铜及其氧化物薄膜的磁控溅射法制备及对AP的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,液相法制备过渡金属或过渡金属氧化物应用于催化高氯酸铵(AP)的热分解已被广泛研究,但用磁控溅射法等物理气相沉积方法制备过渡金属及氧化物薄膜应用于AP热分解反应的研究还几乎未见报道。
     本文以99.99%高纯无氧铜为靶材,采用磁控溅射法制备铜薄膜,随后对其进行氧化处理得到铜氧化物薄膜。采用X射线衍射仪(XRD)、拉曼光谱仪(Raman)、原子力显微镜(AFM)、场发射扫描电子显微镜(FESEM)和台阶仪等测试手段,分析讨论了基底材料、溅射功率、溅射压强、沉积时间和氧化温度对铜及氧化物薄膜结构、形貌、成分和厚度的影响;研究结果表明基底材料会影响薄膜表面晶粒结构的变化:沉积时间不仅影响薄膜镀层厚度,还可以看出薄膜表面颗粒结构由球形向正八面体结构转变;溅射压强和溅射功率影响薄膜沉积速率、薄膜表面晶粒粒径和粗糙度的大小;氧化处理温度的不同造成薄膜的成分、颗粒和粗糙度有明显差异。
     将制备的铜及氧化物薄膜以一定比例添加在高氯酸铵中,通过差示扫描量热仪(DSC)分析不同含量、不同制备条件及不同成分的铜及氧化物薄膜对高氯酸铵热分解性能的影响,研究表明,铜薄膜对AP的高低温分解阶段都有显著的催化效果,大幅度降低AP的高低温分解温度,低温分解温度最低降至270℃,高温分解温度最低降至350℃,特别是,添加铜薄膜时AP低温分解阶段的放热峰尖锐陡直;添加铜价氧化物薄膜也增加了AP的表观分解热,其中效果最好的达到1212.98J·g-1,而纯AP的只有563.74J·g-1。
     另外,用热质联用仪(TG-MS)检测添加或未添加铜薄膜时AP高低温分解阶段产生的气体产物,产物分别有H2O、NH3、O2、NO和N2O,进而初步探讨铜及氧化物薄膜对AP热分解的催化作用机理。
Compared to the liquid method, which is widely used to prepare transition metals or transition metal oxides on the thermal decomposition of ammonium perchlorate (AP), Physical Vapor Deposition (eg.magnetron sputtering technology) has scarely been reported so far.
     In this paper, copper thin films were prepared form 99.99% high purity copper target by magnetron sputtering technology, and then calcined to CuxO(x=1,2) thin films. The structure, morphology and thickness of Cu thin films were characterized by X-ray diffraction (XRD), Raman spectrometer (Raman), Atomic force microscopy (AFM), Field emission scanning electron microscopy (FESEM) and Step devices, respectively. We discussed the substrate material, sputtering power, sputtering pressure, deposition time and calcining temperature on the effect of Cu films structure, morphology, grain size, ingredient and thickness. The results indicated that the substrate material influenced the crystal structure of Cu films; the deposition time not only affected the film coating thickness, but also the film microscopy structure was changed from spherical grains to octahedral grains; the sputtering pressure and the sputtering power exhibited the different film surface grain size, roughness and deposition rate; furthermore, the calcining temperature caused the difference film competition and surface roughness.
     Cu and CuxO(x=1,2) thin films with a certain proportion were mixed in the ammonium perchlorates. The different preparation condition, content and composition of Cu and CuxO(x=1,2) thin films on the AP thermal decomposition were studied via Differential scanning calorimeter (DSC). It was showed that the presence of copper films had obviously catalytic effect on the thermal decomposition of AP, decreased the best low and high temperature exothermic peaks to about 270℃and 350℃respectively, and increased the heat release of AP to 1212.98J·g-1 greatly compared with 563.74J·g-1 of pure AP. Addition of Cu thin films led to the low temperature stage exothermic peak of AP becoming steep significantly.
     In addition, Using Thermal gravity and Mass spectrometer (TG-MS), gaseous products of the high and low temperature decomposition stages of pure AP and adding Cu films to AP were measured separately, all including H2O, NH3, O2, NO and N2O; and the mechanism of AP thermal decomposition was studied preliminaryly.
引文
[1]Lu K. Nano crystalline metals crystallized from amorphous solids:nanocrystallization, structure and properties[J]. Materials Science and Engineering R,1996,16(4):161-221
    [2]张梅,陈焕春,杨绪杰,等.纳米材料的研究现状及展望[J].导弹与航天运载技术,2000,3:11-16
    [3]陈光华,邓金祥.纳米薄膜技术与应用[M].北京:化学工业出版社,2004
    [4]刘芳.纳米材料的结构与性质[J].光谱实验室,2011,28(2):735-738
    [5]Koshida, N., Matsumoto N.. Fabrication and quantum properties of nano structured silicon [J]. Material science and engineering R,2003,40(5):169-205
    [6]Berger S., Porat R., Rosen R.. Nanocrystalline materials:a study of wc-based hard metals [J].Progress in Materials Science,1997,42(1):311-320.
    [7]Tjong S.C., Chen H.. Nanocrystalline materials and coatings[J]. Materials Science and Engineering R,2004,45(1):1-88
    [8]周磊,赵文宽,方幼龄.液相沉积法制备光催化活性Ti02薄膜[J].应用化学,2002,19(10):919-922
    [9]徐必智.纳米材料组成及其应用[J].山西师范大学学报(自然科学版):研究生论文专刊,2011,25:44-46
    [10]张建夫,任凯,庄保东.纳米材料的研究进展[J].周口师范学报,2011,28(2):71-74
    [11]曾琦斐,谭荣喜,王贵华.纳米材料及其研究进展[J].湖南环境职业技术学院学报,2010,16(1):1-4
    [12]吴桂芳,宋学平,王荣,等.溅射硅基铜膜厚度与应力关系研究[J].真空电子术,2003,3:35-38
    [13]范夕萍,王霞,刘子如,等.纳米Cu粉对HMX和RDX热分解的催化作用[J].含能材料,2005,13(5):284-287
    [14]刘磊力,李凤生,杨毅,等.纳米铜粉对高氯酸铵热分解的影响[J].无机化学学报,2005,21(10):1525-1530
    [15]Bijani S., Gabas M., Martinez L., et al. Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries [J]. Thin Solid Films, 2007,515(13):5505-5511
    [16]Anandan S., Wen X., Yang S.. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells[J]. Material Chemistry Physics,2005,93(1):35-40
    [17]Chowdhuri A., Sharma P., Gupta V., et al. H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands[J]. Journal of Applied Physics,2002,92(4): 2172-2180
    [18]Ortiz J. R., Ogura T., Valtierra J. M., et al. A catalytic application of Cu2O and CuO films deposited over fiberglass [J]. Applied Surface Science,2001,174(3):177-184
    [19]Hsieh C. T., Chen J. M., Lin H. H., et al. Field emission from various CuO nano-structures[J]. Applied Physics Letter,2003,83:3383-3385
    [20]孙杰,高斐,权乃承,等.Cu2O薄膜的制备方法[J].材料开发与应用,2009,8:93-96
    [21]唐一文,陈志钢,张丽莎,等.纳米Cu2O/TiO2异质结薄膜电极的制备和表征[J].无机材料学报,2006,21(2):453-458
    [22]刘军,郝晓刚,李洪辉,等.Cu2O薄膜的制备及其光(电)催化降解甲基橙性能研究[J].太原科技大学学报,2009,30(5):432-435
    [23]朱俊武,陈海群,谢波,等.纳米Cu2O的制备及其对高氯酸铵热分解的催化性能[J]催化学报,2004,25(8):637-640
    [24]Marabelli F., Parravicini G. B., Drioli F. S.. Optical gap of CuO[J]. Physics Review B 1995,52:1433-1436
    [25]Nair M. T. S., Guerrero L., Arenas O. L., et al. Chemically deposited copper oxide thin films:structural, optical and electrical characteristics [J]. Applied Surface Science,1999, 150(1):143-151
    [26]Oral A. Y., Mensur E., Aslan M. H., et al. The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties[J]. Material Chemisty Physics,2004,83(1):140-144
    [27]Wijesundera R. P., Hidaka M., Koga K., et al. Growth and characterrisation of potentiostatically electrodeposited Cu2O and Cu thin films[J]. Thin Solid Films,2006, 500 (1):241-246
    [28]Reddy A. S., Uthanna S., Reddy P. S. Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures[J]. Applied Surface Science,2007,253(12): 5287-5292
    [29]Kaur M. P., Muthe K., Despande S. K., et al. Growth and branching of CuO nanowires by thermal oxidation of copper[J]. Journal of Crystal Growth,2006,289(2):670-675
    [30]Singh N. B., Ojha A. K. Formation of copper oxide through NaNO3-KNO3 eutectic melt and its catalytic activity in the decomposition of ammonium perchlorate [J]. Thermo-chimica Acta,2002,390:67-72
    [31]陈伟凡,李凤生,刘建勋,等.纳米Co3O4的制备及其对高氯酸铵热分解的催化性能[J].催化学报,2005,12(26):1073-1077
    [32]衡秋丽,肖峰,骆建敏,等.纳米CuO:不同形貌的制备及对高氯酸铵热分解催化性能[J].无机化学学报,2009,25(2):359-363
    [33]顾培夫.薄膜技术[M].杭州:浙江大学出版社,1990
    [34]尹敏琳.溶胶-凝胶法制备纳米材料[J].陕西能源职业技术学院,2009,4(2):14-17
    [35]张健泓,陈优生.溶胶-凝胶法的应用研究[J].广东化工,2008,35(179):47-49
    [36]武志刚,高建峰.溶胶-凝胶法制备纳米材料的研究进展[J].精细化工,2010,27(1):21-25
    [37]乔振亮,马铁成.溶胶凝胶法制备氧化亚铜薄膜及其工艺条件[J].大连轻工业学院学报,2004,23(1):4-7
    [38]王增福,关秉羽,杨太平.使用镀膜技术[M].北京:电子工业出版社,2008
    [39]程开福,刘心莲.电子蒸发技术[J].电子工业专用设备,1991,29(1):36-43
    [40]沈鸿烈,沈勤我,严健生,等.电子束蒸发法制备Co/Cu多层膜中巨磁电阻效应的研究[J].功能材料与器件学报,3(4):229-235
    [41]刘高斌,王新强,冯庆,等.电子束蒸发制备CuAlO2透明导电膜及光学性质[J].功能材料,2007,38(12):1941-1943
    [42]杨西,杨玉华.化学气相沉积技术的研究与应用进展[J].甘肃水利水电技术,2008,44(3):211-213
    [43]郑伟涛,薄膜材料与薄膜技术(第二版)[M].北京:化学工业出版社,2007
    [44]茅敦民,连志睿,金忠翓,等.激光化学气相沉积法制备铜膜的性能与形态分析[J].量子电子学,1995,12(2):169-173
    [45]唐伟忠.薄膜材料制备原理、技术及应用(第2版)[M].北京:冶金工业出版社,2003
    [46]田民波.薄膜材料与薄膜技术[M].北京:清华大学出版社,2006
    [47]雒向东,罗崇泰.退火态Cu膜表面形貌的分析特征[J].电子显微学报,2009,28(3):209-213
    [48]Kah Yoong Chan, Bee-San Teo. Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique [J].Microelectronics Journal,2006,37:1064-1071
    [49]余凤斌,朱德明,夏祥华.电镀铜薄膜界面结合强度及氧化性能的研究[J].绝缘材料,2009,42(1):63-69
    [50]马联飞.浅述丝网印刷发展史及其技术工艺[J].浙江工商职业技术学院学报,2007,6(3),48-49
    [51]郑炳扬.丝网印刷法制作铜标牌的方法及优点[J].丝网印刷,1995,3:6-7
    [52]谢廉忠,李卓英.厚膜铜导体的工艺研究[J].电子元件材料,1992,11(1):24-26
    [53]Yanhu Wei, Steven Chen, Bartlomiej Kowalczyk, et al. Synthesis of Stable, Low-Dispersity Copper Nanoparticles and Nanorods and Their Antifungal and Catalytic Properties[J]. J. Phys. Chem C,2010,114:15612-15616
    [54]陈爱四,李凤生,马振叶,等.纳米CuO/AP复合粒子的制备及催化性能研究[J].固体火箭技术,2004,27(2),123-140
    [55]杨邦朝,王文生.薄膜物理与技术[M].成都:电子科技大学出版社,1994
    [56]麻莳立男著,陈昌存,李兆玉等译.薄膜技术基础[M].北京:电子工业出版社,1998
    [57]曲新喜,过壁君.薄膜物理[M].北京:电子工业出版社,1994.1-48
    [58]孙洪强,徐宇新.台阶仪[J].导航与控制,2005,4:46-47
    [59]朱小平,王蔚晨,杜华,等.提升探针式台阶仪计量性能的研究与应用[J].计量技术,2007,3:39-41
    [60]李帅鲜,高启楠.激光拉曼光谱的发展历史、原理以及在催化领域的应用[J].科技咨询,2008,18:206-207
    [61]Inder Pal, Singh Kapoor, Pratibha Srivastava, et al. Nanocrystalline Transition Metal Oxides as Catalysts in the Thermal Decomposition of Ammonium Perchlorate[J]. Propellants Explos, Pyrotech,2009,34,351-356
    [62]陆昌伟,陈云仙,奚同庚.质谱热分析在材料研究中的应用[J].化学世界,2000,4:181-184
    [63]Zongxue Yu, Yuxi Sun, Wenxian Wei, et al. DSC/TG-MS Study on in Situ Catalytic Thermal Decomposition of Ammonium Perchlorate over CoC2O4[J]. Chinese Journal of Catalysis,2009,1(30):19-23
    [64]Wenxian Wei, Bingbing Cui, Xiaohong Jiang, et al. The catalytic effect of NiO on thermal decomposition of nitrocellulose[J]. J Therm Anal Calorim,2010,102:863-866
    [65]薛晨阳,张文东.半导体薄膜光谱学[M].北京:科学出版社,2008.1-2
    [66]Reddya A. S, Parka H. H., Reddy V. S., et al. Effect of sputtering power on the physical properties of dc magnetron sputtered copper oxide thin films [J]. Materials Chemistry and Physics,2008,110:397-401
    [67]Jing Cheng Lin, Chiapyng Lee. Nucleation and growth of Cu thin films on silicon wafers deposited by radio frequency sputtering[J]. Thin Solid Films,1997,307,96-99
    [68]张会平.纳米铜及氧化(亚)铜微观结构及性能[D].长春:吉林大学,2007
    [69]Papadimitropoulos G., Vourdas N., Vamvakas V. E., et al. Optical and structural properties of copper oxide thin films grown by oxidation of metal layers [J]. Thin Solid Films,2006,515,2428-2432
    [70]杜虹,赵淑贤,雷蕾.纳米金属粉催化AP热分解研究[J].内蒙古大学学报(自然科学版),2009,40(4):419-424
    [71]李疏芬,江至,赵凤起,等.纳米金属粉对高氯酸铵热分解动力学的影响[J].化学物理学报,2004,17(5):623-628
    [72]余宗学.过度金属氧化物对高氯酸铵催化热分解的研究[D].南京:南京理工大学,2009
    [73]谈玲华,李凤生.纳米铜粉的制备及其对高氯酸铵热分解催化性能的研究[J].南京工程学院学报(自然科学版),2005,3(1):6-10
    [74]刘磊力,李凤生,谈玲华,等.纳米金属粉对高氯酸铵热分解特性的影响[J].应用化学,2004,21(5):488-492
    [75]罗元香,陆路德,汪信,等.纳米级过渡金属氧化物对高氯酸铵催化性能的研究[J].含能材料,2002,10(4):148-152
    [76]谈玲华.纳米金属粉的制备及其催化性能研究[D].南京:南京理工大学,2004
    [77]So S. K., Franchy R., Ho W. Photodesorption of NO from Ag (111) and Cu (111)[J]. The Journal of Chemical Physics 1991,95(1385)
    [78]刘磊力.纳米金属和复合金属粉的制备及其催化性能的研究[D].南京:南京理工大学,2004
    [79]江治,李疏芬.纳米金属粉的制备及特性[J].固体火箭技术,2001,24(4):41-45
    [80]段红珍,蔺向阳,徐磊,等.纳米核壳金属粉的制备及对高氯酸铵的热分解效应[J].稀有金属材料与工程,2007,36(10):1878-1880
    [81]黄艳辉,王聪,李海燕.高效氧化亚铜/多壁碳纳米管亚微米复合球的制备及其性能研究[J].厦门大学学报(自然科学版),2011,50(4):651-655
    [82]陈爱四,李凤生,马振叶,等.纳米CuO/AP复合粒子的制备及催化性能研究[J].固体火箭技术,2004,27(2):123-140
    [83]Lijuan Chen, Liping Li, Guangshe Li. Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate[J]. Journal of Alloys and Compounds,2008,464,532-536
    [84]Boldyrev V. V. Thermal decomposition of ammonium perchlorate[J]. Thermochimica Acta,2006 443,1-36
    [85]陈莉芬.草酸盐及尖晶石型复合氧化物对AP热分解的催化作用[D].南京:南京理工大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700