含氮杂环有机青铜缓蚀剂的缓蚀性能及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青铜文物是我国古代文明的象征之一,具有极高的历史、艺术和科学价值。由于埋藏时间长及出土后存贮条件的改变等原因,使古代青铜器面临着严峻的腐蚀防护问题。青铜器在潮湿、含有氯离子及氧化性气氛环境里,容易发生一种危害性极大、被称之为“青铜病”的腐蚀过程,使青铜文物受到严重的损害。
     使用和添加缓蚀剂已成为防腐蚀技术中应用最为广泛的方法之一。其中有机型缓蚀剂具有良好的缓蚀效果和较高的经济效益,成为缓蚀剂研究的热点。大量研究表明:有机型缓蚀剂可以通过其杂环原子,如O、N、S、P,或者不饱和键与金属表面吸附,达到抑制腐蚀的效果。基于以上观点,一些唑类化合物被用作青铜缓蚀剂,发挥其防腐蚀的作用。尽管如此,对含氮杂环有机化合物的缓蚀作用机理却有待改善。本论文发展了三种含氮有机杂环化合物的缓蚀机理,并对其进行缓蚀性能评价。
     本论文筛选了3种含氮杂环有机缓蚀剂BTA(苯并三唑,Benzotriazole)、AMT(2-氨基-5-巯基-1,3,4-噻二唑)和MBO(2-巯基苯并恶唑),通过失重试验、表面分析、X射线衍射和傅里叶红外光谱仪等多种手段和方法测试了其缓蚀性能,分析了它们对青铜的缓蚀机理,从理论上探讨了缓蚀剂分子与金属表面的作用方式,归纳了分子结构与缓蚀效果之间的关系。主要结论如下:
     酸性介质中的失重实验表明,青铜在盐酸介质中的缓蚀效率依次为MBO>AMT>BTA。在柠檬酸介质中,由于AMT在青铜表面形成保护膜,其缓蚀效率达到100%,高于MBO及BTA。
     对除锈前后的青铜试片的扫描电镜观察表明,经BTA处理的青铜试片表面存在较大孔隙的防护膜,而经AMT处理的青铜试片表面形成有较紧密的防护膜。经MBO处理的青铜试片表面膜形貌呈颗粒状分布,其表面不够紧密。
     X射线衍射和傅里叶红外光谱结果都证实,BTA处理后的反应产物为Cu(I)-BTA,AMT与铜锈的反应产物有Cu(Ⅱ)-AMT和Cu(I)-AMT,MBO处理后的反应产物为Cu(I)-MBO。
Bronze relics with high historical, artistic and scientific value are one of the symbolizations of ancient civilization of human being. Due to their long buried time, changes of the storage condition after excavation etc., it is a great challenge for us to take measures to prevent the ancient bronze relics from corrosion. Bronze in the wet, containing chloride ions and oxidizing atmosphere environment, prone to a great danger of being referred to as“bronze disease”of the corrosion process, so that bronze objects were seriously damage.
     The use of inhibitors is one of the most practical methods for protection against corrosion. Numerous researches on corrosion inhibition using organic compounds have been reported due to its highly efficient and cost-effective. It has been accepted that most organic compounds employed as corrosion inhibitors can adsorb on the metal surface through heteroatoms such as nitrogen,sulfur,oxygen,phosphorus and multiple bonds etc preventing steel from corrosion. Based on the conclusions, azole compounds are a number of bronze used as a corrosion inhibitor, to play its role in anti-corrosion. However, the corrosion inhibiting mechanism of the N-heterocyclic organic compounds compounds is not so clear. The aim of this work is to obtain a better understanding of the inhibiting behaviour of the N-heterocyclic organic compounds compounds derivatives and predict corrosion efficiency of similar structures in order to design compounds for testing their corrosion inhibition.
     N-heterocyclic organic inhibitors involved in this paper and the inhibiting performance of these derivatives was evaluated by weight loss, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) testing. The corrosion inhibiting mechanism of these derivatives and the relationship between the bronze structure and their inhibiting efficiency were discussed. The following conclusions may be drawn:
     The weight loss experiments in the acid medium for 10 hours have demonstrated that the inhibition efficiency in hydrochloric acid medium is MBO> AMT> BTA. The inhibition efficiency of the AMT in the citric acid solution is 100%, higher than that of MBO and BTA because a protective film is formed on the surface of AMT treated bronze in the the citric acid solution.
     SEM observation showed that the film formed on the surface of the BTA treated rust bronze is loose while the surface of the AMT processed patina bronze samples has a dense protection film. The surface morphology of MBO processed bronze samples is much looser than that of BTA processed bronze samples.
     X-ray diffraction and FTIR results confirmed that after BTA and MBO treatment, the reaction products on the surface of bronze is Cu(I)-BTA and Cu(I)-MBO, respectively, while after the AMT treatment, there is a product of Bellamya reaction Cu (Ⅱ)-AMT and Cu (I)-AMT on the surface of bronze.
引文
[1]牛世山.神秘瑰丽(中国古代青铜文化)[M].四川人民出版社.2004-01-01.
    [2]韩玉民,郝存江,张泮源,等.青铜文物保护研究现状及发展趋势[J].殷都学刊,2004, (3):22-25.
    [3]孟剑明.秦陵出土文物的意义[EB/OL].[2003-11-14]. http://www.he.xinhuanet.com.
    [4] Muresan L,Varvara S,Stupnisek-Lisac E,et al.protection of bronze covered with patina by innoxious organic substances[J].2007,in Press.
    [5] A.G.Nord, T.E.Kate, M . Einar, et al. Ullen, Environmental threats to Buried Archeological Remains [J]. AMBIO-人类环境杂志, 2005, 34(3): 252-255.
    [6]周剑虹.青铜腐蚀与埋藏环境关系的初步研究:[D].西安:西北大学, 2006.
    [7] L.Robbiola, R.Portier. A global approach to the authentication of ancient bronzes based on the characterization of the alloy-patina-environment system [J]. Journal of Cultural Heritage,2006,7: 1-6.
    [8]陈光章,林晶,阎永贵,等.AFM技术在微生物腐蚀研究中的应用[J].腐蚀科学与防护技术,2006,18:426-430..
    [9]孙晓强.青铜器的腐蚀与保护探讨[J].文物世界, 2002,53(6):56-60.
    [10]郭宏,赵静.氧气(O2)对文物材料的劣化作用[J].文物保护与考古科学,2006,18(4):55-58.
    [11]付海涛,李瑛,魏无际,等.古代青铜文物保护研究现状及AMT的应用[J].腐蚀科学与防护技术,2002,14(1):35-37.
    [12] Rother H J,Kuron D,Storp S.Proceedings of the 6th European symposium on corrosion inhibitors(6SEIC) [M].Ferrata,Italy:Universite Degli Studi di Ferrara.1985.
    [13]奚三彩.现代科技在可移动文物保护中的应用[J].中国文化遗产,2004, (3):57-58.
    [14]张天胜.缓蚀剂[M].北京:化学工业出版社, 2002.
    [15]杨文庆.钼酸盐系缓蚀剂的进展[J].材料保护,1995,28(8):16-19.
    [16]吴永炘,刘鸣江,麦志全,等.唑类缓蚀剂在电路板生产上的应用[J].电镀与涂饰,1997, 16(4):11-13.
    [17]虚空.青铜器的收藏/修复/保养[EB/OL].[2008-3-14]. http://q.163.com/zgrdqz/poster/ 3984441/.
    [18] Ganorkar M C, Pandit Rao V, Gayathri P. Sreenivasa Rao T A. A novel method for Conservation of copper based artifacts [J]. Studies in Conservation, 1988, 33(2): 97-101.
    [19] Rao P V, Sreenirasa R T A, Canorkar M C. Some heterocyclic chelating agents as corrosion inhibitors for copper [J]. Trans SAEST, 1992, 7 (4): 222-226.
    [20]严川伟,何毓番,林海潮,等.2-巯基苯并恶唑(MBO)在铜表面缓蚀膜研究[J].中国腐蚀与防护学报,1999,19(6):367-371.
    [21]祝鸿范.BTA缓蚀剂在文物保护中的应用[J].腐蚀科学与防护技术,1999,11(4):255-256.
    [22]于淼,许淳淳.苯并三唑的用量对青铜文物封护剂耐蚀性能的影响[J].北京化工大学学报,, 2004, 31(3):39-42..
    [23] Tommesani L, Brunoro G, Frignani A, et al. On the protective action of 1, 2, 3-benzotriazole derivative films against copper corrosion [J]. Corr Sci, 1997, 39: 1221-1237.
    [24] Brunoro G, Frignani A, Colledan A, et al. Organic films for protection of copper and bronze against acid rain corrosion [J]. Corr Sci, 2003, 45: 2219-2231.
    [25] Otero E, Bastidas J M. Cleaning of two hundred year- old copper works of art using citric acid with and with - out benzotriazole and 2-amino-5-mercapto-1, 3, 4-thiadiazole [J]. Materials and Corrosion, 1996, 47(3): 133-138.
    [26]朱一帆,施兵兵,李大刚,等.AMT及其复合物在青铜表面形成保护膜的耐蚀性研究[J].南京化工大学学报,1999,21(2):16-20.
    [27]韩玉民,郝存江.AHH-1复合剂去除青铜粉状锈及缓蚀性能研究[J].安阳师范学院学报,2003,25(5):63-64.
    [28]王菊琳,许淳淳,于淼.已锈蚀青铜在大气环境中的腐蚀发展及其保护研究[J].腐蚀科学与防护技术,2006,17:324-327..
    [29]王媛媛,陈善华.铜缓蚀剂的缓蚀协同效应[J].广东化工,2009,36(2):59-61.
    [30]胡钢,吕国城,许淳淳,等.BTA和钼酸钠对青铜的协同缓蚀作用研究[J].腐蚀科学与防护技术,2008,20(1):25-28.
    [31] Annua1 Book of ASTM Standards. Vo1ume ll. 0l, Water (1), ASTM, 1985.
    [32]郭稚弧.植物提取液抑制硫酸盐还原菌生长及其缓蚀性能的研究[J].材料保护,1989, 6(2):163-165.
    [33] Mature P B, asudevan T V. Corrosion, 1982, 38: 171-177.
    [34] Bengough G D. Proc Roy.Soc., 1927, 116: 425-432.
    [35]木冠南,赵天培.量热法研究缓蚀作用[J].化学世界,1989,30(1): 36-38.
    [36]易德莲.测温法研究低碳钢在硝酸中的腐蚀行为[J].腐蚀与防护,1990,11(6): 308-311.
    [37]安鼎年,辛志伟.Fc-5腐蚀测量仪测试腐蚀速度的极化曲线外推法[J].工业水处理,1988,8(2):11-14.
    [38]郭兴蓬.电流屏蔽效应和最佳阳极位置的确定[J].材料保护,1992,11(4):53-56.
    [39]夏明.用电化学线性极化法评价酸化缓蚀剂[J].石油与天然气化工.1985,14(4):51-57.
    [40]中国腐蚀与防护学会.腐蚀与防护全书缓蚀剂[M].北京:化学工业出版社,1988,33-42.
    [41]高瑾,米琪.防腐蚀涂料与涂装[M].中国石化出版社,2007,89-90.
    [42]孙跃.金属腐蚀与控制[M].哈尔滨工业大学出版社,2003,43-44.
    [43]刘烈炜,姚禄安,陈永言,等.用交流阻抗法研究缓蚀剂的缓蚀行为[J].材料保护,1987, 20(4): 7-10.
    [44]徐群杰.交流阻抗法对几种铜缓蚀剂比较研究[J].华东理工大学学报,1998,24(3): 324-328.
    [45]扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护,2004,25(2):57-60.
    [46]余兴增,邱富荣.电化学噪音的研究进展[J].腐蚀与防护,1995,16(1): 4-7.
    [47]木冠南.纯铝在盐酸溶液中腐蚀速度的研究[J].化学通报,1986, (2):38-39.
    [48]广州市市政建设中等专业学校,黑龙江省建筑工程学校,天津市市政工程学校.水化学与微生物学[M].中国建筑工业出版社,1986,165-172.
    [49]张胜涛,薛茗月,王艳波,等.苯并三氮唑缓蚀铜合金的原位椭圆偏振研究[J].中国腐蚀与防护学报,2006, 26(6): 342-345.
    [50]陈旭俊,王海林.孔蚀缓蚀剂及其理论研究评述(二)[J].材料保护,1991,24(8):4-7.
    [51]叶康民,钟诗煌.用俄歇电子能谱分析金属表面缓蚀剂膜[J].陕西化工,1986,5: 79-83..
    [52]容超凡.电离辐射计量[M].原子能出版社,2002,363-366.
    [53]朱法祥,曾坚.冷却水中硅酸盐的研究(二)-硅酸盐结垢及缓蚀作用的探讨[J].南京化工学院学报,1982,(1):80-95.
    [54]沈兰荪.ICP-AES光谱干扰校正方法的研究[M].北京工业大学出版社,1997,14-25.
    [55]赵文涛.表面增强拉曼散射在缓蚀剂作用机理研究中的应用[J].材料保护,1993,26(12): 9-12.
    [56]贾铮,戴长松,陈玲.电化学测量方法[M].化学工业出版社,2006,226-227.
    [57]化工部化工机械研究院,化工部防腐蚀技术咨询服务中心.第八届国际金属腐蚀会议论文选集上卷[C]. 1981,95-98.
    [58]庄志萍,赵冰.吡啶系列化合物振动光谱的理论研究[M].黑龙江人民出版社,2007,42-53
    [59]徐群杰,周国定,陆柱,等.苯并三氮唑及其衍生物在NaCl溶液中对铜缓蚀作用的表面增强拉曼光谱[J].应用化学,2002,19(4): 390-392.
    [60]钱付德,陈卫,于鲁冀,等.古代青铜器的腐蚀及其控制研究[J].文物保护与考古科学,1997,9(2): 9-15.
    [61] Lorenz W J, Mansfeld F, Interface and interphase corrosion inhibition,6th Europena Symposium on Corrosion Inhibitors:133th Manifestation of the European Federation of corrosion,Proceedings.1985,34-40
    [62] Henry Leidheiser, Review of proposed mechanisms for corrosion inhibition and passivation by metallic cations.Corrosion, 1980, 36(7):339-348
    [63] G.Trabanelli.The use of electrochemical impedance spectroscopy to study ARMCO iron corrosion in acid solutions inhibited by quaternary ammonium compounds. Corrosion,1991, 47:410-419
    [64] L.I.Antropov.A correlation between kinetics of corrosion and the mechanism of inhibition byorganic compounds. Corrosion Science,1967,7(9):607-620
    [65]杨文治.缓蚀剂[M].北京:化学工业出版社,1985.
    [66]肖纪美.腐蚀总论-材料的腐蚀及其控制方法[M].北京:化学工业出版社,1994,24-41.
    [67]钟家让.出土青铜器的锈蚀因素及其防护研究[J].山西大学学报(自然科学版)2004, 27(1):44-47.
    [68]徐飞.缓蚀剂BTA与AMT保护青铜文物的对比研究[J].文物保护,2003,7: 89-91.
    [69]吴杏芳,柳得橹.电子显微分析实用方法[M].北京:冶金工业出版社,1998.
    [70]屈晓田.X射线衍射物相分析的一种简单方法[J].山西大学学报(自然科学版), 1998, 21(2): 132-136.
    [71]姚新生.有机化合物波谱分析[M].人民卫生出版社,2004: 41-48.
    [72]赵藻藩,周性尧,张悟铭,等.仪器分析[M].北京:高等教育出版社,1990: 149-155.
    [73]万俐,徐飞,陶保成.AMT复合剂保护青铜文物的研究[J].东南文化,2002,(1): 90-92
    [74]谢振斌.青铜文物缓蚀剂概谈[J].成都文物,2005,(4):69-72
    [75]肖进新,樊北平,张世文.青铜文物的综合保护方法[J].文物,1992,(7):08-12
    [76]李兴福,樊北平.腐蚀青铜器的保护[J].考古,1992,(8):60-62
    [77]吴杰.溶胶-凝胶法制备青铜文物防蚀封护材料及其性能研究[D].成都:成都理工大学.2006.
    [78] Kipper P D. The care of bronze sculpture, 2nd ed. Path publications and Rodgers & Nelsen [J]. Loveland, CO, 1998.
    [79] Scott D. Copper and Bronze in Art corrosion, Colorants, Conservation, 1 st ed., Getty Publication, Los Angeles, CA, 2002.
    [80] Bierwagen G, Shedlosky T J, Stanek K. Developing and test a new generation of protection coatings for outdoor bronze sculpture [J]. Prog. Org. Coat, 2003, 48:289-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700