28.
    [133] Vilaplana F, Gilbert RG. Characterization of branched polysaccharides using multiple-detection size separation techniques. Journal of Separation Science[J]. 2010, 33:3537-54.
    [134] Andersson M, Wittgren B, Wahlund K-G. Accuracy in Multiangle Light Scattering Measurements for Molar Mass and Radius Estimations. Model Calculations and Experiments. Analytical Chemistry[J]. 2003, 75:4279-91.
    [135] Ciesla K, Zoltowski T, Mogilevski LY. SAXS investigations of structureal-changes after gamma-ray irradiation of potato starch and starch suspensions. Starch-St?rch[J]. 1992, 44:419-22.
    [136] Suzuki T, Chiba A, Yarno T. Interpretation of small angle x-ray scattering from starch on the basis of fractals. Carbohydrate Polymers[J]. 1997, 34:357-63.
    [137] Waigh TA, Perry P, Riekel C, et al. Chiral Side-Chain Liquid-Crystalline Polymeric Properties of Starch. Macromolecules[J]. 1998, 31:7980-4.
    [138] Blazek J, Salman H, Rubio AL, et al. Structural characterization of wheat starch granules differing in amylose content and functional characteristics. Carbohydrate Polymers[J]. 2009, 75:705-11.
    [139] Yuryev VP, Krivandin AV, Kiseleva VI, et al. Structural parameters of amylopectin clusters and semi-crystalline growth rings in wheat starches with different amylose content. Carbohydrate Research[J]. 2004, 339:2683-91.
    [140] Frost K, Kaminski D, Kirwan G, et al. Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydrate Polymers[J]. 2009, 78:543-8.
    [141] Kizil R, Irudayaraj J, Seetharaman K. Characterization of Irradiated Starches by Using FT-Raman and FTIR Spectroscopy. Journal of Agricultural and Food Chemistry[J]. 2002, 50:3912-8.
    [142] Phillips DL, Xing J, Liu H, et al. Potential Use of Raman Spectroscopy for Determination of Amylose Content in Maize Starch. Cereal Chemistry[J]. 1990, 76:821-3.
    [143] Almeida M, Alves R, Nascimbem L, et al. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Analytical and Bioanalytical Chemistry[J]. 2010, 397:2693-701.
    [144] Dupuy N, Laureyns J. Recognition of starches by Raman spectroscopy. Carbohydrate Polymers[J]. 2002, 49:83-90.
    [145] Sevenou O, Hill SE, Farhat IA, et al. Organisation of the external region of the starch granule as determined by infrared spectroscopy. International Journal of Biological Macromolecules[J]. 2002, 31:79-85.
    [146] Dupuy N, Wojciechowski C, Ta CD, et al. Mid-infrared spectroscopy and chemometrics in corn starch classification. Journal of Molecular Structure[J]. 1997, 410-411:551-4.
    [147] Zhang P, Chen L, Li X, et al. Molecular Mass and Conformation of Corn Starches with Ddifferent Amylose/Amylopectin Ratios. Food science[J]. 2010, 19:157-60.
    [148] Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Progress in Polymer Science[J]. 2006, 31:576-602.
    [149] Perry PA, Donald AM. The Role of Plasticization in Starch Granule Assembly. Biomacromolecules[J]. 2000, 1:424-32.
    [150] Jovanovich G, A?ón MC. Amylose–lipid complex dissociation. A study of the kinetic parameters. Biopolymers[J]. 1999, 49:81-9.
    [151] Soares RMD, Lima AMF, Oliveira RVB, et al. Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polymer Degradation and Stability[J]. 2005, 90:449-54.
    [152] Vasques CT, Domenech SC, Severgnini VLS, et al. Effect of Thermal Treatment on the Stability and Structure of Maize Starch Cast Films. Starch/St?rke[J]. 2007, 59:161-70.
    [153] Maciejewski M. Computational aspects of kinetic analysis.Part B: The ICTAC Kinetics Project-the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochimica Acta[J]. 2000, 355:145-54.
    [154] Brown ME, Maciejewski M, Vyazovkin S, et al. Computational aspects of kinetic analysis Part A: The ICTAC kinetics project-data, methods and results. Thermochimica Acta[J]. 2000, 355:125-43.
    [155] Vyazovkin S. Computational aspects of kinetic analysis.Part C. The ICTAC Kinetics Project-the light at the end of the tunnel? Thermochimica Acta[J]. 2000, 355:155-63.
    [156] Yao F, Wu Q, Lei Y, et al. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability[J]. 2008, 93:90-8.
    [157] Rudnik E, Matuschek G, Milanov N, et al. Thermal properties of starch succinates. Thermochimica Acta[J]. 2005, 427:163-6.
    [158] Ruseckaite RA, Jiménez A. Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polymer Degradation and Stability[J]. 2003, 81:353-8.
    [159] Liu X, Yu L, Liu H, et al. In situ thermal decomposition of starch with constant moisture in a sealed system. Polymer Degradation and Stability[J]. 2008, 93:260-2.
    [160] GarcI, a-Pèrez M, Chaala A, et al. Co-pyrolysis of sugarcane bagasse with petroleum residue. Part I: thermogravimetric analysis. Fuel[J]. 2001, 80:1245-58.
    [161] Kharatyan SL, Chatilyan HA, Mukasyan AS, et al. Effect of heating rate on kinetics of high-temperature reactions: Mo-Si system. AIChE Journal[J]. 2005, 51:261-70.
    [162] Liu X, Yu L, Liu H, et al. Thermal decomposition of cornstarch with different amylose/amylopectin ratios in open and sealed systems Cereal chemistry[J]. 2009, In Press.
    [163] Galwey AK. Is the science of thermal analysis kinetics based on solid foundations?A literature appraisal. Thermochimica Acta[J]. 2004, 413:139-83.
    [164] Peterson JD, Vyazovkin S, Wight CA. Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene). Macromolecular Chemistry and Physics[J]. 2001, 202:775-84.
    [165] Gijsman P. Review on the thermo-oxidative degradation of polymers during processing and in service. e-polymers[J]. 2008, 65:1-34.
    [166] Scedil, Inodot, Acar l, et al. Thermal oxidative degradation kinetics and thermal properties of poly(ethylene terephthalate) modified with poly(lactic acid). Journal of Applied Polymer Science[J]. 2008, 109:2747-55.
    [167] Giustetto R, Wahyudi O, Corazzari I, et al. Chemical stability and dehydration behavior of a sepiolite/indigo Maya Blue pigment. Applied Clay Science[J]. In Press, Corrected Proof.
    [168] Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology[J]. 2009, 100:6496-504.
    [169] Várhegyi G, Czégény Z, Jakab E, et al. Tobacco pyrolysis. Kinetic evaluation of thermogravimetric-mass spectrometric experiments. Journal of Analytical and Applied Pyrolysis[J]. 2009, 86:310-22.
    [170] Simkovic I, Francis BA, Reeves JB. Pyrolysis gas chromatography mass spectrometry analysis of starch-based ion-exchangers. Journal of Analytical and Applied Pyrolysis[J]. 1997, 43:145-55.
    [171] Juhász M, Takahashi S, Fujii T. Temperature-resolved thermal analysis of cisplatin by evolved gas analysis-mass spectrometry. Journal of Analytical and Applied Pyrolysis[J]. In Press, Corrected Proof.
    [172] Fahmi R, Bridgwater AV, Thain SC, et al. Prediction of Klason lignin and lignin thermal degradation products by Py-GC/MS in a collection of Lolium and Festuca grasses. Journal of Analytical and Applied Pyrolysis[J]. 2007, 80:16-23.
    [173] Roschy A, Fischer K, Kleemann S, et al. Determination of cationic starches by Py-GC/MS. Wochenblatt Fur Papierfabrikation[J]. 2002, 130:490.
    [174] Chen Y, Wu X, Miao X, et al. Determination of the Degree of Substitution of Hydroxypropyl Guar Gum at C-6 by Pyrolysis-Gas Chromatography Spectrometry. Carbohydrate Polymers[J]. In Press, Accepted Manuscript.
    [175] Westphal C, Perrot C, Karlsson S. Py-GC/MS as a means to predict degree of degradation by giving microstructural changes modelled on LDPE and PLA. Polymer Degradation and Stability[J]. 2001, 73:281-7.
    [176] Gaan S, Mauclaire L, Rupper P, et al. Thermal degradation of cellulose acetate in presence of bis-phosphoramidates. Journal of Analytical and Applied Pyrolysis[J]. 2011, 90:33-41.
    [177] Wolkers WF, Oliver AE, Tablin F, et al. A Fourier-transform infrared spectroscopy study of sugar glasses. Carbohydrate Research[J]. 2004, 339:1077-85.
    [178] Ka?uráková, Wilson RH. Developments in mid-infrared FT-IR spectroscopy of selected carbohydrates. Carbohydrate Polymers[J]. 2001, 44:291-303.
    [179] Ka?urákováM, Mathlouthi M. FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydrate Research[J]. 1996, 284:145-57.
    [180] Pavlovic S, Brandao PRG. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz. Minerals Engineering[J]. 2003, 16:1117-22.
    [181] Wood LF, Mercier C. Molecular structure of unmodified and chemically modified manioc starches. Carbohydrate Research[J]. 1978, 61:53-66.
    [182] Veregin RP, Fyfe CA, Marchessault RH, et al. Characterization of the Crystalline A and B Starch Polymorphs and Investigation of Starch Crystallization by High-Resolution I3C CP/MAS NMR. Macromolecules[J]. 1986, 19:1030-4.
    [183] Imberty A, Buléon A, Tran V, et al. Recent Advances in Knowledge of Starch Structure. Starch - St?rke[J]. 1991, 43:375-84.
    [184] J.Scherirs, G.camino, W.Tumiatti. Overview of water evolution during the thermal degradation of cellulose. European Polymer Journal[J]. 2001, 37:933-42.
    [185] Pastorova I, Arisz PW, Boon JJ. Preservation of d-glucose-oligosaccharides in cellulose chars. Carbohydrate Research[J]. 1993, 248:151-65.
    [186] Pavlath AE, Gregorski KS. Atmospheric pyrolysis of carbohydrates with thermogravimetric and mass spectrometric analyses. Journal of Analytical and Applied Pyrolysis[J]. 1985, 8:41-8.
    [187] Gardiner D. The pyrolysis of some hexoses and derived di-, tri-, and poly-saccharides. Journal of the Chemical Society C: Organic[J]. 1966:1473-6.
    [188] Tomasik P, Wiejak S, Palasinski M, et al. The Thermal Decomposition of Carbohydrates. Part II. The Decomposition of Starch. Advances in Carbohydrate Chemistry and Biochemistry: Academic Press; 1989. p. 279-343.
    [189] Shafizadeh F, Susott RA, McGinnis GD. Pyrolysis of substituted phenyl [beta]--glucopyranosides and 2-deoxy-[alpha]--arabino-hexopyranosides. Carbohydrate Research[J]. 1972, 22:63-73.
    [190] Ciesielski W, Achremowicz B, Tomasik P, et al. Starch radicals. Part II: Cereals--native starch complexes. Carbohydrate Polymers[J]. 1997, 34:303-8.
    [191] Aguilera JM, Cadoche L, López C, et al. Microstructural changes of potato cells and starch granules heated in oil. Food Research International[J]. 2001, 34:939-47.
    [192] Soliman AAA, ElShinnawy NA, Mobarak F. Thermal behaviour of starch and oxidized starch. Thermochimica Acta[J]. 1997, 296:149-53.
    [193] Lluch AV, Felipe AM, Greus AR, et al. Thermal analysis characterization of the degradation of biodegradable starch blends in soil. Journal of Applied Polymer Science[J]. 2005, 96:358-71.
    [194] Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochimica Acta[J]. 1995, 258:145-59.
    [195] Aggarwal P, Dollimore D. A comparative study of the degradation of different starches using thermal analysis. Talanta[J]. 1996, 43:1527-30.
    [196] Shogren RL. Effect of moisture content on the melting and subsequent physical aging of cornstarch. Carbohydrate Polymers[J]. 1992, 19:83-90.
    [197] Ciesla K, Gwardys E, Zóltowski T. Changes of relative crystallinity of potato starch under gamma-irradiation. Starch-St?rch[J]. 1991, 43:251-3.
    [198] Majzoobi M, Farahnaky A. Comparison of the effects of extrusion cooking on some cereal starches. International Journal of Food Engineering[J]. 2010, 6:15 pp.- pp.
    [199] Marti A, Seetharaman K, Pagani MA. Rice-based pasta: A comparison between conventional pasta-making and extrusion-cooking. Journal of Cereal Science[J]. 2010, 52:404-9.
    [200] Galicia-García T, Martínez-Bustos F, Jiménez-Arevalo O, et al. Thermal and microstructural characterization of biodegradable films prepared by extrusion-calendering process. Carbohydrate Polymers[J]. 2011, 83:354-61.
    [201] Zhu LJ, Shukri R, de Mesa-Stonestreet NJ, et al. Mechanical and microstructural properties of soy protein - high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. Journal of Food Engineering[J]. 2010, 100:232-8.
    [202] Cai W, Diosady LL, Rubin LJ. Degradation of wheat starch in a twin-screw extruder. Journal of Food Engineering[J]. 1995, 26:289-300.
    [203] Xue T, Yu L, Xie FW, et al. Rheological properties and phase transition of starch under shear stress. Food Hydrocolloids[J]. 2008, 22:973-8.
    [204] Wang J, Yu L, Xie F, et al. Rheological properties and phase transition of cornstarches with different amylose/amylopectin ratios under shear stress. Starch - St?rke[J]. 2010, 62:667-75.
    [205] Babbar I, Mathur GN. Rheological properties of blends of polycarbonate with poly(acrylonitrile-butadiene-styrene). Polymer[J]. 1994, 35:2631-5.
    [206] Adebowale KO, Lawal OS. Functional properties and retrogradation behaviour of native and chemically modified starch of mucuna bean (Mucuna pruriens). Journal of the Science of Food and Agriculture[J]. 2003, 83:1541-6.
    [207] Bao J, Shen S, Sun M, et al. Analysis of Genotypic Diversity in the Starch Physicochemical Properties of Nonwaxy Rice: Apparent Amylose Content, Pasting Viscosity and Gel Texture. Starch - St?rke[J]. 2006, 58:259-67.
    [208] Shah BL, Selke SE, Walters MB, et al. Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide. Polymer Composites[J]. 2008, 29:655-63.
    [209] Zhang JF, Sun XZ. Mechanical and thermal properties of poly(lactic acid)/starch blends with dioctyl maleate. Journal of Applied Polymer Science[J]. 2004, 94:1697-704.
    [210] Ke TY, Sun SXZ, Seib P. Blending of poly(lactic acid) and starches containing varying amylose content. Journal of Applied Polymer Science[J]. 2003, 89:3639-46.
    [211] Yu L, Petinakis E, Dean K, et al. Enhancing Compatibilizer Function by Controlled Distribution in Hydrophobic Polylactic Acid/Hydrophilic Starch Blends. Journal of Applied Polymer Science[J]. 2010, In Press.
    [212] Pilla S, Gong S, O'Neill E, et al. Polylactide-pine wood flour composites. Polymer Engineering and Science[J]. 2008, 48:578-87.
    [213] Petinakis E, Yu L, Edward G, et al. Effect of Matrix–Particle Interfacial Adhesion on the Mechanical Properties of Poly(lactic acid)/Wood-Flour Micro-Composites. Journal of Polymers and the Environment[J]. 2009, 17:83-94.
    [214] Jamshidi K, Hyon SH, Ikada Y. Thermal characterization of polylactides. Polymer[J]. 1988, 29:2229-34.
    [215] Babanalbandi A, Hill D, Hunter D, et al. Thermal stability of poly(lactic acid) before and after &ggr;-radiolysis. Polymer International[J]. 1999, 48:980-4.
    [216] Lee S-H, Kim SH, Han Y-K, et al. Synthesis and degradation of end-group-functionalized polylactide. Journal of Polymer Science Part A: Polymer Chemistry[J]. 2001, 39:973-85.
    [217] Wang X, Hu Y, Song L, et al. Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Poly(lactic acid)/Starch Biocomposites. Industrial & Engineering Chemistry Research[J]. 2010, 50:713-20.
    [218] Nieddu E, Mazzucco L, Gentile P, et al. Preparation and biodegradation of clay composites of PLA. Reactive and Functional Polymers[J]. 2009, 69:371-9.
    [219] Navarro M, Ginebra MP, Planell JA, et al. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomaterialia[J]. 2005, 1:411-9.
    [220] Wu C-S. Characterizing Biodegradation of PLA and PLA-g-AA/Starch Films Using a Phosphate-Solubilizing-Bacillus Species. Macromolecular Bioscience[J]. 2008, 8:560-7.
    [221] Zhou Q, Xanthos M. Nanosize and microsize clay effects on the kinetics of the thermal degradation of polylactides. Polymer Degradation and Stability[J]. 2009, 94:327-38.
    [222] Wang RY, Wang SF, Zhang Y. Morphology, Rheological Behavior, and Thermal Stability of PLA/PBSA/POSS Composites. Journal of Applied Polymer Science[J]. 2009, 113:3095-102.
    [223] Wang N, Yu JG, Ma XF. Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polymer International[J]. 2007, 56:1440-7.
    [224] Tsuji H, Fukui I. Enhanced thermal stability of poly(lactide)s in the melt by enantiomeric polymer blending. Polymer[J]. 2003, 44:2891-6.
    [225] Li J, Zheng W, Li L, et al. Thermal degradation kinetics of g-HA/PLA composite. Thermochimica Acta[J]. 2009, 493:90-5.
    [226] Psomiadou E, Arvanitoyannis I, Biliaderis CG, et al. Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2. Carbohydrate Polymers[J]. 1997, 33:227-42.
    [227] Arvanitoyannis I, Psomiadou E, Biliaderis CG, et al. Biodegradable Films Made from Low Density Polyethylene (LDPE), Ethylene Acrylic Acid (EAA), PolyCaprolactone (PCL) and Wheat Starch for Food Packaging Applications: Part 3. Starch - St?rke[J]. 1997, 49:306-22.
    [228] Liu LS, Fishman ML, Hicks KB, et al. Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid). Journal of Agricultural and Food Chemistry[J]. 2005, 53:9017-22.
    [229] Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresource Technology[J]. 2009, 100:6496-504.
    [230] Vogel C, Siesler HW. Thermal Degradation of Poly(ε-caprolactone), Poly(L-lactic acid) and their Blends with Poly(З-hydroxy-butyrate) Studied by TGA/FT-IR Spectroscopy. Macromolecular Symposia[J]. 2008, 265:183-94.
    [231] Kopinke FD, Remmler M, Mackenzie K, et al. Thermal decomposition of biodegradable polyesters-II. Poly(lactic acid). Polymer Degradation and Stability[J]. 1996, 53:329-42.
    [232] Vogel C, Siesler HW. Thermal Degradation of Poly(ε-caprolactone), Poly(L-lactic acid) and their Blends with Poly(3-hydroxy-butyrate) Studied by TGA/FT-IR Spectroscopy. Macromolecular Symposia[J]. 2008, 265:183-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700