结构可控短链支化聚乙烯的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过分子设计的方法合成了结构可控的短链支化聚乙烯,主要调控了分子量和支化含量两个参数,并对得到的样品进行了系统的结构表征。主要工作和结论如下:
     1、以仲丁基锂为引发剂,通过丁二烯阴离子聚合方法合成了一系列分子量可控、窄分子量分布的聚丁二烯,同时采用四氢呋喃一元调节体系对产物的1,2-结构含量进行了调控。通过GPC、FT-IR和~1H-NMR等表征手段对聚丁二烯的分子量和各种微观结构含量进行了研究,证明聚合物的重均分子量在1至14万范围内可调,分子量分布≤1.15,1,2-结构含量在7.0~29.7mol%之间。采用对甲苯磺酰肼对合成的聚丁二烯样品进行常压非催化加氢反应,得到了模型聚乙烯分子(相当于乙烯/1-丁烯共聚物),通过FT-IR、高温~1H-NMR、高温~(13)C-NMR和高温GPC等手段系统表征了产物的分子结构,结果证明加氢度可达100%,基本不存在副反应,加氢后高温GPC测试的分子量比加氢前常温测试的分子量有所降低。通过DSC分别研究了加氢样品的分子量和支化含量对产物结晶性能的影响,在相同支化含量下,分子量的增加会导致产物熔点和结晶度降低;而在相同分子量下,支化含量的增加也会导致熔点和结晶度的降低。对高1,4-结构含量(≥99.4%)聚丁二烯样品进行加氢反应得到了近乎完全线性的模型聚乙烯。
     2、采用茂金属催化剂Et[Ind]_2ZrCl_2催化乙烯与1-己烯共聚合反应,通过对聚合条件(温度、共聚单体浓度、Al/Zr比等)的控制,设计合成了分子量10万、支化含量0~5.5mol%的LLDPE系列样品和分子量5万、支化含量7.1~15.1mol%的LLDPE系列样品。通过FT-IR、~1H-NMR、~(13)C-NMR、GPC和DSC等手段系统表征了样品的分子结构和结晶性能。结果表明1-己烯是无规插入到聚合物分子链上的,当共聚含量≥8.7mol%时,会出现HH二元组序列。对于10万分子量系列的样品,共聚单体含量的增加会导致熔点和结晶度下降。
     3、对合成的两种短链支化聚乙烯(加氢聚丁二烯、茂金属乙烯/1-己烯共聚物)以及茂金属均聚聚乙烯与乙烯/1-己烯共聚物共混物进行了流变表征。由于加氢样品条件的限制,没有得到支化含量与流变参数的对应关系;茂金属乙烯/1-己烯共聚物的储能模量、损耗模量和复合粘度随着分子量的增加而增加,随着短链支化含量的增加而降低;没有发现茂金属聚乙烯共混物流变参数与分子结构参数间的确切对应关系。
In this dissertation,short chain branched polyethylene with controlled structure was synthesized by molecular design method.The molecular weight and short chain content were mainly controlled and systematic structure characterization of the obtained samples was done. Conclusions were summarized as follows:
     1.A series of polybutadienes with controlled molecular weight and low molecular weight distribution were synthesized via anionic polymerization using sec-BuLi as initiator. The 1,2-structure content was controlled by THF.The molecular weight and micro-structures were investigated by GPC,FT-IR and ~1H-NMR measurements.It was found that the molecular weight ranged from 10000 to 140000 and the molecular weight distribution was less than 1.15.The 1,2-structure content varied from 7.0 to 29.7 mol%.Then the obtained polybutadienes were hydrogenated by p-toluenesulfonyl hydrazide(TSH) under atmospheric pressure and resulted in model ethylene-butene copolymers.The molecular parameters were investigated by ~1H-NMR,~(13)C-NMR,GPC and FT-IR.The results showed that the hydrogenation degree approached 100%without side reactions under proper conditions,but the M_w tested from high-temperature GPC was lower.The effects of M_w and branch content on crystallization properties were studied by DSC.It was showed that the melting point and crystallinity of the hydrogenated samples reduced either by increasing the branch content or by increasing the M_w.Finally,high 1,4-structure content polybutadiene was also hydrogenated to synthesize model linear polyethylene.
     2.Ethylene was copolymerized with 1-hexene via metallocene catalyst Et[Ind]_2ZrCl_2.By regulating the polymerization conditions,such as temperature,1-hexene concentration and Al/Zr ratios,two series of LLDPEs were obtained:(1) M_w was about 100000 and branch content ranged from 0 to 5.5 mol%;(2) M_w was about 50000 and branch content ranged from 7.1 to 15.1 mol%.The molecular parameters and crystallization properties were investigated by FT-IR,~1H-NMR,~(13)C-NMR,GPC and DSC techniques.It was found that 1-hexene unit was isolated between ethylene blocks,and when the 1-hexene content was more than 8.7 mol%,HH diads appeared.The melting point and crystallinity decreased with increasing the 1-hexene content of series(1).
     3.Two kinds of short chain branched polyethylenes,the blends of metallocene homopolyethylene and ethylene/1-hexene copolymers were tested by rheological characterization.No dependence of the molecular structure and the rheolocical properties was found for the hydrogenated polybutadienes because of the limitation of the samples.The storage modulus,loss modulus and complex viscosity of the ethylene/1-hexene copolymers decreased both as the 1-hexene content of the copolymer increased and the molecular weight decreased.No dependence of the molecular structure and the rheolocical properties was found for the PE blends.
引文
[1]SZWARC M.‘Living’polymers[J].Nature,1956,178:1168-1169.
    [2]SZWARC M,LEVY M,MILKOVICH R.Polymerization initiated by electron transfer to monomer.A new method of formation of block polymers[J].J Am Chem Soc,1956,78:2656-2657.
    [3]WEBSTER O W.Living polymerization methods[J].Science,1991,251:887.
    [4]SAWAMOTO M.Modern cationic vinyl polymerization[J].Prog Polym Sci,1991,16:111.
    [5]MATYJASZEWSKI K,SIGWALT P.Unified approach to living and non-living cationic polymerization of alkenes[J].Polym Int,1994,35:1.
    [6]GRESZTA D,MARDARE D,MATYJASZEWSKI K.“Living”radical polymerization.1.Possibilities and limitations[J].Macromolecules,1994,27:638-644.
    [7]MATYJASZEWSKI K.Controlled radical polymerization.ACS Symp Ser 685,American Chemical Society[C].Washington,D.C.1998.
    [8]MATYJASZEWSKI K.Controlled/living radical polymerization.ACS Symp Ser 768,American Chemical Society[C].Washington,D.C.2000.
    [9]GIDO S P,LEE C,POCHAN D J,et al.Synthesis,characterization,and morphology of model graft copolymers with trifunctional branch points[J].Macromolecules,1996,29:7022-7028.
    [10]ROOVERS J,TOPOROWSKI P M.Preparation and characterization of H-shaped polystyrene[J].Macromolecules,1981,14:1174-1178.
    [11]PERNY S,ALLGAIER J.Synthesis and structural analysis of an H-shaped polybutadiene[J].Macromolecules,2001,34:5408-5415.
    [12]VELIS G,HADJICHRISTIDIS N.Synthesis of model PS(PI)_5 and(PI)_5PS(PI)_5 nonlinear block copolymers of styrene(S) and isoprene(Ⅰ)[J].Macromolecules,1999,32:534-536.
    [13]BAYER U,STADLER R.Synthesis and properties of amphiphilic“dumbbell”-shaped grafted block copolymers,1.Anionic synthesis via a polyfunctional initiator[J].Macromol Chem Phys,1994,195:2709-2722.
    [14]GITSOV L,FRECHET J MJ.Novel nanoscopic architectures.Linear-globular ABA copolymers with polyether dendrimers as A blocks and polystyrene as B block[J].Macromolecules,1994,27:7309-7315.
    [15]EDERLE Y,MATHIS C.Palm tree-and dumbbell-like polymer architectures based on C_(60)[J].Macromolecules,1999,32:554-558.
    [16]HOULI S,IATROUH,HADJICHRISTIDIS N,et al.Synthesis and viscoelastic properties of model dumbbell copolymers consisting of a polystyrene connector and two 32-Arm star polybutadienes[J].Macromolecules,2002,35:6592-6597.
    [17]IATROU H,HADJICHRISTIDIS N.Synthesis of a model 3-miktoarm star terpolymer[J].Macromolecules,1992,25:4649-4651.
    [18]ZIOGAA,SIOULAS,HADJICHRISTIDIS N.Synthesis and morphology of model 3-miktoarm star terpolymers of styrene,isoprene and 2-vinyl pyridine[J].Macromol Symp,2000,157:239-250.
    [19]BELLAS V,IATROU H,HADJICHRISTIDIS N.Controlled anionic polymerization of hexamethylcyclotrisiloxane.Model linear and miktoarm star co-and terpolymers of dimethylsiloxane with styrene and isoprene[J].Macromolecules,2000,33:6993-6997.
    [20]FUJIMOTO T,ZHANG H M,KAZAMA T,et al.Preparation and characterization of novel star-shaped copolymers having three different branches[J].Polymer,1992,33:2208-2213.
    [21]HUCKSTADT H,ABETZ V,STADLER R.Synthesis of a polystyrene-arm-polybutadiene-arm-poly(methyl methacrylate) triarm star copolymer[J].Macromol Rapid Commun,1996,17:599-606.
    [22]HUCKSTADT H,G0PFERT A,ABETZ V.Synthesis and morphology of ABC heteroarm star terpolymers of polystyrene,polybutadiene and poly(2-vinylpyridine)[J].Macromol Chem Phys,2000,201:296-307.
    [23]LAMBERT O,DUMAS P,HURTREZ G,et al.Synthesis of an amphiphilic triarm star copolymer based on polystyrene,poly(ethylene oxide) and poly(ε-caprolactone)[J].Macromol Rapid Commun,1997,18:343-351.
    [24]SIOULA S,TSELIKAS Y,HADJICHRISTIDIS N.Synthesis of model 3-miktoarm star terpolymers of styrene,isoprene,and methyl methacrylate[J].Macromolecules,1997,30:1518-1520.
    [25]LU Z J,CHEN S,HUANG J L.Preparation and characterization of a novel star ABC triblock copolymer of styrene,ethylene oxide,and methacrylic acid[J].Macromol Rapid Commun,1999,20:394-400.
    [26]BUHLEIER E,WEHNER W,VOGTLE F.Cascade and nonskid-chain-like synthesis of molecular cavity topologies[J].Synthesis,1978,2:155-158.
    [27]GAUTHIER M,TICHAGWA L,DOWNEY J S,et al.Arborescent graft copolymers:Highly branched macromolecules with a core-shell morphology[J].Macromolecules,1996,29:519-527.
    [28]HASAN A,MUALLEM A,KNAUSS D M.Synthesis of hybrid dendritic-linear block copolymers with dendritic initiators prepared by convergent living anionic polymerization[J].J Polym Sci Part A:Polym Chem,2001,39:152-161.
    [29]KNAUSS D M,HUANG T Z.((PS)n PS)m star-shaped polystyrene with star-shaped branches at the terminal chain ends by convergent living anionic polymerization[J].Macrotnolecules,2003,36:6036-6042.
    [30]YIN R,HOGEN-ESCH T E.Synthesis and characterization of narrow-molecular-weight-distribution polystyrene-poly(dimethylsiloxane) macrocyclic block copolymers and their isobaric precursors[J].Macromolecules,1993,26:6952-6957.
    [31]ISHIZU K,ICHIMURA A.Synthesis of cyclic diblock copolymers by interfacial condensation[J].Polymer,1998,39:6555-6558.
    [32]YUGE,GARRETT C A,MAI S M,et al.Effect of cyclization on the association behavior of block copolymers in aqueous solution.Comparison of oxyethylene/oxypropylene block copolymers cyclo-P_(34)E_(104) and E_(52)P_(34)E_(52)[J].Langmuir,1998,14:2278-2285.
    [33]IATROU H,HADJICHRISTIDIS N,MEIER G,et al.Synthesis and characterization of model cyclic block copolymers of styrene and butadiene.Comparison of the aggregation phenomena in selective solvents with linear diblock and triblock analogues[J].Macromolecules,2002,35:5426-5437.
    [34]PANTAZIS D,SCHULZ D N,HADJICHRISTIDIS N.Synthesis of a model cyclic triblock terpolymer of styrene,isoprene,and methyl methacrylate[J].J Polym Sci Part A:Polym Chem,2002,40:1476-1483.
    [35]ANTONIETTI M,FOLSCH K J.Synthesis and characterization of“eight-shaped”polystyrene[J].Macromol Chem,Rapid Commun,1988,9:423-430.
    [36]MADANI A E,FAVIER J C,HEMERY P,et al.Synthesis of ring-shaped polyisoprene[J].Polym Int,1992,27:353-357.
    [37]KUB0 M,HAYASHI T,KOBAYASHI H,et al.Syntheses of tadpole-and eight-shaped polystyrenes using cyclic polystyrene as a building block[J].Macromolecules,1998,31:1053-1057.
    [38]RAYMO F M,STODDART J F.Interlocked macromolecules[J].Chem Rev,1999,99:1643-1664.
    [39]GAN Y D,DONG D H,HOGEN-ESCH T E.Synthesis and characterization of a catenated polystyrene-poly(2-vinylpyridine) block copolymer[J].Macromolecules,2002,35:6799-6803.
    [40]IATROU H,MAYS J W,HADJICHRISTIDIS N.Regular comb polystyrenes and graft polyisoprene/polystyrene copolymers with double branches(“centipedes”).Quality of(1,3-phenylene)bis(3-methyl-l-phenylpentylidene)dilithium initiator in the presence of polar additives[J].Macromolecules,2002,35:7182-7190.
    [41]UHRIG D,MAYS J M.Synthesis of combs,centipedes,and barbwires:Poly(isoprene-graft-styrene) regular multigraft copolymers with trifunctional,tetrafunctional,and hexafunctional branch points [J].Macromolecules,1998,31:1053-1057.
    [42]GAO W,CUI D M.Highly cis-1,4 selective polymerization of dienes with homogeneous Ziegler-Natta catalysts based on NCN-pincer rare earth metal dichloride precursors [J].J Am Chem Soc,2008,130:4984-4991.
    [43]WINKLER DE LOSS E.Selectively sulfonated block copolymers[P].US,US3577357,1971.
    [44]WALD M M,QUAMM G.Partially hydrogenated block copolymers[P].US,US3595942,1971.
    [45]WALD M M,QUAM M G.Bkock copolymers having dissimilar nonelastomeric polymer blocks[P].US,US3706817,1972.
    [46]HALASA A F.Catalyst for hydrogenation of elastomers[P].US,US3868354,1975.
    [47]HAWKINS J R,LOCKE J M.Thermoplastic elastomeric material[P].US,US3935176,1972.
    [48]杨京伟,鲍浪,徐瑞清,等.SBS新型加氢催化剂[J].合成橡胶工业,2000,23(1):31.
    [49]杨京伟,鲍浪,徐瑞清,等.SBS加氢动力学的研究[J].合成橡胶工业,2000,23(3):163.
    [50]LOVELESS F C,MILLER D H.Hydrogenation catalyst[P].US,US3855185,1973.
    [51]谢洪泉,李晓东.合成橡胶常压氢化及产物性能[J].合成橡胶工业,1998,21(4):194-196.
    [52]李晓东,过俊石,谢洪泉.氢化丁苯橡胶氢化度的测定[J].合成橡胶工业,2000,23(1):24-27.
    [53]张宪旺.用~1H-NMR测定氢化SBS的加氢度[J].塑料工业,1987,2:53-55.
    [54]刘峰,洪良构,应圣康,等.SEBS热塑性弹性体的制备研究[J].合成橡胶工业,1992,15(1):28.
    [55]周禹.茂金属催化剂的研究开发及应用[J].齐鲁石油化工,1977,25(4):268.
    [56]张志德,陈玉琴,余立新,等.茂金属催化剂及其应用进展[J].山东化工,1996,3:36-39.
    [57]王德禧,李蕴能,李兰,等.茂金属聚合物进展[J].中国塑料,2000,2:14-19.
    [58]高超.茂金属塑料研究进展[J].化工新型材料,1998,9:9-13.
    [59]洪定一.茂金属催化剂的发展及应用[J].石油化工动态,1997,2:57-65.
    [60]陈伟,郭子方,王如恩,等.我国茂金属催化剂及其聚烯烃研究开发进程[J].高分子通报,1999,3:14-21.
    [61]王玫瑰.茂金属聚合物研究新进展[J].韶关学院学报,2001,6:52.
    [62]徐旭荣,徐君庭,封麟先.茂金属LLDPE的结构与性能[J].石油化工,1999,11:56-60.
    [63]陈红霞,吴殿义.LLDPE及其催化剂技术进展[J].化工科技,2002,1:52-55.
    [64]焦宁宁.茂金属催化聚合的LLDPE的加工[J].石化技术与应用,1998,3:163-167.
    [65]RANDALL J C.A review of high resolution liquid ~(13)carbon nuclear magnetic resonance characterization of ethylene-based polymers.JMS Rev Macromol Chem Phys,1989,C29(2&3):201-317.
    [66]WOOD-ADAMS P,COSTEUX S.Thermorheological behavior of polyethylene:effects of microstructure and long chain branching[J].Macromolecules,2001,34:6281-6290.
    [67]KIM Y S,CHUNG C I,LAI S Y,et al.Melt rheological and thermodynamic properties of polyethylene homopolymers and poly(ethylene/α-olefin) copolymers with respect to molecular composition and structure[J].J Appl Polym Sci,1996,59:125-137.
    [68]MIRABELLA F M.Correlation of the melting behavior and copolymer composition distribution of Zigler-Natta-catalyst and single-site-catalyst polyethylene copolymers[J].J Polym Sci Part B:Polym Phys,2001,39:2800-2818.
    [69]MIRABELLA F M.Correlation of the elution behavior in temperature rising elution fractionation and melting in the solidstate and in the presence of a diluent of polyethylene copolymers[J].J Polym Sci Part B:Polym Phys,2001,39:2819-2832.
    [70]EYNDE S V,MATHOT V B F,KOCH M H J,et al.Thermal behaviour and morphology of homogeneous ethylene-1-octene copolymers with high comonomer content[J].Polymer,2000,41:4889-4900.
    [71]VILLAR M A,FAILLA M D,QUIJADA R,et al.Rheological characterization of molten ethylene-α-olefin copolymers synthesized with Et[Ind]2ZrCl2/MAO catalyst[J].Polymer,2001,42:9269-9279.
    [72]AGUILAR M,VEGA J F,SANZ E,et al.New aspects on the rheological behaviour of metallocene catalysed polyethylenes[J].Polymer,2001,42:9713-9721.
    [73]DE SILVA FILHO A A,SOARES J B P,DE GALLAND G B.Measurement and mathematical modeling of molecular weight and chemical composition distributions of ethylene/α-olefin copolymers synthesized with a heterogeneous Zigler-Natta catalyst[J].Macromol Chem Phys,2000,201:1226-1234.
    [74]SOARES J B P.Mathematical modeling of the long-chain branch structure of polyolefins made with two metallocene catalysts:an algebraic solution[J].Macromol Theory Simul,2002,11:184-198.
    [75]WANG W J,YAN D,ZHU S,et al.Kinetics of long chain branching in continous solution polymerization of ethylene ysing constrained geometry metallocene[J].Macromolecules,1998,31:8677-8683.
    [76]YAN D,WANG W J,ZHU S.Effect of long chain branching on rheological properties of metallocene polyethylene[J].Polymer,1999,40,1737-1744.
    [77]LOHSE D J,MILNER S T,FETTERS L J,et al.Well-defined,model long chain branched polyethylene.2.Melt rheological behavior[J].Macromolecules,2002,35:3066-3075.
    [78]SHROFF R N,MARRIDIS H.New measures of polydipersity from rheological data on polymer melts[J].J Appl Polym Sci,1995,57:1605-1626.
    [79]SHROFF R N,MARRIDIS H.Long-chain-branching index for essentially linear polyethylenes[J].Macromolecules,1999,32:8454-8464.
    [80]PAULA M,WOOD A,JOHN M D.Using rheological data to determine the branching level in metallocene polyethylene[J].Macromolecules,2000,33:7489-7499.
    [81]PAULA M,WOOD A,JOHN M D.Effect of molecular structure on the linear viscoelastic behavior of polyethylene[J].Macromolecules,2000,33:7481-7488.
    [82]CHAI C K,CREISSEL J,RANDRIANANTOANDRO H.Flow-induced birefringence of linear and long chain-branched metallocene polyethylene melts subject to steady start-up flow[J].Polymer,1999,40:4431-4436.
    [83]BENSASON S,MINICK J,MOET A,et al.Classification of homogeneous ethylene-octene copolymers based on comonomer content[J].J Polym Sci Part B:Polym Phys,1996,34:1304.
    [84]HAHN S F.An improved method for the diimide hydrogenation of butadiene and isoprene containing polymers[J].J Polym Sci Part A:Polym Chem,1992,30:397.
    [85]WU Z,GRUBBS R H.Synthesis of Narrow Dispersed Linear Polyethylene and Block Copolymers from Polycyclobutene[J].Macromolecules,1994,27:6700-6703.
    [86]HADJICHRISTIDIS N,XENIDOU M,IATR0U H,et al.Well-defined,model long chain branched polyethylene.1.Synthesis and characterization[J].Macromolecules,2000,33:2426.
    [87]CLAGUE A D H,VAN BROEKHOVEN J A M,BLAAUW L P.~(13)C nuclear magnetic reasonance spectroscopy of polydienes,microstructure of polybutadiene[J].Macromolecules,1974,7:350.
    [88]CRIST B,WILLIAMS D N.Crystallization and melting of model ethylene-butene random copolymers:Thermal studies[J].J Macromol Sci-Phys,2000,B39(l):1-13.
    [89]QUIJADA R,DUPONT J,MIRANDA M S L,et al.Copolymerization of ethylene with 1-hexene and 1-octene:correlation between type of catalyst and comonomer incorporated[J].Macromol Chem Phys,1995,196:3991-4000.
    [90]QUIJADA R,NARVAEZ A,ROJAS R,et al.Synthesis and characterization of copolymers of ethylene and 1-octadecene using the rac-Et[Ind]2ZrCl2/MAO catalyst system[J].Macromol Chem Phys,1999,200:1306-1310.
    [91]KOIVUMAEKI J,FINK G,SEPPAELAE J V.Copolymerization of ethene/1-dodecene and ethene/1-octadecene with the stereorigid zirconium catalyst system ipr[FluCp]ZrCl2/MAO and Me2Si[Ind]2ZrCl2/MAO:Influence of the comonomer chain length[J].Macromolecules,1994,27:6254-6258.
    [92]SUHM J,SCHNEIDER M J,MULHAUPT R.Temperature dependence of copolymerization parameters in ethene/1-octene copolymerization using homogeneous rac-Me2Si(2-MeBenzInd)2ZrCl2/MAO catalyst[J].J Polym Sci Part A:Polym Chem,1997,35:735-740.
    [93]CAMURATI I,CAVICCHI B,DALL'OCCO T,et al.Synthesis and characterization of ethylene/1-olef in copolymers obtained by“single centre”catalysis[J].Macromol Chem Phys,2001,202:701-709.
    [94]REYBUCK S E,MEYER A,WAYMOUTH R M.Copolymerization behavior of un bridged indenyl metallocenes:Substituent effects on the degree of comonomer incorporation[J].Macromolecules,2002,35:637-643.
    [95]CHAKRAVARTI S,RAY W H,ZHANG S X.Kinetic study of olefin polymerization with a supported metallocene catalyst.Ⅳ.Comparison of bridged and unbridged catalyst in gas phase[J].J Appl Polym Sci,2001,81:1451-1459.
    [96]D'AGNILLO L,SOARES J B P,PENLIDIS A.Effect of operating conditions on the molecular weight distribution of polyethylene synthesized by soluble metallocene/methylaluminoxane catalysts[J].Macromol Chem Phys,1998,199:955-962.
    [97]HSIEH E T,RANDALL J C.Monomer sequence distributions in ethylene-1-hexene copolymers[J].Macromolecules,1982,15:1402-1406.
    [98]SEGER M R,MACIEL G E.Quantitative 13C NMR analysis of sequence distributions in poly(ethylene-co-l-hexene)[J].Anal Chem,2004,76:5734-5747.
    [99]GALLAND G B,QUIJADA R,MAULER T S,et al.Determination of reactivity ratios for ethylene/α-olefin copolymerization catalysed by the C_2H_4[Ind]_2ZrCl_2/methylaluminoxane system[J].Macromol Rapid Commun,1996,17:607-613.
    [100]HONG H,ZHANG Z C,CHUNG T C M,et al.Synthesis of new 1-decene-based LLDPE resins and comparison with the corresponding 1-octene-and 1-hexene-based LLDPE resins[J].J Polym Sci Part A:Polym Chem,2007,45:639-649.
    [101]PIEL C,STARCK P,SEPPALA J V,et al.Thermal and mechanical analysis of metallocene-catalyzed ethene-α-olefin copolymers:The influence of the length and number of the crystallizing side chains[J].J Polym Sci Part A:Polym Chem,2006,44:1600-1612.
    [102]PAN L,LIU Y G,ZHANG K Y,et al.Investigation of the effect of branched structure on the performances of the copolymers synthesized from ethylene and α-olefin with rac-Et(Ind)2ZrCl2/MMAO catalyst system[J].Polymer,2006,47:1465-1472.
    [103]STADLER F J,GABRIEL C,MUNSTEDT H.Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear[J].Macromol Chem Phys,2007,208:2449-2454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700