有机—无机杂化透明导电薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透明导电薄膜是一种非常重要的光电材料,它具有低电阻和高透光率的特点,可以被用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。目前广泛研究和应用的透明导电薄膜主要为In2O3:Sn (ITO)、Sb:SnO2 (ATO)和ZnO:Al (ZAO)等无机氧化物透明导电薄膜。氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点。但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差,这些缺点限制了它们的进一步应用。例如,可折叠显示屏上要求透明导电薄膜具有可弯曲性,飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。此外被广泛研究的导电材料还有高分子导电材料,包括聚苯胺、聚吡咯和聚噻吩等。其中聚苯胺由于在空气中的稳定性好、易加工、电导率易于调节等优点被广泛研究;但同时聚苯胺存在机械强度较低、耐热性差等缺点。因此考虑将聚苯胺导电材料掺杂入无机基体中,制备得到有机-无机杂化透明导电薄膜,就可以提高高分子导电材料的透光性、表面硬度以及热稳定性,获得韧性好、且和衬底结合性能好的透明导电薄膜。
     本文采用乳液聚合法制备十二烷基苯磺酸掺杂的导电聚苯胺(DBSA-PANI),并在此乳液系统中加入无机酸(盐酸、硝酸或硫酸)来调节乳液的酸度和结构,改善聚苯胺性能。然后将此聚苯胺通过溶胶-凝胶工艺与无机前驱体杂化,最终采用提拉法制备杂化透明导电薄膜。实验分别采用γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)和γ-巯丙基三甲氧基硅烷(MPTMS)为硅烷,研究了溶胶-凝胶中各成份和工艺对杂化薄膜性能的影响,并主要通过光谱分析研究材料的组成和结构。
     结果表明,通过在聚苯胺的乳液聚合体系中加入一定量的无机酸可以明显提高聚苯胺的导电性。当加入的无机酸浓度较小时,无机酸主要起到调节乳液酸度和结构的作用。随乳液中加入的无机酸浓度增大,材料导电性提高;但是当加入的无机酸浓度过大时,无机酸会和十二烷基苯磺酸(DBSA)形成竞争掺杂的关系,取代部分DBSA掺杂入聚苯胺链中,影响材料的稳定性。而且根据无机酸的体积和溶剂化效应的大小,掺杂入聚苯胺链的能力也不同。相对于体积较小的盐酸,较大体积的硫酸更容易掺杂入聚苯胺链中。因此,当在聚苯胺的乳液聚合体系中加入1.0 mol/L盐酸时,所得到的杂化薄膜的方块电阻最低。
     溶胶-凝胶过程中,各组份的含量决定了杂化材料性能和结构的稳定性。研究表明,在无水和乙醇的条件下,醋酸是硅烷发生水解和缩聚反应的反应剂和催化剂。在Y-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)为硅烷时,GPTMS有机链末端的环氧基在酸性条件下会开环形成羟基,有利于和聚苯胺反应,形成杂化结构。当醋酸与硅烷的摩尔比超过0.4后,会使硅烷的水解缩聚速率过快,造成与聚苯胺的掺杂速率不匹配,影响材料的稳定性。过多的醋酸还会引入较多的碳杂质,影响聚苯胺链中电子的传输,造成杂化材料导电性下降。间甲酚作为一种酸性溶剂,可以对聚苯胺进行二次掺杂,舒展聚苯胺的链结构,增强聚苯胺链中电子的离域性,提高材料导电性。但是由于其具有酸性,会对硅烷的水解缩聚反应起到催化的作用,同样会使硅烷的水解缩聚速率和聚苯胺的掺杂速率不匹配,影响杂化材料的结构。因此当醋酸和硅烷的摩尔比为0.4,间甲酚和硅烷的摩尔比为5时,能够得到结构稳定,且导电性和透光性都较好的杂化透明导电薄膜。同时,由于γ-巯丙基三甲氧基硅烷(MPTMS)有机链末端的巯基较容易被氧化形成磺酸基,因此可以对聚苯胺产生掺杂的作用。所以相对于GPTMS通过氢键作用和聚苯胺反应,MPTMS和聚苯胺形成的杂化结构更稳定,性能也较好。
     聚苯胺是杂化材料中的主要导电成份,研究聚苯胺含量对杂化薄膜结构和性能的影响的结果表明:聚苯胺含量增加会使无机网络更易形成二维网络结构,使材料的热稳定性下降。同时由于导电聚苯胺本身为酸性,对硅烷水解缩聚反应有催化作用,造成杂化结构不稳定。分别用GPTMS和MPTMS作为硅烷时,当聚苯胺含量为30wt.%时,杂化薄膜的方块电阻分别为5.1 kΩ/□和3.23 kΩ/□,可见光透过率可达80%。
Transparent Conducting film is an important kind of photoelectric materials, with low resistance and high transparence. Transparent conducting films can be used in flat panel displays, low-e windows, photovoltaics, electrochromic devices and anti-static coatings. Many kinds of inorganic transparent conducting films have been investigated, such as In2O3: Sn (ITO), Sb:SnO2 (ATO) and ZnO:Al (ZAO). However, they have some disadvantages, for example, poor adhesion property on the flexible substrate, and hard to be deposited on the polymer substrate due to the high synthetic temperature, which limit their further applications. Conducting polymer is also an important kind of conducting materials. Among various conducting polymers such as polyaniline, polypyrrole and polythiophene, polyaniline is widely investigated due to its environmental stability, promising chemical, electrical and optical properties, as well as its unique redox tenability. However, poor mechanical properties and poor thermal stability have limited the applications of polyaniline. Composites incorporated by inorganic components and organic polymers can enhance the transparency, surface hardness and heat resistance of polymers.
     In this paper, dodecylbenzene sulfonic acid-doped polyaniline (DBSA-PANI) was synthesized via the emulsion polymerization, and inorganic acids (HC1, HNO3 or H2SO4) were added to adjust the structure of the emulsion system and improve the structure of polyaniline. Then, the hybrid sol solution was prepared by the obtained polyaniline and organoalkoxysiloxane through a sol-gel process. The transparent hybrid conducting films were deposited by dip-coating method. The organoalkoxysiloxanes used in the experiment were y-glycidoxypropyltrimethoxysilane (GPTMS) and y-(mercaptopropyl)trimethoxysilane (MPTMS), respectively. The effects of content of components of sol-gel solution on the properties and structure of the hybrid films were investigated by a combination of testing techniques.
     The results showed that the conductivity of DBSA-PANI was improved, when a certain concentration of inorganic acid was added into the emulsion system. Inorganic acid adjusted the acidity and structure of the emulsion solution at a lower concentration of inorganic acid. The conductivity of the hybrid films increased with an increase of concentration of inorganic acid added in the emulsion solution. However, the structure of the obtained samples was unstable, when the added concentration of inorganic acid was too high, because inorganic acid was incorporated into the polymer chains and became the main dopant for polyaniline. Furthermore, the influence of inorganic acid on the polyaniline chain was related with the bulk volumes and solvation of inorganic acid. Compared with hydrochloric acid, sulfuric acid was easier to replace the DBSA because it was more bulky. Sheet resistance of the hybrid films is lowest, when 1.0 mol/L HCl was added into the emulsion solution.
     The properties and structure of the hybrid films were affected by the content of components in sol-gel process. Acetic acid was used to play both the roles of reagent and catalyst during the hydrolysis-condensation reaction of organoalkoxysiloxane, which replaced the water and ethanol. When GPTMS was used as organoalkoxysiloxane, the epoxy ring of GPTMS can form a hydroxyl group in acid condition, which is beneficial to the disperseion for DBSA-PANI into the inorganic structure. When the molar ratio of HAc to organoalkoxysiloxane was higher than 0.4, the sturcure of the hybrid films was unstable, since the hydrolysis-condensation reaction of organoalkoxysiloxane increased. Moreover, the content of C impurities increased with an increase of the content of acetic acid, which blocked the transfer of electron in the polyaniline chain and decreased the conductivity of the hybrid films. On the other hand, m-cresol can adjust the acidity of solution and it was also a secondary dopant for DBSA-PANI to enhance conductivity of the hybrid films. However, m-cresol, as a kind of acid solvent, also accelerated the hydrolysis-condensation reaction of organoalkoxysiloxane and affected the stable of the obtained samples. Thus, the better properties and structure of the hybrid films can be prepared with the organoalkoxysiloxane/HAc/m-cresol molar ratio of 1/0.4/5. Furthermore, when MPTMS was used as organoalkoxysiloxane, the mercapto group of MPTMS was easier to be oxidized to sulfonic acid group. Polyaniline can be doped with sulfonic acid group. Therefore, the structure of hybrid films was more stable, when MPTMS was used.
     DBSA-PANI was the main conducting component of the hybrid films. The effects of content of polyaniline on the structure and properties of the hybrid films were investigated. The results showed that, the inorganic network formed more linear structure with an increase in content of DBSA-PANI, which resulted in the thermal stability decreasing. Furthermore, polyaniline was acidic. The structure of the hybrid films were unstable with an increase of the content of polyaniline, since the hydrolysis-condensation reaction of organoalkoxysiloxane increased. Sheet resistances of GPTMS-PANI and MPTMS-PANI hybrid films were 5.1 kΩ/□and 3.23 kΩ/□, respectively, when the content of polyaniline was 30 wt.%. Visible light transmittance of the hybrid films reached 80%.
引文
[1]Hagen Klauk. Organic Electronics. WILEY-VCH Verlag GmbH & Co. KGaA
    [2]李世涛,乔学亮,陈建国.透明导电薄膜的研究现状及应用.激光与光电子学进展2003,40(7):53-59
    [3]K. Badeker. Uber die elektrische Leitfahigkeit und die thermoelektrische Kraft einiger Schwermetallverbindungen. Ann. Phys.1907,327 (4):749-766
    [4]J.M. Mochel. Electrically conducting coatings on glass and other ceramic bodies. US Patent 2564707, Aug.21,1951
    [5]G. Rupprecht. Untersuchungen der elektrischen und lichtelektrischen Leitfahigkeit dunner Indiumoxydschichten. Z. Phys.1954,139 (5):504-517
    [6]A. Thelen, H. Konig. Elektrische Leitfahigkeit und Struktur aufgestaubter Indiumoxydschichten. Naturwissenschaften.1956,43 (13):297-298
    [7]R. Groth, E. Kauer. Thermal Insulation of Sodium Lamps. Philips tech. Rev.1965,26 (4): 105-111
    [8]R. Groth. Untersuchungen an halbleitenden Indiumoxydschichten. Phys. Stat.Sol. B 1966, 14 (1):69-75
    [9]M. Okuya, N. Ito, K. Shiozaki. ITO thin films prepared by a microwave heating. Thin Solid Films.2007,515 (24):8656-8659
    [10]Z.H. Li, D.Y. Ren. Preparation of ITO transparent conductive film by sol-gel method. Trans. Nonferrous Met. Soc. China.2006,16 (6):1358-1361
    [11]N. Al-Dahoudi, M.A. Aegerter. Comparative study of transparent conductive In2O3:Sn (ITO) coatings made using a sol and a nanoparticle suspension. Thin Solid Films.2006, 502(1-2):193-197
    [12]T. Minami, H. Nanto, S. Takata. Highly conductive and transparent ZnO thin films prepared by r.f. magnetron sputtering in an applied external d.c. magnetic field. Thin Solid Films.1985,124 (1):43-47
    [13]Y. Lgasaki, H. Saito. Substrate temperature dependence of electrical properties of ZnO: Al epitaxial films on sapphire. J. Appl. Phys.1991,69 (4):2190-2195
    [14]K. Tominaga, T. Murayama, I. Mori, T. Ushiro, T. Moriga, I. Nakabayashi. Effect of insertion of thin ZnO layer in transparent conductive ZnO:Al film. Thin Solid Films. 2001,386 (2):267-270
    [15]Y.S. Kim, W.P. Tai. Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Appl. Surf. Sci.2007,253 (11):4911-4916
    [16]K. Tominaga, N. Umezu, I Mori, T. Ushiro, T. Moriga, I. Nakabayashi. Transparent conductive ZnO film preparation by alternating sputtering of ZnO:Al and Zn or Al targets. Thin Solid Films.1998,334 (1-2):35-39
    [17]I. Sieber, N. Wanderka, I. Urban, I. Dorfel, E. Schierhorn, F. Fenske, W. Fuhs. Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels. Thin Solid Films.1998,330 (2):108-113
    [18]J.M. Mochel, Coated Resistance. US Patent 2564706, Aug.21,1951
    [19]W. Robert Sinclair, F.G. Peters, D.W. Stillinger, S.E. Koonce. Devitrification of Tin Oxide Films (Doped and Undoped) Prepared by Reactive Sputtering. J. Electrochem. Soc.1965,112 (11):1096-1100
    [20]I.S. Mulla, V.J.Rao, H.S. Soni, S. Badrinarayanan, A.P.B. Sinha. Electron spectroscopic studies on films of SnO2 and SnO2:Sb. Surf. Coat. Technol.1987,31 (1):77-88
    [21]A.A. Zhukova, M.N. Rumyantseva, A.M. Abakumov, J. Arbiol, L. Calvo, A.M. Gaskov. Influence of antimony doping on structure and conductivity of tin oxide whiskers. Thin Solid Films.2009,518 (4):1359-1362
    [22]A. Ben-Shalom, L. Kaplan, R.L. Boxman, S. Goldsmith, M. Nathan. SnO2 transparent conductor films produced by filtered vacuum arc deposition. Thin Solid Films.1993, 236 (1-2):20-26
    [23]G.B. Hoflund, D.F. Cox, H.A. Laitenen. Preparation and surface characteristics of platinized antimony-doped tin oxide films. Thin Solid Films.1981,83 (2):261-265
    [24]T. Hashemi, J. Illingsworth, F. Golestani-Fard. X-ray Photoelectron Spectroscopy of Cadmium Tin Oxide Ceramics in As-Fired and Electrochemically Reduced Forms. J. Am. Ceram. Soc.1991,74 (3):662-665
    [25]A. Abrutis, G. Valincius, G. Baltrunas, L. Parafionovic, A. Valiuniene, Z. Saltyte. Spray-pyrolysis Cd2Sn04 films for electrochemical applications. Thin Solid Films.2007, 515 (17):6817-6823
    [26]G. Valincius, V. Reipa, M.P. Mayhew, V.L. Vilker. New degenerate metal-oxide electrodes for nearly reversible direct electron transfer to the redox proteins. Electrochem. Commun.2002,4 (4):314-317
    [27]X.N. Li, T.A. Gessert, T. Coutts. The properties of cadmium tin oxide thin-film compounds prepared by linear combinatorial synthesis. Appl. Surf. Sci.2004,223 (1-3): 138-143
    [28]Y. Dou, R.G. Egdell. Surface properties of indium-doped Cd2SnO4 ceramics studied by EELS and photoemission spectroscopy. Surf. Sci.1997,372 (1-3):289-299
    [29]M. Miyakawa, K. Ueda, H. Hosono. Carrier control in transparent semiconducting oxide thin films by ion implantation:MgIn2O4 and ZnO. Nucl. Instrum. Methods Phys. Res., Sect. B.2002,191 (1-4):173-177
    [30]J. Ni, L. Wang, Y. Yang, H. Yan, S. Jin, T.J. Marks, J.R. Ireland, C.R. Kannewurf. Charge Transport and Optical Properties of MOCVD-Derived Highly Transparent and Conductive Mg-and Sn-Doped In2O3 Thin Films. Inorg. Chem.2005,44 (17): 6071-6076
    [31]B.P. Uberuaga, D. Bacorisen, R. Smith, J.A. Ball, R.W. Grimes, A.F. Voter, K.E. Sickafus. Defect kinetics in spinels:Long-time simulations of MgAl2O4, MgGa2O4, and MgIn2O4. Phys. Rev. B:Condens. Matter.2007,75 (10):104116
    [32]A. Kurz, M.A. Aegerter. Novel transparent conducting sol-gel oxide coatings. Thin Solid Films.2008,516 (14):4513-4518
    [33]Y. Sato, J. Kiyohara, A. Hasegawa, T. Hattori, M. Ishida, N. Hamada, N. Oka, Y. Shigesato. Study on inverse spinel zinc stannate, Zn2Sn04, as transparent conductive films deposited by rf magnetron sputtering. Thin Solid Films.2009,518 (4):1304-1308
    [34]J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, B. Cheong, W.M. Kim. Transparent and conducting Zn-Sn-O thin films prepared by combinatorial approach. Appl. Surf. Sci. 2007,253 (18):7398-7403
    [35]G.B. Palmer, K.R. Poeppelmeier, T.O. Mason. Zn2-xSn1-xIn2xO4-δ:An Indium-Substituted Spinel with Transparent Conducting Properties. J. Solid State Chem. 1997,134(1):192-197
    [36]B. Tan, E. Toman, Y.G. Li, Y.Y. Wu. Zinc Stannate (Zn2Sn04) Dye-Sensitized Solar Cells. J. Am. Chem. Soc.2007,129 (14):4162-4163
    [37]J.S. Kim, S.G. Lee, H.L. Park, J.Y. Park, S.D. Han. Optical and electrical properties of ZnGa2O4/Mn2+ powder electroluminescent device. Mater. Lett.2004,58 (7-8): 1354-1357
    [38]B. Qiao, Z.L. Tang, Z.T. Zhang, L. Chen. Study on ZnGa2O4:Cr3+ a.c. powder electroluminescent device. Mater. Lett.2007,61 (2):401-404
    [39]K. Ikarashi, J. Sato, H. Kobayashi, N. Saito, H. Nishiyama, Y. Inoue. Photocatalysis for Water Decomposition by RuO2-Dispersed ZnGa2O4 with d10 Configuration. J. Phys. Chem. B.2002,106 (35):9048-9053
    [40]K.W. Chang, J.J. Wu. Formation of Well-Aligned ZnGa2O4 Nanowires from Ga2O3/ZnO Core-Shell Nanowires via a Ga2O3/ZnGa2O4 Epitaxial Relationship. J. Phys. Chem. B. 2005,109 (28):13572-13577
    [41]G. B. Palmer, K. R. Poeppelmeier. Phase relations, transparency and conductivity in Ga2O3-SnO2-ZnO. Solid State Sci.2002,4(3):317-322
    [42]J.C. Lin, K.C. Peng, C.A. Tseng, S.L. Lee. Deposition of Al-doped and Al, Sc-co-doped zinc oxide films by RF-and DC-sputtering of the ZnO and Al-xSc (x=0,0.4,0.8 and 1.7 wt.%) targets. Surf. Coat. Technol.2008,202 (22-23):3480-5483
    [43]H. Kim, R.C.Y. Auyeung, A. Pique. Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films.2008,516 (15):5052-5056
    [44]A.N. Banerjee, K.K. Chattopadhyay. Recent developments in the emerging field of crystalline p-type transparent conducting oxide thin films. Prog. Cryst. Growth Charact. Mater.2005,50 (1-3):52-105
    [45]R.D. Shannon, C.T. Prewitt, D.B. Rogers. Chemistry of noble metal oxides. II. Crystal structures of platinum cobalt dioxide, palladium cobalt dioxide, coppper iron dioxide, and silver iron dioxide. Inorg. Chem.1971,10 (4):719-723
    [46]F.A. Benko, F.P. Koffyberg. Opto-electronic properties of CuAlO2. J. Phys. Chem. Solids.1984,45 (1):57-59
    [47]B.U. Kohler, M. Jansen. Darstellung und Strukturdaten von Delafossiten" CuMO2 (M =Al, Ga, Sc, Y). Z. Anorg. Allg. Chem.1986,543 (12):73-80
    [48]M. Shimode, M. Sasaki, K. Mukaida. Synthesis of the Delafossite-Type CulnO2. J. Solid State Chem.2000,151 (1):16-20
    [49]J. Tate, M.K. Jayaraj, A.D. Draeseke, T. Ulbrich, A.W. Sleight, K.A. Vanaja, R. Nagarajan, J.F. Wager, R.L. Hoffman. p-Type oxides for use in transparent diodes. Thin Solid Films.2002,411 (1):119-124
    [50]R.B. Gall, N. Ashmore, M.A. Marquardt, X. Tan, D.P. Cann. Synthesis, microstructure, and electrical properties of the delafossite compound CuGaO2. J. Alloys Compd.2005, 391 (1-2):262-266
    [51]M. Sasaki, M. Shimode. Fabrication of bipolar CuInO2 with delafossite structure. J. Phys. Chem. Solids.2003,64 (9-10):1675-1679
    [52]H. Yanagi, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono. Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure. Solid State Commun.2001,121 (1):15-17
    [53]Y. Kakehi, K. Satoh, T. Yoshimura, A. Ashida, N. Fujimura. Effects of Mg doping on structural, optical, and electrical properties of CuScO2(0001) epitaxial films. Vacuum. 2009,84 (5):618-621
    [54]T.W. Chiu, K. Tonooka, N. Kikuchi. Fabrication of ZnO and CuCrO2:Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes. Thin Solid Films.2008,516 (18):5941-5947
    [55]R. Nagarajan, N. Duan, M.K. Jayaraj, J. Li, K.A. Vanaja, A. Yokochi, A. Draeseke, J. Tate, A.W. Sleight. p-Type conductivity in the delafossite structure. Int. J. Inorg. Mater. 2001,3 (3):265-270
    [56]A. Kudo, H. Yanagi, H. Hosono, H. Kawazoe. SrCu2O2:A p-type conductive oxide with wide band gap. Appl. Phys. Lett.1998,73 (2):220-222
    [57]H. Hiramatsu, K. Ueda, H. Ohta, M. Orita, M. Hirano, H. Hosono. Preparation of transparent p-type (Lal-xSrxO)CuS thin films by r.f. sputtering technique. Thin Solid Films.2002,411(1):125-128
    [58]Y. Takano, K. Yahagi, K. Sekizawa. The new conductive oxysulfides [(La1-xSrx)O]CuS containing a Cu-layer. Physica B.1995,206-207 (1):764-766
    [59]H. Hiramatsu, K. Ueda, K. Takafuji, H. Ohta, M. Hirano, T. Kamiya, H. Hosono. Intrinsic excitonic photoluminescence and band-gap engineering of wide-gap p-type oxychalcogenide epitaxial films of LnCuOCh (Ln=La, Pr, and Nd; Ch=S or Se) semiconductor alloys. J. Appl. Phys.2003,94:5805-5808
    [60]K. Ueda, H. Hiramatsu, H. Ohta, M. Hirano, T. Kamiya, H. Hosono. Single-atomic-layered quantum wells built in wide-gap semiconductors LnCuOCh (Ln=lanthanide, Ch=chalcogen). Phys. Rev. B.2004,69:155305-155308
    [61]W.J. Zhu, Y.Z. Huang, C. Dong, Z.X. Zhao. Synthesis and crystal structure of new rare-earth copper oxyselenides:RCuSeO (R=La, Sm, Gd and Y). Mater. Res. Bull.1994, 29 (2):143-147
    [62]M. Palazzi, C. Carcaly, J. Flahaut. Un nouveau conducteur ionique (LaO)AgS. J. Solid State Chem.1980,35 (2):150-155
    [63]宫兆合,梁国正,卢婷利,鹿海军.导电聚合物的研究进展.玻璃钢/复合材料.2003,1:45-47
    [64]H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc., Chem. Commun.1977,16:578-580
    [65]A.F. Diaz, K.K. Kanazawa, G.P. Gardini. Electrochemical polymerization of pyrrole. J. Chem. Soc., Chem. Commun.1979,14:635-636
    [66]Ronald E. Myers. Chemical oxidative polymerization as a synthetic route to electrically conducting polypyrroles. J. Electron. Mater.1986,15 (2):61-69
    [67]S.P. Armes. Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synth. Met.1987,20 (3):365-371
    [68]S. Barnoss, H. Shanak, C.C. Bof Bufon, T. Heinzel. Piezoresistance in chemically synthesized polypyrrole thin films. Sens. Actuators, A.2009,154 (1):79-84
    [69]M. Tang, T.Y. Wen, T.B. Du, Y.P. Chen. Synthesis of electrically conductive polypyrrole-polystyrene composites using supercritical carbon dioxide:Ⅱ. Effects of the doping conditions. Eur.Polym. J.2003,39 (1):151-156
    [70]K.K. Kanazawa, A.F. Diaz, W.D. Gill, P.M. Grant, G.B. Street, G.P. Gardini, J.F. Kwak. Polypyrrole:An electrochemically synthesized conducting organic polymer. Synth. Met. 1980,1 (3):329-336
    [71]Y. Cao, P. Smith, A.J. Heeger. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth. Met. 1992,48(1):91-97
    [72]J. Laska, A. Pron, S. Lefrant. Phosphoric acid diesters protonated polyaniline: Preparation, spectroscopic properties, and processability. J. Polymer Sci.:Part A.1995, 33 (9):1437-1445
    [73]M. Trchova, P. Matejka, J. Brodinova, A. Kalendova, J. Prokes, J. Stejskal. Structural and conductivity changes during the pyrolysis of polyaniline base. Polym. Degrad. Stab. 2006,91(1):114-121
    [74]P. Kiattibutr, L. Tarachiwin, L. Ruangchuay, A. Sirivat, J. Schwank. Electrical conductivity responses of polyaniline films to SO2-N2 mixtures:effect of dopant type and doping level. React. Funct. Polym.2002,53 (1):29-37
    [75]S. Zhou, T. Wu, J.Q. Kan. Effect of methanol on morphology of polyaniline. Eur. Polym. J.2007,43 (2):395-402
    [76]G.M. Abou-Elenien, A.A. El-Maghraby, G.M. El-Abdallah. Electrochemical relaxation study of polythiophene as conducting polymer (I). Synth. Met.2004,146 (2):109-119
    [77]E. Ruckenstein, J.S. Park. Polythiophene and polythiophene-based conducting composites. Synth. Met.1991,44 (3):293-306
    [78]W.M. Sears. The effect of humidity on the electrical conductivity of mesoporous polythiophene. Sens. Actuators, B.2008,130 (2):661-667
    [79]S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci.2009,34 (8):783-810
    [80]R.B. Kaner, A.G. MacDiarmid. Plastics That Conduct Electricity. Scientific American. 1988,258 (2):106-112
    [81]G. Green, A.E. Woodhead. CCXLIII.-Aniline-black and allied compounds. Part I. J. Chem. Soc., Trans.1910,97:2388-2403
    [82]G. Green, A.E. Woodhead. CXVII-Aniline-black and allied compounds. Part Ⅱ. J. Chem. Soc., Trans.1912,101:1117-1123
    [83]E. T. Kang, K. G. Neoh, K. L. Tan. Polyaniline:a polymer with many interesting intrinsic redox states. Progress of Polymer Science.1998 (23):277-324
    [84]S. Stafstrom, J.L. Bredas, A.J. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, A.G. MacDiarmid. Polaron lattice in highlyl conducting polyaniline:theoretical and optical studies. Phys. Rev. Lett.1987,59 (13):1464-1467
    [85]景遐斌,唐劲松,王英,雷良才,王宝忱,王佛松.掺杂态聚苯胺链结构的研究.中国科学B辑1990,1(1):15-20
    [86]L.X. Wang, X.B. Jing, F.S. Wang. Polytoluidines with different degrees of oxidation and their doping with HC1. Synth. Met.1989,29 (1):363-370
    [87]A.J Epstein, J.M Ginder, F. Zuo, R.W. Bigelow, H.S. Woo, D.B. Tanner, A.F. Richter, W. S. Huang, A.G. MacDiarmid. Insulator-to-metal transition in polyaniline. Synth. Met. 1987,18 (1-3):303-309
    [88]A. Fizazi, J. Moulton, K. Pakbaz, S.D.D.V. Rughooputh, P. Smith, A.J. Heeger. Percolation on a self-assembled network:Decoration of polyethylene gels with conducting polymer. Phys. Rev. Lett.1990,64 (18):2180-2183
    [89]M. Regh., C.O. Yoon, C.Y. Yang, D. Moses, P. Smith, A.J. Heeger. Transport in polyaniline networks near the percolation threshold. Phys. Rev. B.1994,50 (19): 13931-13941
    [90]Y. Cao, P. Smith. Liquid-crystalline solutions of electrically conducting polyaniline. Polymer.1993,34 (15):3139-3143
    [91]P.S. Rao, S. Subrahmanya, D.N. Sathyanarayana. Inverse emulsion polymerization:a new route for the synthesis of conducting polyaniline. Synth. Met.2002,128 (3): 311-316
    [92]R.K. Paul, C.K.S. Pillai. Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends. Synth. Met.2000,114 (1):27-35
    [93]Y. Haba, E. Segal, M. Narkis, G. I. Titelman, A. Siegmann. Polyaniline-DBSA/polymer blends prepared via aqueous dispersions. Synth. Met.2000,110 (3):189-193
    [94]王凤春,吕莹,徐敏,高雨.杂多酸掺杂聚苯胺微米棒、微米球的合成、表征及气敏性能研究.无机化学学报.2009,25(3):465-468
    [95]谷威,李志强,朱申敏,张荻.高能球磨法固相掺杂制备樟脑磺酸掺杂聚苯胺.化学学报.2008,66(9):1097-1101
    [96]G.W. Hwang, K.Y. Wu, M.Y. Hua, H.T. Lee, S.A. Chen. Structures and properties of the soluble polyanilines, N-alkylated emeraldine bases. Synth. Met.1998,92 (1):39-46
    [97]W.Y. Zheng, K. Levon, J. Laakso, J.E. Oesterholm. Characterization and Solid-State Properties of Processable N-Alkylated Polyanilines in the Neutral State. Macromolecules.1994,27 (26):7754-7768
    [98]M. Y. Hua, Y.N. Su, S.A. Chen. Water-soluble self-acid-doped conducting polyaniline: poly(aniline-co-N-propylbenzenesulfonic acid-aniline). Polymer.2000,41 (2):813-815
    [99]J.J. Langer. N-substituted polyanilines:Ⅰ. Poly(N-methylaniline) and related copolymers. Synth. Met.1999,35 (3):295-300
    [100]S. Hayat, Atta-ur-Rahman, M.I. Choudhary, K.M. Khan, W. Schumann, E. Bayer. N-Alkylation of anilines, carboxamides and several nitrogen heterocycles using CsF-Celite/alkyl halides/CH3CN combination. Tetrahedron.2001,57 (50):9951-9957
    [101]L. Hechavarria, H. Hu, M.E. Rincon. Polyaniline-poly(2-acrylamido-2-methyl-1-propanosulfonic acid) composite thin films:structure and properties. Thin Solid Films. 2003,441 (1-2):56-62
    [102]V. Prevost, A. Petit, F. Pla. Studies on chemical oxidative copolymerization of aniline and o-alkoxysulfonated anilines Ⅱ. Mechanistic approach and monomer reactivity ratios. Eur. Polym. J.1999,35 (7):1229-1236
    [103]W. Yin, E. Ruckenstein. Water-Soluble Self-Doped Conducting Polyaniline Copolymer. Macromolecules.2000,33 (4):1129-1131
    [104]W.J. Bae, K.H. Kim, Y.H. Park, W.H. Jo. A novel water-soluble and self-doped conducting polyaniline graft copolymer. Chem. Comm.2003:2768-2769
    [105]F. Hua, E. Ruckenstein. Copolymers of Aniline and 3-Aminophenol Derivatives with Oligo(oxyethylene) Side Chains as Novel Water-Soluble Conducting Polymers. Macromolecules.2004,37 (16):6104-6112
    [106]马会茹,官建国,柳娜,卢国军,袁润章.PEG链段对聚乙二醇接枝聚苯胺结构与性能的影响.高分子学报.2006,1:92-96
    [107]W. Jia, R. Tchoudakov, E. Segal, R. Joseph, M. Narkis, A. Siegmann. Electrically conductive composites based on epoxy resin with polyaniline-DBSA fillers. Synth. Met.2003,132 (3):269-278
    [108]M. Bouguettaya, N. Vedie, C. Chevrot. New conductive adhesive based on Poly(3,4-ethylene dioxythiophene). Synth. Met.1999,102 (1-3):1428-1431
    [109]A. Morrin, O. Ngamna, E. O'Malley, N. Kent, S.E. Moulton, G.G. Wallace, M.R. Smyth, A.J. Killard. The fabrication and characterization of inkjet-printed polyaniline nanoparticle films. Electrochim. Acta.2008,53 (16):5092-5099
    [110]Y. Yoshioka, G.E. Jabbour. Desktop inkjet printer as a tool to print conducting polymers. Synth. Met.2006,156 (11-13):779-783
    [111]A. Meroufel, C. Deslouis, S. Touzain. Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings. Electrochim. Acta.2008,53 (5): 2331-2338
    [112]S. Ebrahim, A.H. Kashyout, M. Soliman. Ac and Dc conductivities of polyaniline/poly vinyl formal blend films. Current Applied Physics.2009,9 (2):448-454
    [113]B. Wessling, J. Posdorfer. Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochim. Acta.1999,44 (12):2139-2147
    [114]S. Koul, R. Chandra, S.K. Dhawan. Conducting polyaniline composite for ESD and EMI at 101 GHz. Polymer.2000,41 (26):9305-9310
    [115]M.S. Cho, H.J. Choi, K. To. Effect of ionic pendent groups on a polyaniline-based electrorheological fluid. Mactomol. Rapid Commun.1998,19 (6):271-273
    [116]F.F. Fang, J.H. Sung, H.J. Choi. Shear Stress and Dielectric Characteristics of Polyaniline/TiO2 Composite-Based Electrorheological Fluid. J. Macromol. Sci., Phys. 2006,45 (5):923-932
    [117]M.S. Cho, Y.H. Cho, H.J. Choi, M.S. Jhon. Synthesis and Electrorheological Characteristics of Polyaniline-Coated Poly(methyl methacrylate) Microsphere:Size Effect. Langmuir.2003,19 (14):5875-5881
    [118]G. Cui, J.S. Lee, S.J. Kim, H. Nam, G.S. Cha, H.D. Kim. Potentiometric pCO2 sensor using polyaniline-coated pH-sensitive electrodes. Analyst.1998,123:1855-1859
    [119]M. Ando, C. Swart, E. Pringsheim, V.M. Mirsky, O.S. Wolfbeis. Optical ozone detection by use of polyaniline film. Solid State Ionics.2002,152-153:819-822
    [120]F.Rahman, A.Z. Khokhar. Thermochromic effect in synthetic opal/polyaniline composite structures. Appl. Phys. A.2009,94 (2):405-410
    [121]D. Belanger, X. Ren, J. Davey, F. Uribe, S. Gottesfeld. Characterization and Long-Term Performance of Polyaniline-Based Electrochemical Capacitors. J. Electrochem. Soc.2000,147 (8):2923-2929
    [122]J.H. Park, O.O. Park. Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes. J. Power Sources.2002,111 (1):185-190
    [123]C.Z. Meng, C.H. Liu, S.S. Fan. Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem. Commun.2009,11 (1): 186-189
    [124]X.L. Jing, Y.Y. Wang, B.Y. Zhang. Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings. J. Appl. Polym. Sci.2005,98 (5):2149-2156
    [125]J. Joo, C.Y. Lee. High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J. Appl. Phys.2000,88 (1):513
    [126]A.J. Epstein, A.G. MacDiarmid. Polyanilines:From solitons to polymer metal, from chemical currosity to technology. Synth. Met.1995,69 (1-3):179-182
    [127]A.J. Epstein, J.M. Ginder, F. Zuo, H.S. Woo, D.B. Tanner, A.F. Richter, M. Angelopoulos, W.S. Huang, A.G. MacDiarmid. Insulator-to-metal transition in polyaniline:Effect of protonation in emeraldine. Synth. Met.1987,21 (1-3):63-70
    [128]R.J. Tseng, J. Huang, J. Ouyang, R.B. Kaner, Y. Yang. Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory. Nano Lett.2005,5 (6):1077-1080
    [129]Y. Yang, J. Ouyang, L. Ma, R.J. Tseng, C.W. Chu. Electrical switching and bistability in organic/polymeric thin films and memory devices. Adv. Funct. Mater.2006,16 (8): 1001-1014
    [130]B. Xu, Y. Ovchenkov, M. Bai, A. N. Caruso, A. V. Sorokin, Stephen Ducharme, B. Doudin, P. A. Dowben. Heterojunction diode fabrication from polyaniline and a ferroelectric polymer. Appl. Phys. Lett.2002,81 (22):4281
    [131]J.M.G. Laranjeira, H.J. Khoury, W.M. de Azevedo, E.F. da Silva Jr., E.A. de Vasconcelos. Fabrication of high quality silicon-polyaniline heterojunctions. Appl. Surf. Sci.2002,190 (1-4):390-394
    [132]J. Jang, J. Ha, K. Kim. Organic light-emitting diode with polyaniline-poly(styrene sulfonate) as a hole injection layer. Thin Solid Films.2008,516 (10):3152-3156
    [133]K. Fehse, G. Schwartz, K. Walzer, K. Leo. Combination of a polyaniline anode and doped charge transport layers for high-efficiency organic light emitting diodes. J. Appl. Phys.2007,101:124509
    [134]P. Somani, B.B. Kale, D.P. Amalnerkar. Charge transport mechanism and the effect of poling on the current-voltage characteristics of conducting polyaniline-BaTiO3 composites. Synth. Met.1999,106 (1):53-58
    [135]魏建红,官建国,陈文怡,袁润章.聚苯胺/钛酸钡纳米复合粒子的制备与表征.物理化学学报.2002,18(7):653-656
    [136]V.L. Reena, C. Pavithran, V. Verma, J.D. Sudha. Nanosturctured multifunctional electromagnetic materiasl from the guest-host inorganic-organic hybrid ternary system of a polyaniline-clay-polyhydroxy iron composite:preparation and properties. J. Phys. Chem. B.2010,114(8):2578-2585
    [137]K.R. Reddy, B.C.I Sin, K.S. Ryu, J.C. Kim, H. Chung, Y. Lee. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: Synthesis, morphological characteristics and electrical properties. Synth. Met.2009, 159 (7-8):595-603
    [138]P.M. Ebelmen. Sur les combinaisons des acides borique et silicique avee les ethers. Ann. Chim. Phys.1846,16:129-166
    [139]D.M. Roy, R. Roy. An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals. Am. Mineral.1954,39:957-975
    [140]D. Wang, G.P. Bierwagen. Sol-gel coating on metals for corrosion protection. Prog. Org. Coat.2009,64 (4):327-338
    [141]M. Ito, Y. Uchida, K. Matsui. Polyaniline/Silica Hybrid Composite Gels Prepared by the Sol-Gel Process. Journal of Sol-Gel Science and Technology.2003,26 (1-3): 479-486
    [142]J. Luo, Q.G. Wang, X.H. Wang, J. Li, X.J. Zhao, F.S. Wang. Water-resistant conducting hybrids from electrostatic interactions. J. Polym. Sci., Part A:Polym. Chem.2007,45 (8):1424-1431
    [143]Y. Wei, J.M. Yeh, D. Jin, X. Jia, J. Wang, G.W. Jang, C. Chen, R.W. Gumbs. Composites of Electronically Conductive Polyaniline with Polyacrylate-Silica Hybrid Sol-Gel Materials. Chem. Mater.1995,7(5):969-974
    [144]T. Hori, N. Kuramoto, H. Tagaya, M. Karasu, J. Kadokawa, K. Chiba. Preparation of conducting film composed of polyaniline and metal oxide by sol-gel method. J. Mater. Res.1999,14(1):5-7
    [1]J.E. Osterholm, Y. Cao, F. Klavettera, P. Smith. Emulsion polymerization of aniline. Polymer.1994,35 (13):2902-29-6
    [2]P.J. Kinlen, J. Liu, Y. Ding, C.R. Graham, E.E. Remsen. Emulsion Polymerization Process for Organically Soluble and Electrically Conducting Polyaniline. Macromolecules.1998,31 (6):1735-1744
    [3]S.G. Kim, J.Y. Lim, J.H. Sung, H.J. Choi, Y. Seo, Emulsion polymerized polyaniline synthesized with dodecylbenzene-sulfonic acid and its electrorheological characteristics: Temperature effect. Polymer.2007,48 (22):6622-6631
    [4]S.G. Kim, J.W. Kim, H.J. Choi, M.S. Suh, M.J. Shin, M.S. Jhon. Synthesis and electrorheological characterization of emulsion-polymerized dodecylbenzenesulfonic acid doped polyaniline-based suspensions. Colloid. Polym. Sci.2000,278 (9):1435-1536
    [5]B.H. Jeon, S. Kim, M.H. Choi, I.J. Chung. Synthesis and characterization of polyaniline-polycarbonate composites prepared by an emulsion polymerization. Synth. Met.1999,104 (2):95-100
    [6]J. Kim, S. Kwon, D.W. Ihm. Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. Current Applied Physics.2007,7 (2): 205-210
    [7]Z. Zhang, Z. Wei, M. Wan. Nanostructures of Polyaniline Doped with Inorganic Acids. Macromolecular.2002,35 (15):5937-5942
    [8]S. Palaniappan, C. Saravanan, C.A. Amarnath, V.J. Rao. Polyaniline Salts and Complexes as Catalyst in Bisindole Synthesis. Catal. Lett.2004,97 (1-2):77-81
    [9]A. Wolter, P. Rannou, J.P. Travers, B. Gilles, D. Djurado. Model for aging in HCl-protonated polyaniline:Structure, conductivity, and composition studies. Phys. Rev. B.1998,58 (12):7637-7647
    [10]F. Lux. Properties of electronically conductive polyaniline:a comparison between well-known literature data and some recent experimental findings. Polymer.1994,35 (14):2915-2936
    [11]W. Li, D.E. Hooks, P. Chiarelli, Y. Jiang, H. Xu, H.L. Wang. Fabrication and Characterization of Optically Active Multilayer Thin Films Based on Polyaniline Colloids. Langmuir.2003,19 (11):4639-4644
    [12]W. Yin, E. Ruckenstein. Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid. Synth. Met.2000,108 (1):39-46
    [13]F.G. de Souza Jr., B.G. Soares. Methodology for determination of Pani.DBSA content in conductive blends by using UV-Vis spectrometry. Polym. Test.2006,25 (4):512-517
    [14]T. Lindfors, C. Kvarnstrom, A. Ivaska. Raman and UV-vis spectroscopic study of polyaniline membranes containing a bulky cationic additive. J. Electroanal. Chem.2002, 518 (2):131-138
    [15]X.P. Lei, Z.X. Su. Novel conducting polyaniline copolymers of aniline and N-phenylglycine. Mater. Lett.2007,61 (4-5):1158-1161
    [16]Y. Kieffel, J.P. Travers, A. Ermolieff, D. Rouchon. Thermal aging of undoped polyaniline:Effect of chemical degradation on electrical properties. J. Appl. Polym. Sci. 2002,86 (2):395-404
    [17]A.G. MacDiarmia, A.J. Epstein. The concept of secondary doping as applied to polyaniline. Synth. Met.65 (2-3):103-116
    [18]A.G. MacDiarmin, A.J. Epstein. Secondary doping in polyanilnie. Synth. Met.1995,69 (1-3):85-92
    [19]J.K. Avlyanov, Y. Min, A.G. MacDiarmid, A.J. Epstein. Polyaniline:conformational changes induced in solution by variation of solvent and doping level. Synth. Met.1995, 72 (1):65-71
    [20]M.M. Ayad, M.A. Sheneshin. Effect of acids on in situ polyaniline film formation. Polym. Int.2004,53 (8):1180-1184
    [21]A. Tursun, X.G. Zhang, J. Ruxangul. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys.2005,90 (2-3):367-372
    [22]Y.G. Han, T. Kusunose, T. Sekino. One-step reverse micelle polymerization of organic dispersible polyaniline nanoparticles. Synth. Met.2009,159 (1-2):123-131
    [23]S. Bhadra, D. Khastgir. Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Polym. Degrad. Stab.2005,90 (2-3):367-372
    [24]J.M. Kinyanjui, N.R. Wijeratne, J. Hanks, D.W. Hatchett. Chemical and electrochemical synthesis of polyaniline/platinum composites. Electrochim. Acta.2006,51 (14): 2825-2835
    [25]X.X. Li. Improving the electrochemical properties of polyaniline by co-doping with titanium ions and protonic acid. Electrochim. Acta.2009,54 (24):5634-5639
    [26]M.A. Salem, A.F. Al-Ghonemiy, A.B. Zaki. Photocatalytic degradation of Allura red and Quinoline yellow with Polyaniline/TiO2 nanocomposite. Appl. Catal., B.2009,91 (1-2): 59-66
    [27]G. Brusatin, P. Innocenzi, M. Guglielmi, F. Babonneau. Basic Catalyzed Synthesis of Hybrid Sol-Gel Materials Based on 3-Glycidoxypropyltrimethoxysilane. J. Sol-Gel Sci. Technol.2003,26 (1-3):303-306
    [28]S. Kang, S. Hong, C.R. Choe, M. Park, S. Rim, J. Kim. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process. Polymer.2001,42 (3):879-887
    [29]M.G. Han, S.K. Cho, S.G. Oh, S.S. Im. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met.2002,126 (1): 53-60
    [30]E. Marie, R. Rothe, M. Antonietti, K. Landfester. Synthesis of Polyaniline Particles via Inverse and Direct Miniemulsion. Macromolecules.2003,36 (11):3967-3973
    [31]T.D. Castillo-Castro, M.M. Castillo-Ortega, I. Villarreal, F. Brown, H. Grijalva, M. Perez-Tello, S.M. Nuno-Donlucas, J.E. Puig. Synthesis and characterization of composites of DBSA-doped polyaniline and polystyrene-based ionomers. Composites Part A.2007,38 (2):639-345
    [32]P. Tsotra, K. Friedrich. Thermal, mechanical, and electrical properties of epoxy resin/polyaniline-dodecylbenzenesulfonic acid blends. Synth. Met.2004,143 (2): 237-242
    [33]F. Yakuphanoglu, B.F. nkal. Electrical transport properties of an organic semiconductor on polyaniline doped by boric acid. Polym. Adv. Technol.2008,19 (12): 1876-1881
    [34]C.J. Mathai, S. Saravanan, M.R. Anantharaman, S. Venkitachalam, S. Jayalekshmi. Effect of iodine doping on the bandgap of plasma polymerized aniline thin films. J. Phys. D:Appl. Phys.2002,35 (17):2206-2210
    [35]S. Saravanan, M.R. Anantharaman, S. Venkatachalam, D.K. Avasthi. Studies on the optical band gap and cluster size of the polyaniline thin films irradiated with swift heavy Si ions. Vacuum.2007,82 (1):56-60
    [36]Y.Y. Wang, X.L. Jing. Transparent conductive thin films based on polyaniline nanofibers. Mater.Sci.Eng., B.2007,138 (1):95-100
    [1]S.H. Jang, M.G. Han, S.S. Im. Preparation and characterization of conductive polyaniline/silica hybrid composites prepared by sol-gel process. Synth. Met.2000,110 (1):17-23
    [2]B.H. Yoon, H.E. Kim, H.W. Kim. Bioactive microspheres produced from gelatin-siloxane hybrids for bone regeneration. J. Mater. Sci., Mater. Med.2008,19 (6):2287-2292
    [3]S.S. Pathak, A.S. Khanna. Investigation of anti-corrosion behavior of waterborne organosilane-polyester coatings for AA6011 aluminum alloy. Prog. Org. Coat.2009,65 (2):288-294
    [4]Z.A. Alothman, A.W. Apblett. Preparation of mesoporous silica with grafted chelating agents for uptake of metal ions. Chem. Eng. J.2009,155 (3):916-924
    [5]J. Zou, W. Shi, X. Hong. Characterization and properties of a novel organic-inorganic hybrid based on hyperbranched aliphatic polyester prepared via sol-gel process. Composites Part A.2005,36 (5):631-637
    [6]W.H. Green, K.P. Le, J. Grey, T.T. Au, M.J. Sailor. White Phosphors from a Silicate-Carboxylate Sol-Gel Precursor That Lack Metal Activator Ions. Science.1997, 276:1826-1828
    [7]王英锋,李雪,刘云义.溶胶-凝胶法制备二氧化钛溶胶.合成化学.2008,16(6):705-708
    [8]王潮霞,陈水林.溶胶-凝胶溶液稳定性因素初探.印染助剂.2005,22(4):31-33
    [9]X.P. Fan, M.Q. Wang, Z.Y. Wang, Z.L. Hong. Luminescence behavior of terbium sulphosalicylic acid complexes in sol-gel derived host materials. Mater. Res. Bull.1997, 32 (8):1119-1125
    [10]W. Li, D.E. Hooks, P. Chiarelli, Y. Jiang, H. Xu, H.L. Wang. Fabrication and Characterization of Optically Active Multilayer Thin Films Based on Polyaniline Colloids. Langmuir.2003,19 (11):4639-3644
    [11]O. Ngamna, A. Morrin, A.J. Killard, S.E. Moulton, M.R. Smyth,,G.G. Wallace. Inkjet Printable Polyaniline Nanoformulations. Langmuir.2007,23 (16):8569-8574
    [12]K.W. Chi, H.Y. Hwang, S.H. Jin, H.M. Jeong, K.S. Yoon, J.M. Kim, C.W. Lee. Construction of and electrophoretic fluorescence imaging with a nano-porous polyaniline-fluorescein conducting particle system. Chem. Commun.2009,13: 1647-1649
    [13]Y. Cao, P. Smith, A.J. Heeger. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synth. Met. 1992,48(1):91-97
    [14]A.G. MacDiarmid, A.J. Epstein. The concept of secondary doping as applied to polyaniline. Synth. Met.1994,65 (2-3):103-116
    [15]W. Zheng, Y. Min, A.G. MacDiarmid, M. Angelopoulos, Y.H. Liao, A.J. Epstein. Effect of organic vapors on the molecular conformation of non-doped polyaniline. Synth. Met. 1997,84 (1-3):63-64
    [16]R.K. Paul,C.K.S. Pillai. Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends. Synth. Met.2000,114 (1):27-35
    [17]S. Stafstrom,J.L. Bredas. A.J. Epstein. H.S. Woo, D.B. Tanner, W.S. Huang, A.G. MacDiarmid. Polaron lattice in highly conducting polyaniline:Theoretical and optical studies. Phys. Rev. Lett.1987,59 (13):1464-1467
    [18]M. Cha, D. Neher, F.W. Embs, S. Mittler-Neher, G. Stegeman. Determination of the two first non-trivial orientational order parameters in LB films of rod-like molecules by third-order sum frequency mixing. Chem. Phys. Lett.1993,202 (1-2):44-50
    [19]S.E. Jacobo, J.C. Aphesteguy, R.L. Anton, N.N. Schegoleva, G.V. Kurlyandskaya. Influence of the preparation procedure on the properties of polyaniline based magnetic composites. Eur. Polym. J.2007,43 (4):1333-1346
    [20]B. Philip, J. Xie, J.K. Abraham, V.K. Varadan. Polyaniline/carbon nanotube composites: starting with phenylamino functionalized carbon nanotubes. Polym. Bull.2005,53 (2): 127-138
    [21]Z.M. Zhang, J.Y. Deng, M.X. Wan. Highly crystalline and thin polyaniline nanofibers oxidized by ferric chloride.2009,115 (1):275-279
    [22]L.T. Cai, S.B. Yao, S.M. Zhou. Effects of the magnetic field on the polyaniline film studied by in situ conductivity measurements and X-ray diffraction. J. Electroanal. Chem.1997,421 (1-2):45-48
    [23]P. Rannou, A. Gawlicka, D. Berner, A. Pron, M. Nechtschein. Spectroscopic, Structural and Transport Properties of Conductive Polyaniline Processed from Fluorinated Alcohols.1998,31 (9):3007-3015
    [1]Y.G. Han, T. Kusunose, T. Sekino. Facile one-pot synthesis and characterization of novel nanostructured organic dispersible polyaniline. J. Polym. Sci. Part B:Polym. Phys.2009, 47 (10) 1024-1029
    [2]A. Rahy, D.J. Yang. Synthesis of highly conductive polyaniline nanofibers. Mater. Lett. 2008,62 (28):4311-4314
    [3]F.G. Souza Jr., B.G. Soares, J.C. Pinto. Electrical surface resistivity of conductive polymers-A non-Gaussian approach for determination of confidence intervals. Eur. Polym. J.2008,44 (11):3908-3914
    [4]G.R. Pedro, C. Malgorzata, C.G. Karina, A.A. Juan, J.K. Pawel, C.P. Nieves, L.C. Monica. Hybrid organic-inorganic nanocomposite materials for application in solid state electrochemical supercapacitors. Electrochem. Commun.2003,5 (2):149-153
    [5]I.S. Lee, J.Y. Lee, J.H. Sung, H.J. Choi. Synthesis and electrorheological characteristics of polyaniline-titanium dioxide hybrid suspension. Synth. Met.2005,152 (1-3):173-176
    [6]L. Geng, Y.Q. Zhao, X.L. Huang, S.R. Wang, S.M. Zhang, S.H. Wu. Characterization and gas sensitivity study of polyaniline/SnO2 hybrid material prepared by hydrothermal route. Sens. Actuator, B.2007,120 (2):568-572
    [7]Q.G. Wang, N.J. Liu, X.H. Wang, J. Li, X.J. Zhao, F.S. Wang. Conductive hybrids from water-borne conductive polyaniline and (3-glycidoxypropyl)trimethoxysilane. Macromolecules.2003,36 (15):5760-5764
    [8]D.X. Han, Y. Chu, L.K. Yang, Y. Liu, Z.X. Lv. Reversed micelle polymerization:a new route for the synthesis of DBSA-polyaniline nanoparticlesColloid. Surface. A: Physicochem. Eng. Aspects.2005,259 (1-3):179-187
    [9]T.L. Wang, C.H. Yang, Y.T. Shieh, A.C. Yeh. Synthesis and properties of conducting organic/inorganic polyurethane hybrids. Eur. Polym. J.2009,45 (2):387-397
    [10]J.J. Yuan, S.X. Zhou, G.X. Gu, L.M. Wu. Effect of the particle size of nanosilica on the performance of epoxy/silica composite coatings. J. Mater. Sci.2005,40 (15):3927-3932
    [11]R.Cruz-Silva, J. Romero-Garcia, J.L. Angulo-Sanchez, E. Flores-Loyola, M.H. Farias, F.F. Castillon, J.A. Diaz. Comparative study of polyaniline cast films prepared from enzymatically and chemically synthesized polyaniline. Polymer.2004,45 (14): 4711-4717
    [12]G. Venugopal, X. Quan, G.E. Johnson, F.M. Houlihan, E. Chin, O. Nalamasu. Photoinduced Doping and Photolithography of Methyl-Substituted Polyaniline. Chem. Mater.1995,7 (2):271-276
    [13]L.L. Ding, X.W. Wang, R.V. Gregory. Thermal properties of chemically synthesized polyaniline (EB) powder. Synth. Met.1999,104 (2):73-78
    [14]A.J. Dominis, G.M. Spinks, L.A.P. Kane-Maguire, G.G. Wallace. A de-doping/re-doping study of organic soluble polyaniline. Synth. Met.2002,129 (2):165-172
    [15]U.S. Sajeev, C.J. Mathai, S. Saravanan, R.R. Ashokan, S. Venkatachalam, M.R. Anantharaman. On the optical and electrical properties of rf and a.c. plasma polymerized aniline thin films. Bull. Mater. Sci.2006,29 (2):159-163
    [16]C.J. Mathai, S. Saravanan, M.R. Anantharaman, S. Venkitachalam, S. Jayalekshmi. Effect of iodine doping on the bandgap of plasma polymerized aniline thin films. J. Phys. D:Appl. Phys.2002,35 (17):2206-2210
    [17]A. K. Mukherjee, R, Menon. Role of mesoscopic morphology in charge transport of doped polyaniline. Pramana J. Phys.2002,58 (2):233-239
    [1]Y.S. Li, Y. Wang, T. Tran, A, Perkins. Vibrational spectroscopic studies of (3-mercaptopropyl)trimethoxylsilane sol-gel and its coating. Spectrochim. Acta, Part A. 2005,61 (13-14):3032-3037
    [2]E. Finocchio, E. Macis, R. Raiteri, G. Busca. Adsorption of Trimethoxysilane and of 3-Mercaptopropyltrimethoxysilane on Silica and on Silicon Wafers from Vapor Phase:An IR Study. Langmuir.2007,23 (5):2505-2509
    [3]W. Liu, A.L. Cholli, R. Nagarajan, J. Kumar, S. Tripathy, F.F. Bruno, L. Samuelson. The Role of Template in the Enzymatic Synthesis of Conducting Polyaniline. J. Am. Ceram. Soc.1999,121 (49):11345-11355
    [4]S. Pruneanu, E. Veress, I. Marian, L. Oniciu. Characterization of polyaniline by cyclic voltammetry and UV-Vis absorption spectroscopy.1999,34 (11):2733-2739
    [5]L.M. Huang, T.C. Wen, A. Gopalan. Synthesis and characterization of soluble conducting poly(aniline-co-2,5-dimethoxyaniline). Mater. Lett.2003,57 (12):1765-1774
    [6]J.E. Pereira da Silvaa, M.L.A. Temperinia, S.I. Cordoba de Torresia. Secondary doping of polyaniline studied by resonance Raman spectroscopy. Electrochim Acta.1999,44 (12): 1887-1891
    [7]M. Angelopoulos, R. Dipietro, W.G. Zheng, A.G. MacDiarmid, A.J. Epstem. Effect of selected processing parameters on solution properties and morphology of polyaniline and impact on conductivity. Synth. Met.1997,84 (1-3):35-39
    [8]V.G. Kulkarni, L.D. Campbell, W.R. Mathew. Thermal stability of polyaniline. Synth. Met. 1989,30 (3):321-325
    [9]A. Kitani, K. Yoshioka, S. Maitani, S. Ito. Properties of elastic polyaniline. Synth. Met. 1997,84 (1-3):83-84
    [10]X.Y. Li, D.S. Wang, Q.Z. Luo, J. An, Y.H. Wang, G.X. Cheng. Surface modification of titanium dioxide nanoparticles by polyaniline via an in situ method. J. Chem. Technol. Biotechnol.2008,83 (11):1558-1564
    [11]S. Saravanan, M.R. Anantharaman, S. Venkatachalam, D.K. Avasthi. Studies on the optical band gap and cluster size of the polyaniline thin films irradiated with swift heavy Si ions. Vacuum.2007,82 (1):56-60
    [12]J.B. Yadav, R.B. Patil, R.K. Puri, V. Puri. Studies on spin coated PANI/PMMA composite thin film:Effect of post-deposition heating. Appl. Surf. Sci.2008,255 (5): 2825-2529

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700