POSS修饰的高生物相容性CdTe和CdSeTe荧光量子点的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体荧光量子点相比于传统有机染料具有许多独特的光学特性,如尺寸可调的荧光发射波长、激发谱宽而连续、荧光发射谱窄而对称、荧光量子产率高、荧光寿命长、光稳定性好等,这些性质使得量子点作为一种新型的荧光探针和标记物,在化学分析及生物医学成像领域的应用日益广泛。Ⅱ-Ⅵ族半导体量子点是其中最具代表性的重要材料,有关其研究主要集中在水相制备具有高荧光效率的、光稳定性好、高生物相容性的量子点,同时通过对量子点进行适当的表面修饰,可以有效改善其表面性质并能保护量子点使其具有更好的光稳定性,同时抑制有毒Cd2+离子的泄露,降低其毒性。由于生物组织对近红外发光的量子点(650-900nm)光吸收和散射效应均最小,因此近红外发光可在生物组织中达到较大的穿透深度,并且可有效避免生物体自发荧光对外源荧光信号的干扰,提高细胞成像的质量。因此,合成高质量的近红外发光量子点具有重要的意义。
     本论文的研究工作主要是以水相法合成多面体低聚倍半硅氧烷(POSS)修饰的CdTe量子点和近红外发射的CdSeTe三元合金量子点,研究了POSS-CdTe量子点作为荧光探针对金属Cu2+离子的分析检测,同时我们还系统研究了POSS修饰的CdTe和CdSeTe量子点的细胞毒性,并将其作为荧光探针初步应用于细胞标记。论文开展了以下工作:
     1.采用水相合成方法,以8-巯丙基POSS (Octa-mercaptopropyl POSS, OM-POSS)和N-乙酰-L-半胱氨酸(NAC)作修饰剂合成了高质量的CdTe量子点,得到的量子点粒径分布均匀,分散性好,荧光量子产率最高可达95%。研究了前驱体溶液的pH值、NAC/Cd比例和Cd/Te比例对量子点的生长和光学性质的影响:经OM-POSS修饰后,量子点的生长速度变慢,这与多巯基的OM-POSS与Cd2+离子形成了更稳定的络合物有关。此外,我们制备的POSS-CdTe量子点还具有非常高的稳定性。
     2.基于POSS-CdTe量子点的荧光淬灭效应,发展了一种探测金属Cu2+离子的新方法,并讨论了pH值、量子点浓度等条件对体系荧光强度和探测灵敏度的影响。结果表明,POSS-CdTe量子点作为荧光探针对Cu2+离子的检测具有低的检出限和高的灵敏度,并且有很好的选择性。在1×10-8mol L-1-1×10-6mol L-1浓度范围内POSS-CdTe量子点的荧光淬灭程度与Cu2+离子浓度存在很好的线性关系,回归方程为F0/F=0.68724+5.52783[Cu2+],探测限LOD为2.3×10-9mol L-1。我们还比较了CdTe量子点和POSS-CdTe量子点的探测灵敏度,通过变温实验确定了量子点静态淬灭的探测机理,并将POSS-CdTe量子点用于实际样品的检测分析。
     3.系统研究了POSS-CdTe量子点对SiHa细胞和MC3T3-E1细胞的毒性效应和标记应用。结果表明,经OM-POSS修饰后,量子点的细胞毒性可有效降低,而目.由共聚焦荧光图像可以发现,POSS-CdTe量子点更容易通过脂质细胞膜而进入细胞,这与POSS-CdTe量子点具有的两亲性质有关。我们进一步讨论了量子点尺寸对SiHa细胞活性的影响,结果表明,随着量子点尺寸增加,其表现出的细胞毒性呈减小趋势。
     4.利用水相法合成了8-氨丙基POSS (Octa-aminopropyl POSS, OA-POSS)修饰的近红外发光CdSeTe三元合金量子点,研究了量子点的能级结构和组分之间的光学弯曲效应,以及pH值、Cd/Te比例等条件对量子点生长的影响,并对其微观结构和光学性质进行了分析表征。合成的量子点粒径均匀,分散性好,发射峰位在681nm的POSS-CdSeTe量子点的绝对荧光量子产率为26.4%。利用SiHa细胞研究了POSS-CdSeTe量子点对细胞的毒性效应和标记作用,结果表明,经OA-POSS修饰后,CdSeTe量子点的细胞毒性大幅度降低;激光共聚焦图片表明POSS-CdSeTe量子点成功进入SiHa细胞实现了细胞标记。
Quantum dots (QDs) developed in recent years have attracted extensive attention since they offer substantial advantages over organic dyes, including size-tunable optical property, broad absorption, narrow emission, excellent photoluminescence efficiency, long fluorescence lifetime and high photochemical stability. These advantages make QDs an ideal fluorescent sensor for chemical or biological assays and real time, long term biomedical labeling. Ⅱ-Ⅵ group semiconductor QDs represent one of the most important types of nanomaterials. The aqueous synthesis route for QDs is relatively simpler, cheaper, less toxic and more environmentally friendly than the organometallic synthetic route, and the resulting QDs are water-soluble, also with high PLQYs, excellent photostability and biocompatibility, which make them convenient for the biological applications. QDs coated by capping ligands with their surrounding surface groups can obtain good biocompatibility since the release of Cd2+was effectively inhibited, and also retain their unique photophysical properties. The proper surface modification is needed to obtain desired functionality and improve photoluminescence response of QDs to some metal ions or molecules.
     A new and exciting research avenue for QDs is their applications as optical probes for imaging of cells and tissue. As to biological optical imaging, the near-infrared (NIR)-emitting window is appealing because of the low tissue absorption and scattering effects in the emission range (650-900nm). This allows penetration of excitation and fluorescence photons deep into biological samples with reduced interaction and photodamage to the surrounding tissues, allowing fluorescence imaging depths on the order of centimeters. The near-infrared imaging is much prior to the visible light for biological applications.
     In this paper, water soluble octa-mercaptopropyl POSS (OM-POSS) modified CdTe QDs have been successfully synthesized and employed as a novel fluorescent sensor for optical recognition of Cu2+in an aqueous medium. Their cytotoxicity and availability for cellular imaging in biomedical field were also studied. The near-infrared emitting CdSeTe QDs with octa-aminopropyl POSS (OA-POSS) capping were successfully synthesized and applied to SiHa cell imaging. The main contents are summarized as follows.
     1. OM-POSS coated CdTe QDs with high fluorescence QYs were successfully synthesized in aqueous solution. TEM images reveal that these nanoparticles appear as spherical with excellent monodispersity. The relative photoluminescence quantum yield of the POSS-CdTe QDs was estimated to be95%using Rhodamine6G (PLQY95%) as reference. Temporal evolution of PL emitting wavelength and QYs of CdTe QDs growth under varied pH values, Cd/Te molar ratios and NAC/Cd molar ratios were studied. The growth rate decreases with the modification of OM-POSS due to its numerous mercapto groups. The POSS-CdTe QDs exhibit significantly good performance after two hours of UV exposure, indicating its excellent photostability.
     2. The POSS-CdTe QDs have been employed as a novel fluorescent sensor for optical recognition of Cu2+in an aqueous medium. The fluorescence sensor for Cu2+is based on fluorescence quenching of the POSS-CdTe QDs. The selective quenching effect can be explained by the competitive binding of POSS capping layers between CdTe QDs and metal ions present in the solution. Fluorescence intensities of the POSS-CdTe QDs in PBS buffer solution at different pH values were studied. Stern-Volmer plots of different POSS-CdTe QDs concentrations were also investigated. Under optimum conditions, the detection limit for this sensing system is2.3×10-9mol L-1. The detection sensitivity for Cu2+is increased greatly with the capping of OM-POSS on CdTe QDs than the N AC-CdTe QDs. The Stern-Volmer plots at different temperatures show that POSS-CdTe QDs fluorescence was quenched by Cu2+through a static quenching mechanism. Furthermore, the practical utility of the POSS-CdTe QDs has been demonstrated by determination of trace Cu2+in water samples, obtaining satisfactory results with the standard addition method.
     3. It is demonstrated that the POSS coating on CdTe core QDs confers it good bio compatibility, which is an important feature for cell labeling in the field of biomedicine. The SiHa cells and mouse preosteoblast cells MC3T3-E1were used to evaluate cytotoxicity of the as-prepared QDs. In comparison with CdTe QDs, the POSS-CdTe QDs show lower cytotoxicity under the same conditions. The OM-POSS coating can effectively inhibit the release of Cd2+and protect the QDs from aggregating caused by photobleaching. Moreover, large number of mercapto groups on OM-POSS can provide protection against QD-induced ROS stress and effectively prevent the decrease in cell viability. Confocal fluorescence images demonstrate that the QDs were internalized into the cells via endocytosis. The subcellular localization of POSS-CdTe QDs was found to depend upon QDs size. POSS-CdTe QDs are more easily taken up by cells than CdTe QDs due to its surface coating with amphiphilic moieties, which allows rapid intracellular uptake across the lipophilic cell membranes. The POSS-CdTe QDs allows rapid intracellular uptake, enabling the use of lower concentrations of QDs for an overall reduced toxicity.
     4. The near-infrared emitting CdSeTe QDs with OA-POSS capping were successfully synthesized in aqueous solution. Temporal evolution of PL emitting wavelength and QYs of CdSeTe QDs growth under varied pH values, Cd/Te molar ratios and nonlinear composition effect were studied. TEM image reveals that these nanoparticles appear as spherical with excellent monodispersity. The absolute photoluminescence quantum yield of the POSS-CdTe QDs with681nm emitting wavelength was tested to be26.4%on Edinburgh FS-920fluorescence spectrometer. The SiHa cells were used to evaluate cytotoxicity of the as-prepared QDs. In comparison with CdSeTe QDs, the OA-POSS modified CdSeTe QDs show lower cytotoxicity under the same conditions. Confocal fluorescence images demonstrate that the near infrared emitting POSS-CdSeTe QDs were successfully internalized into the cells via endocytosis.
引文
[1]T. Rajh, O. I. Micic and A. J. Nozik, Synthesis and characterization of surface-modified colloidal CdTe quantum dots, J. Phys. Chem,1993,97, 11999-12003.
    [2]M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science,1998,281, 2013-2016.
    [3]W. C. W. Chan and S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,1998,281,2016-2018.
    [4]张立德,牟季美著,纳米材料和纳米结构,北京:科技出版社,2001。
    [5]V. I. Klimov, Nanocrystal quantum dots:from fundamental photophysics to multicolor lasing, Los Alamos Sci,2003,28,214-220.
    [6]D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture, Nano Lett., 2001,1,207-211.
    [7]P. Ball and L. Garwin, Science at the atomic scale, Nature,1992,355,761-762.
    [8]顾宁,付德刚著,纳米技术与应用,第一版,人民邮电出版社,2002,14-45。
    [9]B. O. Dabbousi, J. Rodriguez-viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G Bawendi, (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem B,1997,101,9463-9475.
    [10]D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature, 1997,389,699-701.
    [11]M. Y. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach and H. Weller, Electro luminescence of different colors from polycation/CdTe nanocrystal self-assembled films, J. Appl. Phys.,2000,87,2297-2302.
    [12]N. P. Gaponik, D. V. Talapin, A. L. Rogach and A. Eychmuller, Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications, J. Mater. Chem,2000,10,2163-2166.
    [13]S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Electroluminrscence from single monolayers of nanocrystals in organic molecular, Nature,2000,420, 800-803.
    [14]P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer, Nano Lett.,2007,7,2196-2200.
    [15]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes, J. Phys. Chem. B,2002,106, 7177-7185.
    [16]F. Pinaud, D. King, H. P. Moore and S. Weiss, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides, J. Am. Chem Soc.,2004,126,6115-6123.
    [17]Y. F. Chen and Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Anal. Chem,2002,74,5132-5138.
    [18]Y. Q. Hao, L. Liu, Y. F. Long, J. X. Wang, Y. N. Liu and F. M. Zhou, Sensitive photo luminescent detection of Cu2+ in real samples using CdS quantum dots in combination with a Cu2+-reducing reaction, Biosens. Bioelectron.,2013,41, 723-729.
    [19]Y. Y. Shen, L. L. Li, Q. Lu, J. Ji, R. Fei, J. R. Zhang, E. S. Abdel-Halim and J. J. Zhu, Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu(II), Chem. Commun., 2012,48,2222-2224.
    [20]I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.,2005,4,435-446.
    [21]J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon, Long-term multiple cofor imaging of live cells using quantum dotbioconjugates, Nat Biotechnol,2003, 21,47-51.
    [22]A. M. Smith and S. M. Nie, Chemical analysis and cellular imaging with quantum dots, Analyst,2004,129,672-677.
    [23]X. Michalet, F. E. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science,2005,307,538-544.
    [24]X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, Immunofluorescent labeling of cancerMarker her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol.,2003,21, 41-46.
    [25]I. L. Medintz, A. R Clapp, H. Mattoussi, E. R. Goldman, B. Fisher and J. M. Mauro, Self-assembled nanoscale biosensors based on quantum dot fret donors, Nat. Mater,2003,2,630-638.
    [26]W. B. Cai and X. Y. Chen, Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging, Nat Protoc.,2008,3,89-96.
    [27]A. M. Smith, H. W. Duan, A. M. Mohs and S. M. Nie, Bioconjugated quantum dots for in vivo molecular and cellular imaging, Adv. Drug Deliv. Rev,2008,60, 1226-1240.
    [28]P. Reiss, M. Protiere and L. Li, Core/shell semiconductor nanocrystals, Small, 2009,5,154-168.
    [29]W. J. Zhang, G J. Chen, J. Wang, B. C. Ye and X. H. Zhong, Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots, Inorg. Chem,2009,48, 9723-9731.
    [30]R E. Bailey and S. M. Nie, Alloyed semiconductor quantum dots:tuning the optical properties without changing the particle size, J. Am. Chem. Soc.,2003, 125,7100-7106.
    [31]B. Xue, D. W. Deng, J. Cao, F. Liu, X. Li, W. Akers, S. Achilefu and Y. Q. Gu, Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging, Dalton Trans.,2012,41, 4935-4947.
    [32]H. F. Qian, C. Q. Dong, J L. Peng, X. Qiu, Y. H. Xu and J. C. Ren, High-quality and water-soluble near-infrared photo luminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition, J. Phys. Chem. C,2007,111, 16852-16857.
    [33]S. H. Wei, S. B. Zhang, A. Zunger, First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys, J. Appl. Phys., 2000,87,1304-1311.
    [34]J. E. Bernard and A. Zunger, Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys, Phys. Rev. B,1987,36,3199-3228.
    [35]J. H. Lee, W. C. Song, J. S. Yi, K. J. Yang, W. D. Han and J. Hwang, Growth and properties of the Cd1-xZnxS thin films for solar cell applications,2003,431-432, 349-353.
    [36]J. Lovric, H. S. Bazzi, Y. Cuie, G. R. A. Fortin, F. W. Winnik and D. Maysinger, Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots, J. Mol. Med.,2005,83,377-385.
    [37]H. Tada, H. Higuchi, T. M. Wanatabe and N. Ohuchi, In vivo real-time tracking of single quantum dots conjugated with monoclonal anti-HER2 antibody in tumors of mice, Cancer Res.,2007,67,1138-1144.
    [38]B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, In vivo imaging of quantum dots encapsulated in phospholipid micelles, Science,2002,298,1759-1762.
    [39]A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Intracellular delivery of quantum dots for live cell labeling of organelle tracking, Nano Lett.,2004,16,961-966.
    [40]Y. Y. Su, Y. He, H. T. Lu, L. M. Sai, Q. N. Li, W. X. Li, L. H. Wang, P. P. Shen, Q. Huang and C. H. Fan, The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating,2009,30, 19-25.
    [41]J. Lovric, S. J. Cho, F. M. Winnik and D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem. Biol.,2005,12,1227-1234.
    [42]S. J. Cho, D. Maysinger, M. Jain, B. Roder, S. Hackbarth and F. M. Winnik, Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir,2007,23,1974-1980.
    [43]R. S. H. Yang, L. W. Chang, J. P. Wu, M. H. Tsai, H. J. Wang, Y. C. Kuo, T. K. Yeh, C. S. Yang and P. P. Lin, Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice:ICP-MS quantitative assessment, Environ. Health. Perspect.,2007,115,1339-1343.
    [44]Y. B. Zhang, W. Chen, J. Zhang, J. Liu, G Chen, In vitro and in vivo toxicity of CdTe nanoparticles, J. Nanosci. Nanotechnol.,2007,7,497-503.
    [45]C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig and W. J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett,2005,5,331-338.
    [46]Y. F. Liu and J. S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility, J. Colloid Interface Sci.,2010,351, 1-9.
    [47]B. H. Dong, L. X. Cao, G. Su, W. Liu, H. Qu and D. X. Jiang, Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions, J. Colloid Interface Sci,2009,339,78-82.
    [48]H. Ghanbari, A. de. Mel and A. M. Seifalian, Cardiovascular application of polyhedral oligomeric silsesquioxane nano materials:a glimpse into prospective horizons, Int. J. Nanomedicine.,2011,6,775-786.
    [49]S. T. Selvan, T. T. Tan and J. Y. Ying, Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence, Adv. Mater.,2005,17, 1620-1625.
    [50]G Brakmane, S. Y. Madani and A. M. Seifalian, Cancer antibody enhanced real time imaging cell probes a novel theranostic tool using polymer linked carbon nanotubes and quantum dots, Anti-Cancer. Agents. Med. Chem,2013,13, 821-832.
    [51]G X. Liang, L. L. Li, H. Y. Liu, J. R. Zhang, C. Burda and J. J. Zhu, Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence, Chem. Commun.,2010,46,2974-2976.
    [52]J. Du, X. L. Li, S. J. Wang, Y. Z. Wu, X. P. Hao, C. W. Xu and X. Zhao, Microwave-assisted synthesis of highly luminescent glutathione-capped Zni-xCdxTe alloyed quantum dots with excellent biocompatibility, J. Mater. Chem,2012,22,11390-11395.
    [53]S. K. Panda, S. G Hickey, C. Waurisch and A. Eychmuller, Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications, J. Mater. Chem,2011,21, 11550-11555.
    [54]J. Y. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. H. Wu, J. A. Ripmeester and K. Yu, Gradiently alloyed ZnxCd1-xS colloidal photo luminescent quantum dots synthesized via a noninjection one-pot approach, J. Phys. Chem. C,2008,112,4908-4919.
    [55]A. F. E. Hezinger, J. Tessmar and A. Gopferich, Polymer coating of quantum dots-A powerful tool toward diagnostics and sensorics, Eur. J. Pharm Biopharm, 2008,68,138-152.
    [56]S. D. Hillson, E. Smith, M. Zeldin and C. A. Parish, Cages, baskets, ladders, and tubes:conformational studies of polyhedral oligomeric silsesquioxanes, J. Phys. Chem. A,2005,109,8371-8378.
    [57]A. J. Waddon and E. B. Coughlin, Crystal structure of polyhedral oligomeric silsesquioxanes (POSS) nano-materials:a study by X-ray diffraction and electron microscopy, Chem. Mater.,2003,15,4555-4561.
    [58]H. Ghanbari, B. G. Cousins and A. M. Seifalian, A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS), Macromol. Rapid Commun.,2011, 32,1032-1046.
    [59]T. S. Haddad and J. D. Lichtenhan, Hybrid organic-inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers, Macromolecules, 1996,29,7302-7303.
    [60]A. Fina, H. C. L. Abbenhuis, D. Tabuani, et al., Metal functionalized POSS as fire retardants in polypropylene, Polym. Degrad. Stab.,2006,91,2275-2281.
    [61]W. Y. Chen, Y. Z. Wang, S. W. Kuo, C. F. Huang, P. H. Tung and F. C. Chang, Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine, Polymer,2004,45,6897-6908.
    [62]C. M. Leu, G. M. Reddy, K. H. Wei and C. F. Shu, Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites, Chem Mater.,2003,15,2261-2265.
    [63]K. B. Chen, Y. P. Chang, S. H. Yang and C. S. Hsu, Novel dendritic light-emitting materials containing polyhedral oligomeric silsesquioxanes core, Thin Solid Films,2006,514,103-109.
    [64]S. Xiao, M. Nguyen, X. Gong, Y. Cao, H. Wu, D. Moses and A. J. Heeger, Stabilization of semiconducting polymers with silsesquioxane, Adv. Funt. Mater., 2003,13,25-29.
    [65]A. Costela, I. Garcia-Moreno, L. Cerdan, V. Martin, O. Garcia and R Sastre, Dye-doped POSS solutions:random nanomaterials for laser emission, Adv. Mater.,2009,21,4163-4166.
    [66]B. L. Frankamp, N. O. Fischer, R Hong, S. Srivastava and V. M. Rotello, Surface modification using cubic silsesquioxane ligands. Facile synthesis of water-soluble metal oxide nanoparticles, Chem. Mater.,2006,18,956-959.
    [67]L. Etgar, E. Lifshitz and R. Tannenbaum, Hierarchical conjugate structure of y-Fe2O3 nanoparticles and PbSe quantum dots for biological applications, J. Phys. Chem C,2007,111,6238-6244.
    [68]G Schmid, R Pugin, J. O. Malm and J. O. Bovin, Silsesquioxanes as ligands for gold clusters, Eur. J. Inorg. Chem,1998,1998,813-817.
    [69]J. B. Carroll, B. L. Frankamp, S. Srivastav, V. M. Rotello, Electrostatic self-assembly of structured gold nanoparticle/polyhedral oligomeric silsesquioxane (POSS) nanocomposites, J. Mater. Chem,2004,14,690-694.
    [70]E. Jeoung, J. B. Carroll and V. M. Rotllo, Surface modification via'lock and key' specific self-assembly of polyhedral oligomeric silsequioxane (POSS) derivatives to modified gold surfaces, Chem. Commun.,2002,1510-1511.
    [71]K. Naka, H. Itoh and Y. Chujo, Self-organization of spherical aggregates of palladium nanoparticles with a cubic silsesquioxane, Nano Lett.,2002,2, 1183-1186.
    [72]K. Naka, M. Sato and Y. Chujo, Stabilized spherical aggregate of palladium nanoparticles prepared by reduction of palladium acetate in octa(3-aminopropyl)octasilsesquioxane as a rigid template, Langmuir,2008,24, 2719-2726.
    [73]K. Y. Pu, K. Li, X. H. Zhang and B. Liu, Conjugated oligoelectrolyte harnessed polyhedral oligomeric silsesquioxane as light-up hybrid nanodot for two-photon fluorescence imaging of cellular nucleus, Adv. Mater.,2010,22,4186-4189.
    [74]D. Ding, K. Y. Pu, K. Li and B. Liu, Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus, Chem. Commun.,2011,47, 9837-9839.
    [75]K. Y. Pu, Z. T. Luo, K. Li J. P. Xie and B. Liu, Energy transfer between conjugated-oligoelectrolyte-substituted POSS and gold nanocluster for multicolor intracellular detection of mercury ion, J. Phys. Chem C,2011,115, 13069-13075.
    [76]F. F. Du, J. Tian, H. Wang, B. Liu, B. K. Jin and R. K. Bai, Synthesis and luminescence of POSS-containing perylene bisimide-bridged amphiphilic polymers, Macromolecules,2012,45,3086-3093.
    [77]M. Ahmed, H. Ghanbari, B. G. Cousins, G. Hamilton and A. M. Seifalian, Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts:Influence of porosity on the structure, haemocompatibility and mechanical properties, Acta Biomaterialia,2011,7,3857-3867.
    [78]Y. He, H. F. Wang and X. P. Yan, Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA, Chem Eur. J.,2009,15,5436-5440.
    [79]X. Zhao, J. Du, Y. Z. Wu, H. Z. Liu and X. P. Hao, Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu2+ detection, J. Mater. Chem. A,2013,1,11748-11753.
    [80]S. B. Rizvi, L. Yildirimer, S. Ghaderi, B. Ramesh, A. M. Seifalian and M. Keshtgar, A novel POSS-coated quantum dot for biological application, Int. J. Nanomedicine.,2012,7,3915-3927.
    [81]S. Ghaderi, B. Ramesh and A. M. Seifalian, Synthesis of mercaptosuccinic acid/mercaptopolyhedral oligomeric silsesquioxane coated cadmium telluride quantum dots in cell labeling applications, J. Nanosci. Nanotechnol.,2012,12, 4928-4935.
    [82]Y. Wang, A. Vaneski, H. H. Yang, S. Gupta, F. Hetsch, S. V. Kershaw, W. Y. Teoh, H. R. Li and A. L. Rogach, Polyhedral oligomeric silsesquioxane as a ligand for CdSe quantum dots, J. Phys. Chem C,2013,117,1857-1862.
    [83]J. Wu and E. A. Boyle, Low blank peconcentration technique for the determination of lead, copper, and cadmium in small-volume sea water samples by isotope dilution ICPMS, Anal. Chem,1997,69,2464-2470.
    [84]M. S. Chan and S. D. Huang, Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector, Talanta,2000,51, 373-380.
    [85]W. Yang, D. Jaramillo, J. J. Gooding, D. B. Hibbert, R. Zhang, G. D. Willet and K. J. Fisher, Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes, Chem. Commun.,2001,19,1982-1983.
    [86]K. M. Gatas-Asfura and R. M. Leblanc, Peptide-coated CdS quantum dots for the optical detection of copper(II) and silver(I), Chem. Commun.,2003,21, 2684-2685.
    [87]B. Chen and P. Zhang, A new determining method of copper(Ⅱ) ions at ng ml-1 levels based on quenching of the water-soluble nanocrystals fluorescence, Anal. Bioanal. Chem,2005,381,986-992.
    [88]M. T. Fernandez-Arguelles, W. J. Jin, J. M. Costa-Fernandez, R. Pereiro and A. Sanz-Medel, Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu(Ⅱ) in aqueous solutions by luminescent measurements, Anal. Chim. Acta,2005,549,20-25.
    [89]M. Koneswaran and R. Narayanaswamy, L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ion, Sens. Actuators. B,2009,139,104-109.
    [90]L. M. Campbell, D. G. Dixon and R. E. J. Hecky, A review of mercury in lake victoria, East Africa:implications for human and ecosystem health, J. Toxicol. Environ. Health:Part B,2003,6,325-356.
    [91]G. X. Liang, H. Y. Liu, J. R. Zhang and J. J. Zhu, Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots, Talanta,2010,80, 2172-2176.
    [92]O. Adegoke, E. Hosten, C. McCleland and T. Nyokong, CdTe quantum dots functionalized with 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion, AnaL Chim. Acta,2012,721,154-161.
    [93]J. J. Wei, M. Jose, F. Costa, et al., Surface-modified CdSe quantum dots as luminescent probes for cyanide determination, Anal. Chim. Acta,2004,522,1-8.
    [94]R. Joseph, G Ignacy, G S. Zygmunt, et al., Luminescence spectral properties of CdS nanoparticles, J. Phys. Chem. B,1999,103,7613-7620.
    [95]R. Y. Tu, B. Liu, Z. Y. Wang, F. Wang and Z. P. Zhang, Amine-capped ZnS:Mn2+ nanocrystals towards fluorescence detection of trace TNT explosive, Anal. Chem, 2008,80,3458-3465.
    [96]P. Wu, Y. He, H. F. Wang and X. P. Yan, Conjugation of glucose oxidase onto Mn-doped ZnS quantum dots for phosphorescent sensing of glucose in biological fluids, Anal. Chem.,2010,82,1427-1433.
    [97]张毅,水溶性量子点碲化镉测定同型半胱氨酸的研究,分析测试学报,2008,27,844-847。
    [98]P. Wu, X. P. Yan, Ni2+-modulated homocysteine-capped CdTe quantum dots as a turn-on photo luminescent sensor for detecting histidine in biological fluids, Biosens. Bioelectron.,2010,26,485-490.
    [99]T. Jin, F. Fujii, H. Sakata, M. Tamuraa and M. Kinjo, Amphiphilic p-sulfonatocalix[4]arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine, Chem Commun.,2005,34,4300-4302.
    [100]Q. G. Liao, Y. F. Li and C. Z. Huang, CdS quantum dots as fluorescence probes for detection of adriamycin hydrochloride, Chemical Research in Chinese Universities,2007,23,138-142.
    [101]J. G Liang, S. Huang, D. Y. Zeng, et al, CdSe quantum dots as luminescent probes for spironolactone determination, Talanta,2006,69,126-130.
    [102]Y. Q. Wang, C. Ye, Z. H. Zhu, et al., Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination, Anal. Chim. acta,2008,610, 50-56.
    [103]D. Li, Z. Y. Yan and W. Q. Cheng, Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe, Spectrochim. Acta A:Mol. Biomol. Spectrosc.,2008,71,1204-1211.
    [104]M. Liu, L. Xu, W. Cheng, Y. Zeng and Z. Yan, Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination, Spectrochim. Acta A: MoL Biomol. Spectrosc.,2008,70,1198-1202.
    [105]田建袅,韦盛志,赵彦春,赵书林,CdSe/CdS量子点荧光淬灭法测定芹黄素的研究,分析试验室,2008,27,19-22。
    [106]张爱梅,闰炜,王怀生,CdTe/CdS量子点-蛋白质与头孢曲松钠的相互作用,分析化学,2008,36,444-448。
    [107]L. Li, Y. X. Lu, Y. P. Ding, Y. Cheng, W. C. Xu and F. F. Zhang, Determination of paracetamol based on its quenching effect on the photoluminescence of CdTe fluorescence probes, J. Fluoresc,2012,22,591-596.
    [108]M. Algarra, B. B. Campos, F. R. Aguiar, J. E. Rodriguez-Borges and J. C. G Esteves da Silva, Novel P-cyclodextrin modified CdTe quantum dots as fluorescence nanosensor for acetylsalicylic acid and metabolites, Mater. Sci. Eng. C,2012,32,799-803.
    [109]马炯,水溶性CdTe量子点的光稳定性研究及其应用,复旦大学博士学位论文,2008年。
    [110]Y. G Zheng, S. J. Gao and J. Y. Ying, Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots, Adv. Mater.,2007,19,376-380.
    [111]M. E. Akerman, C. W. Chan and P. Laakkonen, Nanocrystal targeting in vivo, Proc Natl. Acad. Sci.,2002,99,12617-12621.
    [112]S. Kim, Y. T. Lim, E. G Soltesz, A. M. D. Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G Laurence, D. M. Dor, L. H. Cohn, M. G Bawendi and J. V. Frangion, Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping, Nat. Bioteehnol.,2004,22,93-97.
    [113]X. H. Gao, L. L. Yang, J. A. Petros, F. F. Marshall, J. W. Simons and S. M. Nie, In vivo molecular and cellular imaging with quantum dots, Curr Opin Biotechnol., 2005,16,63-72.
    [1]D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos and P. L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal, Nature, 1997,389,699-701.
    [2]M. Y. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach and H. Weller, Electroluminescence of different colors from polycation/CdTe nanocrystal self-assembled films, J. Appl. Phys.,2000,87,2297-2302.
    [3]N. P. Gaponik, D. V. Talapin, A. L. Rogach and A. Eychmuller, Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications, J. Mater. Chem.,2000,10,2163-2166.
    [4]S. Coe, W. K. Woo, M. Bawendi and V. Bulovic, Electroluminrscence from single monolayers of nanocrystals inorganic molecular, Nature,2000,420,800-803.
    [5]P. O. Anikeeva, J. E. Halpert, M. G. Bawendi and V. Bulovic, Electro luminescence from a mixed red-green-blue colloidal quantum dot mo no layer, Nano Lett.,2007,7,2196-2200.
    [6]M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science,1998,281, 2013-2016.
    [7]W. C. Chan and S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,1998,281,2016-2018.
    [8]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmuller and H. Weller, Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes, J. Phys. Chem. B,2002,106, 7177-7185.
    [9]F. Pinaud, D. King, H. P. Moore and S. Weiss, Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatin-related peptides, J. Am. Chem. Soc.,2004,126,6115-6123.
    [10]Y. F. Chen and Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Anal. Chem.,2002,74,5132-5138.
    [11]Y. Q. Hao, L. Liu, Y. F. Long, J. X. Wang, Y. N. Liu and F. M. Zhou, Sensitive photoluminescent detection of Cu2+ in real samples using CdS quantum dots in combination with a Cu2+-reducing reaction, Biosens. Bioelectron.,2013,41, 723-729.
    [12]Y Y Shen, L. L. Li, Q. Lu, J. Ji, R. Fei, J. R. Zhang, E. S. Abdel-Halim and J. J. Zhu, Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu(II), Chem. Commun., 2012,48,2222-2224.
    [13]A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponk, V. Lesnyak, A. Shavel, A. Eychmuller, Y. P. Rakovich and J. F. Donegan, Aqueous synthesis of thiol-capped CdTe nanocrystals:state-of-the-art, J. Phys. Chem. C,2007,111, 14628-14637.
    [14]Y. L. Li, L. H. Jing, R R. Qiao and M. Y. Gao, Aqueous synthesis of CdTe nanocrystals:progresses and perspectives, Chem. Commun.,2011,47,9293-9311.
    [15]B. Tang, Y. Xing, P. Li, N. Zhang, F. Yu and G Yang, A rhodamine-based flurescent probe containing a Se-N bond for detecting thiols and its application in living cells, J. Am. Chem. Soc.,2007,129,11666-11667.
    [16]R. Y. Tu, B. H. Liu, Z. Y. Wang, D. M. Gao, F. Wang, Q. L. Fang and Z. P. Zhang, Amine-capped ZnS-Mn2+ nanocrystals for fluorescence detection of trace TNT explosive, Anal. Chem.,2008,80,3458-3465.
    [17]X. Guo, C. F. Wang, Y. Fang, L. Chen and S. Chen, Fast synthesis of versatile nanocrystal-embedded hydrogels toward the sensing of heavy metal ions and organoamines, J. Mater. Chem,2011,21,1124-1129.
    [18]S. D. Hillson, E. Smith, M. Zeldin and C. A. Parish, Cages, baskets, ladders, and tubes:conformational studies of polyhedral oligomeric silsesquioxanes, J. Phys. Chem. A,2005,109,8371-8378.
    [19]A. J. Waddon and E. B. Coughlin, Crystal structure of polyhedral oligomeric silsesquioxanes (POSS) nano-materials:a study by X-ray diffraction and electron microscopy, Chem. Mater.,2003,15,4555-4561.
    [20]H. Ghanbari, B. G. Cousins and A. M. Seifalian, A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS), Macromol. Rapid Conmmun,2011, 32,1032-1046.
    [21]K. Y. Pu, K. Li, X. H. Zhang and B. Liu, Conjugated oligoelectrolyte harnessed polyhedral oligomeric silsesquioxane as light-up hybrid nanodot for two-photon fluorescence imaging of cellular nucleus, Adv. Mater.,2010,22,4186-4189.
    [22]D. Ding, K. Y. Pu, K. Li and B. Liu, Conjugated oligoelectrolyte-polyhedral oligomeric silsesquioxane loaded pH-responsive nanoparticles for targeted fluorescence imaging of cancer cell nucleus, Chem. Commun.,2011,47, 9837-9839.
    [23]M. Ahmed, H. Ghanbari, B. G Cousins, G Hamilton, A. M. Seifalian, Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts:Influence of porosity on the structure, haemocompatibility and mechanical properties, Acta Biomaterialia,2011,7,3857-3867.
    [24]Y. He, H. F. Wang and X. P. Yan, Self-assembly of Mn-doped ZnS quantum dots/octa(3-aminopropyl)octasilsequioxane octahydrochloride nanohybrids for optosensing DNA, Chem. Eur. J.,2009,15,5436-5440.
    [25]U. Dittmar, B. J. Hendan, U. Florke and H. C. Marsmann, Funktionalisierte octa-(propylsilsesquioxane)(3-XC3H6)8(SigOi2) modellverbindungen fur oberflachenmodifizierte kieselgele, J. Organomet. Chem,1995,489,185-194.
    [26]L. G. Li, R. D. Liang, Y. J. Li, H. Z. Liu and S. Y. Feng, Hybrid thiol-ene network nanocomposites based on multi (meth) acrylate POSS, J. Colloid Interface Sci,2013,406,30-36.
    [27]J. Du, X. L. Li, S. J. Wang, Y. Z. Wu, X. P. Hao, C. W. Xu and X. Zhao, Microwave-assisted synthesis of highly luminescent glutathione-capped Zn1-xCdxTe alloyed quantum dots with excellent biocompatibility, J. Mater. Chem., 2012,22,11390-11395.
    [28]J. Du, Y. Z. Wu, X. P. Hao and X. Zhao, Study on the interaction between CdTe quantum dots and folic acid by two-photon excited fluorescence spectroscopic techniques, J. Mol. Struct.,2011,1006,650-654.
    [29]M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmuller and U. Resch-Genger, Determination of the fluorescence quantum yield of quantum dots: suitable procedures and ahievable ucertainties, Anal. Chem.,2009,81,6285-6294.
    [30]M. A. Vairavamurthy, W. S. Goldenberg, O. Shi and S. Khalid, Mar. Chem., 2000,70,181-189.
    [31]D. Hayes, O. I. Micic, M. T. Nenadovic, V. Swayambunathan and D. Meisel, Radiolytic production and properties of ultrasmall cadmium sulfide particles, J. Phys. Chem,1989,93,4603-4608.
    [32]A. Shavel, N. Gaponik and A. Eychmuller, Factors governing the quality of aqueous CdTe nanocrystals:calculations and experiment, J. Phys. Chem. B,2006, 110,19280-19284.
    [33]J. Guo, W. L. Yang and C. C. Wang, Systematic study of the photoluminescence dependence of thiol-capped CdTe nanocrystals on the reaction conditions, J. phy. Chem. B,2005,109,17467-17473.
    [34]L. Zou, Z. Y. Gu, N. Zhang Y. L. Zhang, Z. Fang, W. H. Zhu and X. H. Zhong, Ultrafast synthesis of highly luminescent green-to near-infrared-emitting CdTe nanocrystals in aqueous phase, J. Mater. Chem,2008,18,2807-2815.
    [35]E. V. Shevchenko, D. V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlidh, M. Haase and H. Weller, Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals:the role of nucleation rate in size control of CoPt3 nanocrystals, J. Am Chem. Soc,2003,125, 9090-9101.
    [36]H. Zhang, Z. Zhou, B. Yang and M. Y. Gao, The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles, J. Phys. Chem. B,2003,107,8-13.
    [37]H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang and W. Li, Hydrothermal synthesis for high-quality CdTe nanocrystals, Adv. Mater.,2003,15,1712-1715.
    [38]H. B. Bao, Y. J. Gong, Z. Li and M. Y. Gao, Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure, Chem. Mater.,2004,16,3853-3859.
    [39]D. Zhao, Y. Fang, H. Y. Wang and Z. K. He, Synthesis and characterization of high-quality water-soluble CdTe:Zn2+ quantum dots capped by N-acetyl-L-cysteine via hydrothermal method, J. Mater. Chem.,2011,21,13365-13370.
    [40]S. B. Rizvi, L. Yildirimer, S. Ghaderi and B. Ramesh, A. M. Seifalian and M. Keshtgar, A novel POSS-coated quantum dot for biological application, Int. J. Nanomedicine.,2012,7,3915-3927.
    [41]X. H. Zhong, Y. Y. Feng, W. F. Knoll and M. Y. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width, J. Am. Chem. Soc., 2003,125,13559-13563.
    [42]H. Borchert, D. V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Moller and H. Weller, Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS, J. Phys. Chem B,2003,107,9662-9668.
    [43]Y. He, H. T. Lu, L. M. Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang and L. H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent p ho tostability and biocompatibility, Adv. Mater., 2008,20,3416-3421.
    [44]D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson and H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals, J. Phys. Chem. B,2004,108,18826-18831.
    [45]J. Lovrk, S. J. Cho, F. M. Winnik and D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chemistry & Biology,2005,12, 1227-1234.
    [1]Y. H. Zhang, H. S. Zhang, X. F. Guo and H. Wang, L-cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper (II) determination, Microchem. J.,2008,89,142-147.
    [2]L. M. Campbell, D. G. Dixon and R. E. J. Hecky, A review of mercury in Lake Victoria, East Africa:implications for human and ecosystem health, J. Toxicol. Environ. Health:Part B,2003,6,325-356.
    [3]E. Merian, Metals and their compounds in the environment (VCH, Weinheim, 1991).
    [4]J. Wu and E. A. Boyle, Low blank peconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS, Anal. Chem,1997,69,2464-2470.
    [5]M. S. Chan and S. D. Huang, Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector, Talanta,2000,51, 373-380.
    [6]W. Yang, D. Jaramillo, J. J. Gooding, D. B. Hibbert, R. Zhang, G. D. Willet and K. J. Fisher, Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes, Chem Commun.,2001,19,1982-1983.
    [7]X. Zhang, J. Peng, C. He, G. Shen and R. Yu, A highly selective fluorescent sensor for Cu2+ based on 2-(2'-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix, Anal. Chim. Acta,2006,567,189-195.
    [8]S. Goswami and R. Chakrabarty, Fluorescence sensing of Cu2+ within a pseudo 18-crown-6 cavity, Tetrahedron Lett.,2009,50,5910-5913.
    [9]M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science,1998,281, 2013-2016.
    [10]Y. F. Chen and Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Anal. Chem,2002,74,5132-5138.
    [11]K. M. Gatas-Asfura, R. M. Leblanc, Peptide-coated CdS quantum dots for the optical detection of copper (Ⅱ) and silver (Ⅰ), Chem. Commun.,2003,21, 2684-2685.
    [12]S. J. Lai, X. J. Chang and C. Fu, Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (Ⅱ) ion determination, Microchim. Acta, 2009,165,39-44.
    [13]Y. Q. Hao, L. Liu, Y. F. Long, J. X. Wang, Y. N. Liu and F. M. Zhou, Sensitive photo luminescent detection of Cu2+ in real sample susing CdS quantum dots in combination with a Cu2+-reducing reaction, Biosens. Bioelectron,2013,41, 723-729.
    [14]B. Chen and P. Zhang, A new determining method of copper (Ⅱ) ions at ng ml-1 levels based on quenching of the water-soluble nanocrystals fluorescence, Anal. Bioanal. Chem.,2005,381,986-992.
    [15]M. T. Fernandez-Arguelles, W. J. Jin, J. M. Costa-Femandez, R. Pereiro and A. Sanz-Medel, Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (II) in aqueous solutions by luminescent measurements, Anal. Chim. Acta,2005,549,20-25.
    [16]M. Koneswaran and R. Narayanaswamy, L-cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion, Sens. Actuators. B,2009,139,104-109.
    [17]Z. Q. Liu, S. P. Liu, P. F. Yin and Y. Q. He, Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion, Anal. Chim. Acta,2012,745,78-84.
    [18]G. X. Liang, H. Y. Liu, J. R Zhang and J. J. Zhu, Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots, Talanta,2010,80, 2172-2176.
    [19]Y. Y. Shen, L. L. Li, Q. Lu, J. Ji, R. Fei, J. R. Zhang, E. S. Abdel-Halim and J. J. Zhu, Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu (Ⅱ), Chem. Commun., 2012,48,2222-2224.
    [20]Y. H. Yang and M. Y. Gao, Preparation of fluorescent SiO2 particles with single CdTe nanocrystal cores by the reverse microemulsion method, Adv. Mater.,2005, 17,2354-2357.
    [21]T. Nann and P. Mulvaney, Einzelne quantenpunkte in siliciumdioxid-kugeln, Angew. Chem.,2004,116,5511-5514.
    [22]R. H. Baney, M. Itoh, A. Sakakibara and T. Suzuki, Silsesquioxanes, Chem. Rev., 1995,95,1409-1430.
    [23]S. B. Rizvi, L. Yildirimer, S. Ghaderi, B. Ramesh, A. M. Seifalian and M. Keshtgar, A novel POSS-coated quantum dot for biological application, Int. J. Nanomedicine.,2012,7,3915-3927.
    [24]H. Ghanbari, A. de. Mel and A. M. Seifalian, Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials:a glimpse into prospective horizons, Int. J. Nanomedicine.,2011,6,775-786.
    [25]H. Borchert, D. V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Moller and H. Weller, Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS, J. Phys. Chem. B,2003,107,9662-9668.
    [26]M. L. Steigerwald and L. B. Brus, Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters, Annu. Rev. Mater. Sci.,1989, 19,471-495.
    [27]U. Dittmar, B. J. Hendan, U. Florke and H. C. Marsmann, Funktionalisierte octa-(propylsilsesquioxane)(3-XC3H6)8(Si8O12) modellverbindungen fur oberflachenmodifizierte kieselgele, J. Organomet. Chem,1995,489,185-194.
    [27]L. G. Li, R. D. Liang, Y. J. Li, H. Z. Liu and S. Y. Feng, Hybrid thiol-ene network nanocomposites based on multi (meth) acrylate POSS, J. Colloid Interface Sci.,2013,406,30-36.
    [29]W. W. Yu, L. Qu, W. Guo and X. G. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater.,2003, 15,2854-2860.
    [30]J. Du, Y. Z. Wu, X. P. Hao and X. Zhao, Study on the interaction between CdTe quantum dots and folic acid by two-photon excited fluorescence spectroscopic techniques, J. Mol. Struct.,2011,1006,650-654.
    [31]J. R. Lakowicz, Principles of fluorescence spectroscopy (Kluwer Academic/Plenum Publishers, New York,1999).
    [32]Y. S. Xia and C. Q. Zhu, Aqueous synthesis of type-Ⅱ core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper (Ⅱ), Analyst,2008, 133,928-932.
    [33]Y. H. Chan, J. X. Chen, Q. S. Liu, S. E. Wark, D. H. Son and J. D. Batteas, Ultrasensitive copper (Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots, Anal. Chem.,2010,82,3671-3678.
    [34]B. H. Dong, L. X. Cao, G. Su, W. Liu, H. Qu and D. X. Jiang, Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions, J. Colloid Interface Sci.,2009,339,78-82.
    [35]C. X. Guo, J. L. Wang, J. Cheng and Z. F. Dai, Determination of trace copper ions with ultrahigh sensitivity and selectivity utilizing CdTe quantum dots coupled with enzyme inhibition, Biosens. Bioelectron.,2012,36,69-74.
    [36]T. W. Sung and Y. L. Lo, Highly sensitive and selective sensor based on silica-coated CdSe/ZnS nanoparticles for Cu2+ ion detection, Sens. Actuators. B, 2012,165,119-125.
    [37]Bo E. H. Saxberg and B. R. Kowalakl, Generalized standard addition method, Anal. Chem,1979,51,1031-1038.
    [1]M. Jr. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Semiconductor nanocrystals as fluorescent biological labels, Science,1998,281, 2013-2016.
    [2]W. C. Chan and S. M. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science,1998,281,2016-2018.
    [3]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics, Science,2005,307,538-544.
    [4]P. Alivisatos, The use of nanocrystals in biological detection, Nat. Biotechnol., 2004,22,47-52.
    [5]I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing, Nat. Mater.,2005,4,435-446.
    [6]X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. M. Nie, In vivo cancer targeting and imaging with semiconductor quantum dots, Nat. Biotechnol.,2004, 22,969-976.
    [7]W. C. Law, K. T. Yong, I. Roy, H. Ding, R, Hu, W. W. Zhao and P. N. Prasad, Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bio imaging, Small,2009,5,1302-1310.
    [8]I. Gur, N. A. Fromer and A. P. Alivisatos, Controlled assembly of hybrid bulk-heterojunction solar cells by sequential deposition, J. Phys. Chem. B,2006, 110,25543-25546.
    [9]A. Rizzo, M. Mazzeo, M. Palumbo, G Lerario, S. D'Amone, R. Cingolani and G. Gigli, Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers, Adv. Mater, 2008,20,1886-1891.
    [10]V. A. Sianni, D. S. Koktysh, B. G Yun, R L. Matts, T. C. Pappas, M. Motamedi, S. N. Thomas and N. A. Kotov, Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films, Nano Lett.,2003,3, 1177-1182.
    [11]A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots, Nano Lett.,2004,4,11-18.
    [12]A. Hoshini, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki and K. Yamamoto, Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett.,2004, 11,2163-2169.
    [13]C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, W. J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett.,2005,5,331-338.
    [14]Y. F. Liu and J. S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility, J. Colloid Interface Sci.,2010,351, 1-9.
    [15]B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites, J. Phys. Chem B,1997,101,9463-9475.
    [16]B. H. Dong, L. X. Cao, G. Su, W. Liu, H. Qu and D. X. Jiang, Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions, J. Coloid Interface Sci,2009,339,78-82.
    [17]H. Ghanbari, A. de. Mel and A. M. Seifalian, Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials:a glimpse into prospective horizons, Int. J. Nanomedicine.,2011,6,775-786.
    [18]S. T. Selvan, T. T. Tan and J. Y. Ying, Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence, Adv. Mater.,2005,17, 1620-1625.
    [19]Y. Y. Shen, L. L. Li, Q. Lu, J. Ji, R. Fei, J. R. Zhang, E. S. Abdel-Halim and J. J. Zhu, Microwave-assisted synthesis of highly luminescent CdSeTe@ZnS-SiO2 quantum dots and their application in the detection of Cu (Ⅱ), Chem. Commun., 2012,48,2222-2224.
    [20]G Brakmane, S. Y. Madani and A. M. Seifalian, Cancer antibody enhanced real time imaging cell probes a novel theranostic tool using polymer linked carbon nanotubes and quantum dots, Anti-Cancer. Agents. Med. Chem,2013,13, 821-832
    [21]G X. Liang, L. L. Li, H. Y. Liu, J. R Zhang, C. Burda and J. J. Zhu, Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electro generated chemiluminescence, Chem Commun.,2010,46,2974-2976.
    [22]J. Du, X. L. Li, S. J. Wang, Y. Z. Wu, X. P. Hao, C. W. Xu and X. Zhao, Microwave-assisted synthesis of highly luminescent glutathione-capped Zn1-xCdx Te alloyed quantum dots with excellent biocompatibility, J. Mater. Chem, 2012,22,11390-11395.
    [23]S. K. Panda, S. G Hickey, C. Waurisch and A. Eychmuller, Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications, J. Mater. Chem.,2011,21, 11550-11555.
    [24]J. Y. Ouyang, C. I. Ratcliffe, D. Kingston, B. Wilkinson, J. Kuijper, X. H. Wu, J. A. Ripmeester and K. Yu, Gradiently alloyed ZnxCd1-xS colloidal photo luminescent quantum dots synthesized via a noninjection one-pot approach, J. Phys. Chem. C,2008,112,4908-4919.
    [25]A. F. E. Hezinger, J. Tessmar and A. Gopferich, Polymer coating of quantum dots-A powerful tool toward diagnostics and sensorics, Eur. J. Pharm. Biopharm, 2008,68,138-152.
    [26]D. B. Cordes, P. D. Lickiss and F. Rataboul, Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes, Chem Rev.,2010,110, 2081-2173.
    [27]G. Z. Li, L. C. Wang, H. L. Ni and C. U. Pittman, Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers:a review, J. Inorg. Organomet. Polym.,2001,11,123-154.
    [28]S. B. Rizvi, L. Yildirimer, S. Ghaderi, B. Ramesh, A. M. Seifalian and M. Keshtgar, A novel POSS-coated quantum dot for biological application, Int. J. Nanomedicine.,2012,7,3915-3927.
    [29]F. F. Du, H. Wang, Y. Y. Bao, B. Liu, H. T. Zheng and R. K. Bai, Conjugated coordination polymers based on 8-hydroxyquinoline ligands:impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence, J. Mater. Chem.,2011, 21,10859-10864.
    [30]H. Ghanbari, B. G. Cousins and A. M. Seifalian, A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS), Macromol. Rapid Commun,2011, 32,1032-1046.
    [31]P. Jungebluth, E. Alici, S. Baiguera, K. Le Blanc, P. Blomberg, B. Bozoky, et al., Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite:a proof-of-concept study, Lancet,2011,378,1997-2004.
    [32]S. S. Suri, H. Fenniri and B. Singh, Nano technology-based drug delivery systems, J. Occup. Med. Toxicol.,2007,2,16.
    [33]R. Verdejo, G Jell, L. Safinia, A. Bismarck, M. M. Stevens and M. S. Shaffer, Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts, J. Biomed. Mat. Res. Part A.,2009,88,65-73.
    [34]M. Ahmed, H. Ghanbari, B. G. Cousins, G. Hamilton and A. M. Seifalian, Small calibre polyhedraloligomeric silsesquioxane nanocomposite cardiovascular grafts: Influence of porosity on the structure, haemocompatibility and mechanical properties, Acta Biomateral.,2011,7,3857-3867.
    [35]M. Desai, R. Bakhshi, X. Zhou, M. Odlyha, Z. You, A. M. Seifalian and G. Hamilton, A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model, J. Endovascul. Therap.,2012,19,415-427.
    [36]S. Ghaderi, B. Ramesh and A. M. Seifalian, Synthesis of mercaptosuccinic acid/mercaptopolyhedral oligomeric silsesquioxane coated cadmium telluride quantum dots in cell labeling applications, J. Nanosci. NanotechnoL,2012,12, 4928-4935.
    [37]J. Lovric, S. J. Cho, F. M. Winnik and D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chemistry & Biology,2005,12, 1227-1234.
    [38]X. Zhao, J. Du, Y. Z. Wu, H. Z. Liu and X. P. Hao, Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu2^ detection, J. Mater. Chem A,2013,1,11748-11753.
    [39]U. Dittmar, B. J. Hendan, U. Florke and H. C. Marsmann, Funktionalisierte octa-(propylsilsesquioxane)(3-XC3H6)8(SigO12) modellverbindungen fur oberflachenmodifizierte kieselgele, J. Organomet. Chem,1995,489,185-194.
    [40]L. G. Li, R. D. Liang, Y. J. Li H. Z. Liu and S. Y. Feng, Hybrid thiol-ene network nanocomposites based on multi (meth) acrylate POSS, J. Colloid Interface Sci,2013,406,30-36.
    [41]T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods,1983, 65,55-63.
    [42]W. W. Yu, L. Qu, W. Guo and X. G. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater.,2003, 15,2854-2860.
    [43]H. B. Bao, Y. J. Gong, Z. Li, and M. Y. Gao, Enhancement effect of illumination on the photo luminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure, Chem. Mater.,2004,16,3853-3859.
    [44]H. Borchert, D. V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Moller and H. Weller, Relations between the photo luminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS, J. Phys. Chem. B,2003,107,9662-9668.
    [45]Y. He, H. T. Lu, L. M. Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang and L. H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility, Adv. Mater., 2008,20,3416-3421.
    [46]D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson and H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals, J. Phys. Chem B,2004,108,18826-18831.
    [47]L. W. Zhang and N. A. Monteiro-Riviere, Mechanisms of quantum dot nanoparticle cellular uptake, ToxicoL Sci.,2009,110,138-155.
    [48]Y. Williams, A. Sukhanova, M. Nowostawska, A. M. Davies, S. Mitchell, V. Oleinikov, Y. Gun'ko, I. Nabiev, D. Kelleher and Y. Volkoy, Probing cell-type-specific intracellular nanoscale barriers using size-tuned quantum dots, Small,2009,5,2581-2588.
    [49]S. Hussain, N. Won, J. Nam, J. Bang, H. Chung and S. Kim, One-Pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging, ChemPhysChem,2009,10,1466-1470.
    [50]W. A. Hild, M. Breunig and A. Goepferich, Quantum dots-nano-sized probes for the exploration of cellular and intracellular targeting, Eur. J. Pharm. Biopharm, 2008,68,153-168.
    [51]Y. Y. Su, M. Hu, C. H. Fan, Y He, Q. N. Li, W. X. Li, L. H. Wang, P. P. Shen and Q. Huang, The cytotoxicity of CdTe quantum dots and the relative contributions from released cadmium ions and nanoparticle properties, Biomaterials,2010,31, 829-4834.
    [52]Y. B. Zhang, W. Chen, J. Zhang, J. Liu, G. P. Chen and C. Pope, In vitro and in vivo toxicity of CdTe nanoparticles, J. Nanosci. Nanotech.,2007,7,497-503.
    [53]J. S. Fotos, V. P. Patel, N. J. Karin, M. K. Temburni, J. T. Koh and D. S. Galileo, Automated time-lapse microscopy and high-resolution tracking of cell migration, Cytotechnology,2006,51,7-19.
    [1]V. I. Klimov, Nanocrystal quantum dots-From fundamental photophysics to multicolor lasing, Los Alamos Science,2003,28,214-220.
    [2]I. L. Medintz, H. T. Uyeda, E. R. Goldman, et al., Quantum dot bioconjugates for imaging, labeling and sensing, Nature Materials,2005,4,435-446.
    [3]E. R. Goldman, I. L. Medintz and H. Mattoussi, Luminescent quantum dots in immunoassays, Anal. Bioanal. Chem.,2006,384,560-563.
    [4]Y. T. Lim, S. Kim, A. Nakayama, N. E. Stott, M. G Bawendi and J. V. Frangioni, Selection of quantum dot wavelengths for biomedical assays and imaging, Mol. Imaging,2003,2,50-64.
    [5]A. L. Rogach, A. Eychmuller, S. G Hickey and S. V. Kershaw, Infrared-emitting colloidal nanocrystals:synthesis, assembly, spectroscopy, and applications, Small,2007,3,536-557.
    [6]R. C. Somers, M. G Bawendi and D. G Nocera, CdSe nanocrystal based chem-/bio-sensors, Chem. Soc. Rev.,2007,36,579-591.
    [7]G X. Liang, L. L. Li, H. Y. Liu, J. R Zhang, C. Burda and J. J. Zhu, Fabrication of near-infrared-emitting CdSeTe/ZnS core/shell quantum dots and their electrogenerated chemiluminescence, Chem Commun.,2010,46,2974-2976.
    [8]P. Reiss, M. Protiere and L. Li, Core/shell semiconductor nanocrystals, Small, 2009,5,154-168.
    [9]W. J. Zhang, G J. Chen, J. Wang, B. C. Ye and X. H. Zhong, Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots, Inorg. Chem.,2009,48,9723-9731.
    [10]R. E. Bailey and S. M. Nie, Alloyed semiconductor quantum dots:tuning the optical properties without changing the particle size, J. Am. Chem. Soc.,2003, 125,7100-7106.
    [11]B. Xue, D. W. Deng, J. Cao, F. Liu, X. Li, W. Akers, S. Achilefu and Y. Q. Gu, Synthesis of NAC capped near infrared-emitting CdTeS alloyed quantum dots and application for in vivo early tumor imaging, Dalton Trans.,2012,41, 4935-4947.
    [12]H. F. Qian, C. Q. Dong, J. L. Peng, X. Qiu, Y. H. Xu and J. C. Ren, High-quality and water-soluble near-infrared photo luminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition, J. Phys. Chem. C,2007,111, 16852-16857.
    [13]R. E. Bailey, J. B. Strausburg and S. M. Nie, A new class of far-red and near-infrared biological labels based on alloyed semiconductor quantum dots, J. Nanosci. Nanotech,2004,4,569-574.
    [14]W. Jiang, A. Singhal, J. N. Zheng, C. Wang and W. C. W. Chan, Optimizing the synthesis of red-to near-IR-emitting CdS-capped CdTexSe1-x alloyed quantum dots for biomedical imaging, Chem, Mater.,2006,18,4845-4854.
    [15]T. Jin, F. Fujii, Y. Komai, J. Seki, A. Seiyama and Y. Yoshioka, Preparation and characterization of highly fluorescent, glutathione-coated near infrared quantum dots for in vivo fluorescence imaging, Int. J. Mol. Sci.,2008,9,2044-2061.
    [16]T. Pons, N. Lequeux, B. Mahler, S. Sasnouski, A. Fragola and B. Dubertet, Synthesis of near-infrared-emitting, water-soluble CdTeSe/CdZnS core/shell quantum dots, Chem. Mater.,2009,21,1418-1424.
    [17]B. Xing, W. W. Li, X. B. Wang, H. J. Dou, L. Wang, K. Sun, X. T. He, J. S. Han, H. S. Xiao, J. M. Miao and Y. Li, Highly-fluorescent alloyed quantum dots of CdSe1-xTex synthesized in paraffin liquid:gradient structure and promising bio-application, J. Mater. Chem.,2010,20,5664-5674.
    [18]N. Piven, A. S. Susha, M. Doblinger and A. L. Rogach, Aqueous synthesis of alloyed CdSexTe1-x nanocrystals, J. Phys. Chem. C,2008,112,15253-15259.
    [19]L. X. Song, J. L. Duan and J. H. Zhan, One-pot microwave assisted synthesis of homogeneously alloyed CdSexTe1-x nanocrystals with tunable photoluminescence, Mater. Lett.,2010,64,1843-1845.
    [20]G X. Liang, M. M. Gu, J. R Zhang and J. J. Zhu, Preparation and bioapplication of high-quality, water-soluble, biocompatible, and near-infrared-emitting CdSeTe alloyed quantum dots, Nanotechnology,2009,20,415103.
    [21]G X. Liang, H. Y. Liu, J. R. Zhang and J. J. Zhu, Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots, Talanta,2010,80, 2172-2176.
    [22]L. L. Li, Y. Chen, Q. Lu, J. Ji, Y Y Shen, M. Xu, R. Fei, G. H. Yang, K. Zhang, J. R. Zhang and J. J. Zhu, Electrochemiluminescence energy transfer-promoted ultrasensitive immunoassay using near-infrared-emitting CdSeTe/CdS/ZnS quantum dots and gold nanorods, Scientific Reports,2013,3,1529.
    [23]A. F. E. Hezinger, J. Tessmar and A. Gopferich, Polymer coating of quantum dots-A powerful tool toward diagnostics and sensorics, Eur. J. Pharm. Biopharm, 2008,68,138-152.
    [24]D. B. Cordes, P. D. Lickiss and F. Rataboul, Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes, Chem. Rev.,2010,110, 2081-2173.
    [25]G. Z. Li, L. C. Wang, H. L. Ni and C. U. Pittman, Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers:a review, J. Inorg. Organomet. Polym.,2001,11,123-154.
    [26]S. B. Rizvi, L. Yildirimer, S. Ghaderi, B. Ramesh, A. M. Seifalian and M. Keshtgar, A novel POSS-coated quantum dot for biological application, Int. J. Nanomedicine.,2012,7,3915-3927.
    [27]F. F. Du, H. Wang, Y. Y Bao, B. Liu, H. T. Zheng and R. K. Bai, Conjugated coordination polymers based on 8-hydroxyquinoline ligands:impact of polyhedral oligomeric silsesquioxanes on solubility and luminescence, J. Mater. Chem.,2011, 21,10859-10864.
    [28]H. Ghanbari, B. G. Cousins and A. M. Seifalian, A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS), Macromol. Rapid Commun.,2011, 32,1032-1046.
    [29]P. Jungebluth, E. Alici, S. Baiguera, K. Le Blanc, P. Bbmberg, B. Bozoky, et al., Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite:a proof-of-concept study, Lancet,2011,378,1997-2004.
    [30]S. S. Suri, H. Fenniri and B. Singh, Nanotechnology-based drug delivery systems, J. Occup. Med. Toxicol.,2007,2,16.
    [31]R. Verdejo, G Jell, L. Safinia, A. Bismarck, M. M. Stevens and M. S. Shaffer, Reactive polyurethane carbon nanotube foams and their interactions with osteoblasts, J. Biomed. Mat. Res. Part A.,2009,88,65-73.
    [32]M. Ahmed, H. Ghanbari, B. G Cousins, G. Hamilton and A. M. Seifalian, Small calibre polyhedraloligomeric silsesquioxane nanocomposite cardiovascular grafts: Influence of porosity on the structure, haemocompatibility and mechanical properties, Acta Biomaterial.,2011,7,3857-3867.
    [33]M. Desai, R. Bakhshi, X. Zhou, M. Odlyha, Z. You, A. M. Seifalian and G. Hamilton, A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model, J. Endovascul. Therap.,2012,19,415-427.
    [34]H. Z. Liu, W. A. Zhang and S. X. Zheng, Montmorillonite intercalated by ammonium of octaaminopropyl polyhedral oligomeric silsesquioxane and its nanocomposites with epoxyresin, Polymer,2005,46,157-165.
    [35]F. J. Feher and K. D. Wyndham, Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers, Chem. Commun.,1998,3,323-324.
    [36]W. W. Yu, L. H. Qu, W. Z. Guo and X. G Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 2003,15,2854-2860.
    [37]A. L. Efros, Luminescence polarization of CdSe microcrystals, Phys. Rev. B, 1992,46,7448-7458.
    [38]D. T. F. Marple, Effective electron mass in CdTe, Phys. Rev.,1963,129, 2466-2470.
    [39]J. T. Hu, L. W. Wang, L. S. Li W. D. Yang and A. P. Alivisatos, Semiempirical pseudopotential calculation of electronic states of CdSe quantum rods, J. Phys. Chem B,2002,106,2447-2452.
    [40]夏玉宇著,化学实验室手册,化学工业出版社,2008。
    [41]X. H. Zhong, Y. Y. Feng, W. F. Knoll and M. Y. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width, J. Am. Chem. Soc., 2003,125,13559-13563.
    [42]H. B. Bao, Y. J. Gong, Z. Li and M. Y. Gao, Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals:toward highly fluorescent CdTe/CdS core-shell structure, Chem. Mater.,2004,16,3853-3859.
    [43]H. Borchert, D. V. Talapin, N. Gaponik, C. McGinley, S. Adam, A. Lobo, T. Moller and H. Weller, Relations between the photoluminescence efficiency of CdTe nanocrystals and their surface properties revealed by synchrotron XPS, J. Phys. Chem B,2003,107,9662-9668.
    [44]Y. He, H. T. Lu, L. M. Sai, Y. Y. Su, M. Hu, C. H. Fan, W. Huang and L. H. Wang, Microwave synthesis of water-dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with excellent photostability and biocompatibility, Adv. Mater., 2008,20,3416-3421.
    [45]D. V. Talapin, I. Mekis, S. Gotzinger, A. Kornowski, O. Benson and H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals, J. Phys. Chem B,2004,108,18826-18831.
    [46]J. Lovric, S. J. Cho, F. M. Winnik and D. Maysinger, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chemistry & Biology,2005,12, 1227-1234.
    [47]V. A. Sianni, D. S. Koktysh, B. G Yun, R. L. Matts, T. C. Pappas, M. Motamedi, S. N. Thomas and N. A. Kotov, Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films, Nano Lett.,2003,3, 1177-1182.
    [48]A. M. Derfus, W. C. W. Chan and S. N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots, Nano Lett.,2004,4,11-18.
    [49]A. Hoshini, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki and K. Yamamoto, Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification, Nano Lett.,2004, 11,2163-2169.
    [50]C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. M. Javier, H. E. Gaub, S. Stolzle, N. Fertig, W. J. Parak, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett,2005,5,331-338.
    [51]Y. F. Liu and J. S. Yu, In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility, J. Colloid Interface Sci.,2010,351, 1-9.
    [52]B. H. Dong, L. X. Cao, G. Su, W. Liu, H. Qu and D. X. Jiang, Synthesis and characterization of the water-soluble silica-coated ZnS:Mn nanoparticles as fluorescent sensor for Cu2+ ions, J. Colloid Interface Sci,2009,339,78-82.
    [53]G Brakmane, S. Y. Madani and A. M. Seifalian, Cancer antibody enhanced real time imaging cell probes a novel theranostic tool using polymer linked carbon nanotubes and quantum dots, Anti-Cancer. Agents. Med. Chem,2013,13, 821-832
    [54]J. Du, X. L. Li, S. J. Wang, Y. Z. Wu, X. P. Hao, C. W. Xu and X. Zhao, Micro wave-ass is ted synthesis of highly luminescent glutathione-capped Zn1-xCdxTe alloyed quantum dots with excellent biocompatibility, J. Mater. Chem.,2012,22,11390-11395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700