新型聚苯乙烯负载茂锆催化剂催化烯烃聚合的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,负载型茂金属催化体系特别是聚合物负载型茂金属体系,正越来越多地受到人们重视。然而到目前,许多问题依然有待解决,例如茂金属负载化过程中如何控制活性中心在载体上的分布、载体对活性中心的影响、茂金属的负载机理以及负载型茂金属的催化机理等问题还不是十分清楚,进一步弄清这些问题具有深远的理论意义和重大的应用价值。
     本论文利用悬浮聚合的方法制备了线型聚苯乙烯,对线型聚苯乙烯进行氯甲基化后引入环戊二烯基,将环戊二烯基锂盐化后通过其和CpZrCl_3的反应将茂锆负载到聚苯乙烯上,制备了具有不同锆含量的两个系列的聚苯乙烯负载型茂锆催化剂,并通过NMR等测试手段进行了表征。以所得聚苯乙烯负载型茂锆为主催化剂,以MAO为助催化剂催化烯烃聚合,考察了不同聚合条件下,如聚合温度、[Al]/[zr]比、共聚单体比对催化活性、聚合动力学及所得聚合物性能的影响。研究结果表明载体的结构对催化活性具有重要的影响,具有低交联度载体的催化剂的催化活性高于具有高交联度载体的催化剂。催化乙烯/α-烯烃共聚过程中发现明显的“共单体效应”。
     采用DSC、GPC、~(13)C NMR对聚苯乙烯负载型茂锆催化剂催化所得聚烯烃产物进行较为详细的表征。结果表明:在所得乙烯/α-烯烃共聚物中随着共聚单体含量的增大,共聚物的熔点和结晶度明显降低;对所得乙烯/己烯共聚物的~(13)C NMR的研究显示,在聚合过程随加入己烯浓度的增大,共聚物中己烯含量增加;不同载体负载的催化剂制得的乙烯/1-己烯共聚物的组成基本相同,己烯单元在共聚物链上是均匀分布的。
     用Schulz-Flory“最可几分布”函数对苯乙烯负载型茂锆催化所得聚乙烯的分子量分布进行了拟合,发现体系中可能存在三种活性中心。结合拟合分析的结果我们建立了乙烯聚合动力学模型,用此模型来拟合实际的动力学曲线,得到了令人满意的结果。在共聚原理和一些相应的假设基础上建立了乙烯/1-己烯共聚动力学模型,该模型与实验数据吻合得很好,说明该模型具有一定的合理性。
     本文通过在氯甲基化线型聚苯乙烯上引入环戊二烯基,在Cp_2ZrCl_2存在下利用环戊二烯基间的Diels-Alder反应形成聚苯乙烯网络,同时将Cp_2ZrCl_2茂金属包裹到网络内,制备了聚苯乙烯负载的固态均相茂锆催化剂。以2,2,6,6-四甲基哌啶酮氮氧自由基作为探针,用ESR技术对聚苯乙烯网络的结构进行了研究,结果表明在交联聚苯乙烯网络中能形成类似均相反应的微环境。
     研究了以聚苯乙烯负载的固态均相茂金属为主催化剂,以MAO为助催化剂催化烯烃聚合的规律,结果显示该类催化剂的载体在聚合过程中是否能有效地破碎是决定催化剂性能的重要因素之一。该类催化剂催化乙烯聚合动力学结果显示:具有低交联密度的载体负载的茂金属催化剂催化乙烯聚合速率较为平稳,而具有高交联密度的载体负载的茂金属催化剂催化乙烯聚合速率衰减得较快。此外我们还发现具有低交联密度的聚苯乙烯负载的茂锆催化剂在催化乙烯聚合时,聚苯乙烯载体逐步解离并分散到聚乙烯产品中去,可以得到聚乙烯/聚苯
Recently, the supported-metallocene catalysts, especial polymer-supported metallocene catalysts have attracted more attentions. However, some problem such as how to controlling the distribution of active sites on the carriers, the effect of carriers on the active sites, the mechanism of immobilization of metallocene catalyst and the mechanism of polymerization over supported metallocene still are unclear completely. It is of great theoretical significance and practical value to clear the above-mentioned problem.In this work, the linear polystyrene is prepared by suspension polymerization. Subsequently, the polystyrene is chloromethylated and cyclopentadienes are attached on the polystyrene. The cyclopentadienes attached on polystyrene react with BuLi for supporting CpZrCl_3 to form polystyrene-supported zirconocene catalyst. The two kinds of polystyrene-supported zirconocene catalysts with different Zr contents are synthesized and characterized by NMR. The polystyrene-supported zirconocene are employed as catalyst in a study of olefin polymerization in the presence of MAO cocatalyst. The influence of polymerization temperature, [Al]/[Zr] molar ratio, different comonomer on catalytic activities, (co)polymerization kinetics, the properties of resultant polyolefin have been investigated. The results show that the carriers have important effect on activities of those catalysts. The activities of the catalyst with lower cross-linked degree carriers are higher than those of catalysts with higher cross-linked degree carriers. The obvious "comonomer effect" is observed in the ethylene/α-olefin copolymerization catalyzed by the polystyrene-supported zirconocene catalysts.The polyoiefins obtained by the polystyrene-supported zirconocene catalysts are characterized with the techniques of DSC, GPC and ~(13)C NMR. The results show that the melting temperature and crystallinity decrease markedly with the increase of comonomer in the ethylene/a-olefin copolymer. The microstructure of ethylene/1-hexene copolymer is investigated using ~(13)C NMR. The results reveal that the content of comonomer in copolymer increases with increasing the concentration of comonomer in the feed. The composition of the ethylene/1-hexene copolymer obtained by the different catalysts is nearly same and the 1 -hexene units are distributed evenly in copolymer chains.The molecular-weight distribution(MWD) graphs of polyethylene obtained by polystyrene-supported zirconocene catalyst are fitted with Schulz-Flory "the most probable" distributions. The results show that it is possible there lie three kinds of active species in the catalytic system. According to the above-mentioned results, a novel kinetic model is presented. Simulating results using the model are consistent with experimental results. According to the theory of copolymerization and some assumption, a kinetic model of ethylene/1-hexene copolymerization is
    developed. The model could fit the experimental results well, which suggests the model is reasonable.In this work, in the presence of Cp2ZrCl2, utilizing the Diels-Alder reaction of cyclopentadienes attached on the linear polystyrene to form the cross-linked polystyrene network, the Cp2ZrCl2 are encapsulated inside the cross-linked polystyrene network. The polystyrene-supported solid-homogeneous zirconocene catalyst is prepared. Using 4-oxo-2,2,6,6-tetramethyl -1-piperidinyloxy radicals as probe, the structure of cross-linked polystyrene network is investigated. The results show that the homogeneous microenvironment could form in the cross-linked polystyrene network.The olefin polymerization catalyzed by the polystyrene-supported solid-homogeneous zirconocene catalyst is studied in the presence of MAO cocataiyst. The results show that the fragmentation of carrier is the one of important reasons, which influence on the property of catalyst. The kinetic curves of ethylene polymerization catalyzed by the catalyst with low cross-linked degree carrier is stable and the polymerization rate of the catalyst with high cross-linked degree carrier decrease quickly. In addition, we find that polystyrene carrier could fragment and is distributed into polyethylene during ethylene polymerization. By the method, the polyethylene/polystyrene molecular composite membrane is prepared.The polyolefin obtained by the polystyrene-supported solid-homogeneous zirconocene catalyst are characterized by the techniques of DSC and GPC. The results show that the carrier has important effect on the molecular weight and molecular-weight distribution of polyethylene. The molecular-weight of polyethylene obtained by the catalyst with higher cross-linked density carrier is lower. The molecular-weight distribution(MWD) graphs of polyethylene obtained by polystyrene-supported solid-homogeneous zirconocene catalyst are fitted with Schulz-Flory "the most probable" distributions. The results show that it is possible there lie four kinds of active species in the catalytic system.
引文
[1] 丰洋.茂金属聚合物发展迅猛.[J] .化工文摘,2002,(1):34~34.
    [2] 张洪波,刘丽,柏影,李振国.茂金属催化剂及其聚合物的进展.[J] .化工技术经济,2004,22(9):24~27.
    [3] 黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M] .化学工业出版社,北京,2000.
    [4] 苏立明,贺大为.[J] .烯烃聚合均相催化剂的特点及结构特征(上).高分子通报,1996,2:84~86.
    [5] 方玉堂,祝方明,林尚安.[J] .新型五甲基茂基三苄氧基钛/甲基铝氧烷催化剂合成苯乙烯-乙烯共聚物及其表征.高分子学报,2000,(1):74~78.
    [6] 谢光华,王金梅,张盛庆.[J] .锆茂均相催化体系催化乙烯与降冰片烯共聚合的研究.高分子学报,1994,(4):495~498.
    [7] 王齐,翁建华,徐均庭,范志强,封麟先.[J] .茂金属催化乙烯与降冰片烯共聚合研究.高分子学报,1998,(2):154~159.
    [8] Wilkinson G, Brimingham J M. [J] . Bis-cyclopentadienyl compounds of Ti, Zr, V, Nb and Ta. J Am Chem Soc, 1954, 76: 4281~4284.
    [9] Fisher E O. [J] . Uber cyclopentadien-komplexe des eisens und kobalts. Angew Chem, 1952, 64: 620~621.
    [10] Ziegler K, Holzkamp E, Breil H. [J] . Das mulheimer normaldruck-polyathylen-verfahren. Angew Chem, 1955, 67: 541~547.
    [11] Natta G, Pino P, Corradini P, Danusso F, Mantica E, Mazzanti G, Moraglio G. [J] . Crystalline high polymers of α-olefins. J Am Chem Soc, 1955, 77: 1708~1710.
    [12] Breslow D S, Newburg N R. [J] . Bis-(cyclopentadienyl)-titanium dichloride-alkylaluminum complexls as catalysts for the polymerization of ethylene. J Am Chem Soc, 1957, 79: 5072~5073.
    [13] Reichert K H, Meyer K R. [J] . Zur kinetic der niedruckpolymerisation von Athylen mit oslichen ziegler katalysatoren. Makromol Chem, 1973, 169: 163~176.
    [14] Andresen A, Cordes H G, Herwig J, Kaminsky W, Merck A, Mottweiler R, Pein J, Sirra H, Vollmer H J. [J] . Halogenfreie losliche ziegler-katalysatoren for die ethylen-polymerisation, Angew Chem, 1976, 88: 688~689.
    [15] Sinn H, Kaminsky W. [J] Ziegler-Natta-catalysis. Adv Organomet Chem, 1980, 18: 99~149.
    [16] Andresen A, Cordes H G, Herwig J, Kaminsky W, Merck A, Mottweiler R, Pein J, Sinn H, Vollmer H J. [J] . Halogen-free soluble ziegler catalysts for the polymerization of ethylene. control of molecular weight by choice of temperature. Angew Chem Int Ed Engl, 1976,15:630-632.
    [17] Sinn H, Kaminsky W, Vollmer H J, Woldt R. [J]. "Living polymers" on polymerization with extremely productive ziegler catalysts. Angew Chem Int Ed Engl, 1980,19:390-392.
    [18] Kaminsky W. [J]. New polymers by metallocene catalysis. Macromol Chem Phys, 1996, 197:3907-3945.
    [19] Wild F R W P, Zsolnai L, Huttner G, Brintzinger H H. [J]. ansa-metallocene derivatives. IV.Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydro indenyl ligands. J Organomet Chem, 1982,232:233-247.
    [20] Wild F R W P, Wasincionek M, Huttner G, Brintzinger H H. [J]. ansa-metallocene derivatives, Ⅷ. Syntheses and crystal structures of ethylene-bridged titanocene and zirconocene derivatives with permethylated ring ligands. J Organomet Chem, 1985,288: 63-68.
    [21] Ewen J A. [J]. Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts. J Am Chem Soc, 1984, 106: 6355-6364.
    [22] Kaminsky W, Kulper K, Brintzinger H H, Wild F R W P. [J]. Polymerisation von propen und buten mit einem chiralen zirconocen und methylaluminoxan als cokatalysator. Angew Chem, 1985,97:507-508.
    [23] Ewen J A., Jones R L, Razavi A, Ferrara, J D. [J]. Syndiospecific propylene polymerizations with Group IVB metallocenes. J Am Chem Soc, 1988,110:6255-6256.
    [24] Farina M, Silvestro G D, Sozzani P. [J]. Hemiisotactic polypropylene: a key point in the elucidation of the polymerization mechanism with metallocene catalysts. Macromolecules, 1993, 26:946-950.
    [25] Ishihara N, Seimiya T, Kuramoto M, Uoi M. [J]. Crystalline syndiotactic polystyrene. Macromolecules, 1986,19:2464-2465.
    [26] Kaminsky W, Spiehl R. [J]. Copolymerization of cycloalkenes with ethylene in presence of chiral zirconocene catalysts. Makromol Chem, 1989,190:515-526.
    [27] Alt H G, Zenk R. [J]. Syndiospezifische polymerisation von propylen: 2-und2,7-substituierte metallocenkomplex des Typs (C_(13)H_(8-n)R_nCR' _2C_5H_4)MCl_2(n=1,2;R=Alkoxy, Alkyl, Aryl, Hal;R' = Me, Ph;M = Zr, Hf)- J Organomet Chem, 1996,522:39-54.
    [28] Schwemlein H, Brintzinger H H. [J]. ansa-metallocene derivatives. V .Synthesis of tetramet-hylethylene-bridged titanocene and zirconocene derivatives via reductive fulvene coupling. J. Organomet Chem,1983,254:69-73.
    [29] Gutman S, Burger P, Hund H U, Hofmann J, Brintzinger H H. [J]. ansa-metallocene derivatives. X Ⅶ. Racemic and meso diastereomers of group IV metallocene derivatives
     with symmetrically substituted, dimethylsilanediyl-bridged ligand frameworks. Crystal structure of R,S-Me_2Su(3-t-Bu-5MeC_5H_2)_2ZrCl_2. J Organomet Chem, 1989,269:343 - 357.
    [30] Ewen J A, Jones R L, Razavi A, Ferrara J D. [J]. Syndiospecific propylene polymerizations with Group IVB metallocenes. J Am Chem Soc, 1988, 110:6255-6256.
    [31] Alt H G, Han J S, Thewalt U. [J]. Zirkonocenkomplexe mit einem funktionalisierten cyclope-ntadienylliganden. Molekulstruktur von (η~5-C_5H_5)(η~5: η~2 -C_5H_4CMe_2C_9H_7)Zr(PMe_3). J Organomet Chem, 1993,456:89-95.
    [32] Alt H G, Jung M. [J]. C_1-Bridged fluorenylidene cyclopentadienylidene complexes of the type (C_(13)H_8-CR~1R~2-C_5H_3R)ZrCl_2 (R~1, R~2=alkyl, phenyl, alkenyl;R=H, alkyl, alkenyl, substituted silyl) as catalyst precursors for the polymerization of ethylene and propylene. J Organomet Chem, 1998,568:87-112.
    [33] Shapiro P J, Schaefer W P, Labinger J A, Bercaw J E, Cotter W D. [J]. Model Ziegler-Natta alpha-olefin polymerization catalysts derived from[{(.eta.5-C_5Me_4) SiMe_2 (.eta.1-NCMe_3)} (PMe_3)Sc(.mu.2-H)]_2 and [{(.eta.5-C_5Me_4) SiMe_2(.eta.1-NCMe_3)} Sc (.mu.2-CH_2CH_2CH_3)]_2. synthesis, structures, and kinetic and equilibrium investigations of the catalytically active species in solution. J Am Chem Soc, 1994,116:4623-4640.
    [34] Schmidt G F, Timmers F J, Knight G W, Lai S-Y, Nickias P N, Rosen R K, Stevens J C, Wils on D R. Constrained geometry addition polymerization catalysts, processes for their preparati on, precursors therefor, methods of use, and novel polymers formed therewith[P]. EP0416815, 1991-3-13
    [35] Canich, Jo Ann M. Process for producing crystalline poly-.alpha.-olefins with a mono- cyclopentadienyl transition metal catalyst system [P]. USP5026798, 1991-6-25.
    [36] Kaminsky W, Steiger R. [J]. Polymerization of olefins with homogeneous zirconocene/ alumoxane catalyst. Polyhedron, 1988,7:2375-2381.
    [37] Harlan C J, Mason M R, Barron A R. [J]. Tert-butylaluminum hydroxides and oxides: structural relationship between alkylalumoxanes and alumina gels. Organometallics, 1994, 13:2957-2969.
    [38] Koide Y, Bott S G, Barron A R. [J]. Alumoxanes as cocatalysts in the palladium-catalyzed copolymerization of carbon monoxide and ethylene: genesis of a structure-activity relationship. Organometallics, 1996,15:2213-2226.
    [39] Eisch J J, Pombrick S I, Zheng G X. [J]. Organometallic compounds of Group III. 52. Active sites for ethylene polymerization with titanium(IV) catalysts in homogeneous media: multinuclear NMR study of ion-pair equilibria and their relation to catalyst activity. Organmetallics, 1993,(12):3856-3863.
    [40] Gassman P G, Callstrom M R. [J]. Isolation, and partial characterization by XPS, of two distinct catalysts in the Ziegler-Natta polymerization of ethylene. J Am Chem Soc, 1987, 109: 7875-7876.
    [41] Kaminsky W, Bark A, Steiger R. [J]. Stereospecific polymerization by metallocene/ aluminoxane catalysts. J Mol Catal, 1992,74:109-119.
    [42] Kaminsky W. [J]. How to reduce the ratio MAO/metallocene. Macromol Symp, 1995,97: 79-89.
    [43] Matsubara K, Fujita T, Takahashi T. [J]. Characterization of alumoxanes by ~(27)Al-NMR spectra. J Mol Catal, 1993,82:93-101.
    [44] Bochmann M, Lancaster S L. [J]. Monomer-dimer-gleichgewichte in homo-und heterodinuclearen kationischen alkylzirconium komplexen: zur rolle von alkylaluminium -verbindungen bei stabilisierung katalytisch aktiver zentren. Angew Chem, 1994,106:1715- 1718.
    [45] Zambelli A, Longo P, Grassi A. [J]. Isotactic polymerization of propene: homogeneous catalysts based on group 4 metallocenes without methylalumoxane. Macromolecules, 1989, 22:2186-2189.
    [46] Richard F. Jordan, Robert E. LaPointe, Prudence K. Bradley, Norman Baenziger. [J]. Synthesis and chemistry of cationic alkyl, alkenyl, and allyl complexes derived from the soluble, cationic hydride (C_5H_4Me)_2Zr(H)(THF)~+. Organometallics, 1989,8(12):2892-2903.
    [47] Resconi L, Bossi S, Abis L. [J]. Study on the role of methylaluminoxane in homogeneous olefin polymerization. Macromolecules, 1990,23:4489-4491.
    [48] Kaminsky W. [J]. New polymers by metallocene catalysis. Macromol Chem Phys, 1996, 197:3907-3945.
    [49] Soga K, Kaminaka M. [J]. Polymerization of propene with a rac-(CH_3)_2Si(2,4-(CH_3)_2C_5H_3) (3',5'-(CH_3)_2C_5H_3)ZrCl_2/MAO/SiO_2-Al(iC_4H_9)_3 catalyst system. Makromol Rapid Commun, 1994,15:593-600.
    [50] Hlatky G G, Upton D J. [J]. Supported ionic metallocene polymerization catalysts Macromolecules, 1996,29:8019-8020.
    [51] Kaminsky W, Renner F. [J]. High melting polypropenes by silica-supported zirconocene catalysts. Macromol Rapid Commun, 1993,14:239-243.
    [52] Chen Y X, Rausch M D, Chien J C. [J]. Heptane-soluble homogeneous zirconocene catalyst: synthesis of a single diastereomer, polymerization catalysis, and effect of silica supports. J Polym Sci Polym Chem Ed, 1995,33:2093-2108.
    [53] Collins S, Kelly W M, Holden D A. [J]. Polymerization of propylene using supported, chiral,
     ansa-metallocene catalysts: production of polypropylene with narrow molecular weight distributions. Macromolecules, 1992, 25: 1780~1785.
    [54] dos Santos J H Z, Dorneles S, Stedile F C, Dupont J, Forte M de C, Baumvol I J R. [J] . Silica supported zirconocenes and Al-based cocatalysts: surface metal loading and catalytic activity. 1997, 198: 3529~3537.
    [55] Satyanarayana G, Sivaram S, [J] . An unusually stable supported bis(cyclopentadienyl) titanium dichloride-trialkylaluminum catalyst system for ethylene polymerization. Macromolecules, 1993, 26: 4712~4714.
    [56] Soga, K, Koide R, Uozumi T. [J] . Syndiotactic polymerization of styrene with alumina supported Cp TiCl_3 (Cp: cyclopentadienyl, 1,2,3,4,5-pentamethylcyclopentadienyl) catalyst activated by trialkylaluminums. Macromol Rapid Commun, 1993, 14: 511~514.
    [57] Chien J C W, He D. [J] . Olefin copolymerization with metallocene catalysts. Ⅲ. Supported metallocene/methylaluminoxane catalyst for olefin copolymerization. J Polym Sci Polym Chem Ed, 1991, 29: 1603~1607.
    [58] 葛从辛,王立,封麟先,钱延龙,黄吉玲.[J] .负载型烯烃聚合催化剂载体修饰新方法.分子催化,1998,12(3):231~233.
    [59] Soga K, Nakatani H. [J] . Syndiotactic polymerization of styrene with supported Kaminsky-Sinn catalysts. Macromolecules, 1990, 23: 957~959.
    [60] Woo S I, Ko Y S. Process for preparing metallocene catalyst for polyolefin polymerization [P] . USP 5869417, 1999-2-9.
    [61] Woo S I, Ko Y S, Han T K. [J] . Polymerization of ethylene over metallocenes confined inside the supercage of a NaY zeolite. Macromol Rapid Commun, 1995, 16: 489~494.
    [62] Marques M F V, henriques C A, Monteiro J L F, Menezes S M C, Coutinho F M B. [J] . Ethylene polymerization with Cp_2ZrCl_2 supported on dealuminated Y zeolite. Polym Bull, 1997, 39: 567~571.
    [63] Michelotti M, Altomare A, Ciardelli F, et al. [J] . Zeolite supported polymerization catalysts: Copolymerization of ethylene and α-olefins with metallocenes supported on HY zeolite. J Mol Catal A, 1998, 129: 241~248.
    [64] O'Brien S. Tudor J. Maschmeyer T. O'Hare D. [J] . EXAFS analysis of a chiral alkene polymerization catalyst incorporated in the mesoporous silicate MCM-41. Chem Commun, 1997: 1905~1906.
    [65] Ko Y S, Hart T K, Park J W, Woo S I. [J] . Propene polymerization catalyzed over MCM-41 and VPI-5-supported Et(Ind)_2ZrCl_2 catalysts. Macromol Rapid Commun, 1996, 17: 749~758.
    [66] Kageyama K, Tamazawa J I, Aida T. [J] . Extrusion polymerization catalyzed synthesis of crystalline linear polyethylene nanofibers within a mesoporous silica. Science, 1999, 285: 2113~2115.
    [67] Bailly J C, Bres P, Chabrand C, Daire E. Catalyst and prepolymer used for the preparation of polyolefins[P] . USP 5106804, 1992-4-21.
    [68] 关哲,郑莹.[J] .球形MgCl_2负载的MAO/rac-Et[Ind] _2ZrCl_2催化剂催化丙烯聚合.化学学报,2001,59(10):1783~1787.
    [69] Sarma S S, Sivaram S. [J] . Magnesium chloride supported bis(cyclopentadienyl)titanium (Ⅳ)dichloride-MAO catalyst for ethylene polymer. Macromol Chem Phys, 1997, 198: 495~503.
    [70] Sarma S S, Sivaram S. [J] . A magnesium chloride supported bis(cyclopentadienyl)-zirconium(Ⅳ) dichloride catalyst for the polymerization of ethylene. Macromol Chem Phys, 1999, 200: 323~329.
    [71] 关喆,郑莹,焦书科.[J] .烷基铝对球形MgCl_2负载的茂金属催化剂催化乙烯聚合的影响.高分子学报,2001,6:799~802.
    [72] 关喆,郑莹,焦书科.[J] .球形MgCl_2负载的MAO-Et(Ind)_2ZrCl_2催化剂催化用于乙烯聚合的动力学研究.高分子学报,2001,6:779~782.
    [73] Soga K, Arai T, Uozumi T. [J] . Polymerization of propene over a MgCl_2-supported dichlorosilylenebisindenylzirconium dichloride catalyst combined with methylalumoxane. Polymer, 1997, 38: 4993~4995.
    [74] Asanuma T, lwatani T, Shiomura T, Takeuchi K, Uchikawa S. Production of syndiotactic polypropylene[P] . JP3066710, 1991-03-22.
    [75] Liu C B, Tang T, Wang D, Huang B T. [J] . In situ ethylene homopolymerization and copolymerization catalyzed by zirconocene catalysts entrapped inside functionalized montmorillonite. J Polym Sci Polym Chem Ed, 2003, 41: 2187~2196.
    [76] Wang Q, Zhou Z Y, Song L X, Xu H, Wang L. [J] . Nanoscopic confinement effects on ethylene polymerization by intercalated silicate with metallocene catalyst. J Polym Sci Polym Chem Ed, 2004, 42: 38~43.
    [77] Soga K, Kaminaka M. [J] . Copolymerization of olefins with SiO_(2-), Al_2O_(3-), and MgCl_2-supported metallocene catalysts activated by trialkylaluminiums. Macromol Chem Phys, 1994, 195: 1369~1379.
    [78] Jamanek D, Woyda A, Skupinski W. [J] . Styrene polymerization in the presence of the CpTiCl_3/Al_2O_3-SiO_2/MAO catalytic system. Appl Organomet Chem, 2002, 16(10): 5175~579.
    [79] Thakhasi I, Hiroro N, Soga G, Thosiya W, Jung M C, Kim H J, Lee S K, Son B H. Organic carrier supported metallocene catalyst for olefin polymerization[P] . USP 5733834, 1998-03-31.
    [80] Dimaio A J. Polymer supported catalyst for olefin polymerization[P] . CAP 2214690, 1996-11-14.
    [81] Thakhasi I, Hiroro N, Soga G, Thosiya W, Jung M C, Kim H J, Lee S K, Son B H. Organic carrier supported metallocene catalyst for olefin polymerization[P] . USP 5610115, 1997-03-11.
    [82] Yang, Henry W H, Speca, Anthony N. Spray dried polymer for catalyst support[P] . USP 6013594, 2000-1-11.
    [83] Koch M, Muellen K, Rief U, Gregorius H, Klapper M, Stork M. Support catalyst for olefin polymerization[P] . EP 1189950, 2002-03-27.
    [84] Vizzini J C. Polymeric supported catalysts[P] . USP 6228795, 2001-05-08.
    [85] Patsidis K, Alt H G, Peifer B, Palackal S J, Deck H R, Geerts R L, Welch M B, Fahey D R. Vinly-substituted bridged metallocenes[P] . USP 5565592, 1996-10-15.
    [86] Chandrasekaran E S, Grubbs R H, Jr C H B. [J] . Polymer-supported organometallic compound of titanium, zirconium and hafnium as hydrogenation catalysts. J Organomet Chem, 1976, 120: 49~63.
    [87] 杨利营,王月欣,王家喜.[J] .聚苯乙烯负载单茂钛/RMgBr催化苯乙烯聚合的研究.分子催化,2001,15(1):56~60.
    [88] Stork M, Koch M, Klapper M, Mullen K, Gregorius H, Rief U. [J] . Ethylene polymerization using crosslinked polystyrene as support for zirconocene dichloride/methylaluminoxane. Macromol Rapid Commun, 1999, 20: 210~213.
    [89] Nenov N, Koch M, Klapper M, Mullen K. [J] . PEO-functionalized polystyrene as polymeric supported in metallocene catalysed olefin polymerization. Polym Bull, 2002, 47(5): 391~398.
    [90] Barrett A G M, de Miguel Y R. [J] . Synthesis and characterization of a new polymer support for a metallocene catalyst. Tetrahedron, 2002, 58: 3785~3792.
    [91] Barrett A G M, de Miguel Y R. [J] . A well-defined metallocene catalyst supported on polystyrene beads. Chem Commun, 1998: 2079~2080.
    [92] Hong S C, Ban H T, Kishi N, Jin J, Uozumi T, Soga K. [J] . Ethene polymerization with a poly(styrene-co-divinylbenzene) beads supported rac-Ph_2Si(Ind)_2ZrCl_2 catalyst. Macromol Chem Phys, 1998, 199: 1393~1397.
    [93] Hong S C, Teranishi T, Soga K. [J] . Investigation on the polymer particle growth in ethylene polymerization with PS beads supported rac-Ph_2Si(Ind)_2ZrCl_2 catalyst. Polymer, 1998, 39: 7153~7157.
    [94] Kitagawa T, Uozumi T, Soga K, Takata T. [J] . Syndiospecific propene polymerization with polymer-supported metal Iocene catalyst. Polymer, 1997, 38(3): 615~620.
    [95] Leadbeater N E. [J] . Facile synthesis of polymer-supported cyclopentadienes. Tetrahedron Lett, 2002, 43: 691~693.
    [96] Xu J T, Ouyang J Y, Fan Z Q, Chen D Q, Feng L X. [J] . Polymer-supported half-titanocene catalysts for the syndiospecific polymerization of styrene. J Polym Sci Polym Chem Ed, 2000, 38: 127~135.
    [97] 徐君庭,欧阳建莹,范志强,陈德铨,封麟先.[J] .聚合物负载的CpTiCl_3催化苯乙烯间规聚合.高等学校化学学报,1999, 20(2):327~329.
    [98] Chung J S, Hsu J C. [J] . A kinetic analysis on the gas phase polymerization of ethylene over polymer supported (CH_3)_2Si[Ind] _2ZrCl_2 catalyst. Polymer, 2002, 43: 1307~1311.
    [99] Koch M, Stork M, Klapper M, Mulle n K. [J] . Immobilization of metallocenes through noncovalent bonding via MAO to a reversibly cross-linked polystyrene. Macromolecules, 2000, 33: 7713~7717.
    [100] Meng F H, Yu G Q, Huang B T. [J] . Polymer-supported zirconocene catalyst for ethylene polymerization. J Polym Sci Polym Chem Ed, 1999, 37: 37~46.
    [101] Liu S S, Meng F H, Yu G Q, Huang B T. [J] . Preparation of polymer-supported zirconocene catalysts and olefin polymerization. J Appl Polym Sci, 1999, 71: 2253~2258.
    [102] 于广谦,张德泽,孙福,乔立军,唐涛,黄葆同.[J] .新型聚合物载体茂金属催化剂.应用化学,2001,18(4):309~311.
    [103] Yu G Q, Zhang D Z, Shun F, Qiao L J, Tang T, Huang B T. [J] . A new type of polymersupported metallocene catalyst for ethylene polymerization. Chin Chem Lett, 2001, 12 (3): 257~260.
    [104] Zhou J M, Li N H., Bu N Y, Lynch D T, Wanke S E. [J] . Gas-phase ethylene polymerization over polymer-supported metallocene catalysts, J Appl Polym Sci, 2003, 90: 1319~1330.
    [105] Qin Y X, Tang T, Zhao Z F, Huang B T. [J] . Ethylene polymerization with porous polystyrene spheres supported Cp_2ZrCl_2 catalyst. J Polym Sci Polym Chem Ed, 2003, 41: 3313~3319.
    [106] Koch M, Falcou A, Nenov N, Klapper M, Mullen K. [J] . Reversibly crosslinked networks of nanoparticles in metallocene-catalyzed olefin polymerization. Macromol Rapid Commun, 2001, 22: 1455~1462.
    [107] Jang Y J, Nenov N, Klapper M, Mullen K. [J] . Organic nanoparticles with polypropyleneoxide chains as support for metallocene catalysts: ethylene homo-polymerization and ethylene/α-olefin copolymerization. Polym Bull, 2003, 50: 343~350.
    [108] Jang Y J, Nenov N, Klapper M, Mullen K. [J] . Organic nanoparticles with polypropyleneo- xide chains as support for metallocene catalysts: Influence of the concentration of PPO chains on the surface of nanoparticles on the catalyst activity in ethylene polymerization. Polym Bull, 2003, 50: 351~358.
    [109] Roscoe S B, Frechet J M J, Walzer J F, Dias A J. [J] . Polyolefin spheres from metallocene supported on noninteracting polystyrene. Science, 1998, 280: 270~273.
    [110] Roscoe S B, Gong C, Frechet J M J, Walzer J F. [J] . Functionalized polystyrene as a versatile support for olefin polymerization catalysts. J Polym Chem Polym Chem Ed, 2000, 38: 2979~2992.
    [111] Kishi N, Ahn C H, Jin J, Uozumi T, Soga K. [J] . Synthesis of polymer supported borate cocatalysts and their application to metallocene polymerization. Polymer, 2000, 41: 4005~4012.
    [112] Hong S C, Rief U, Kristen M O. [J] . Ethylene (co)polymerization with metallocene, catalysts encapsulated in Gel-type poly(styrene-co-divinylbenzene) beads. Macromol Rapid Commun, 2001, 22: 1447~1454.
    [113] Alt H G, Jung M. [J] . C_2-bridged metallocene dichloride complexes of the types (C_(13)H_8-CH_2CHR-C_9H_(6-n)R′_n)ZrCl_2 and (C_(13)H_8-CH_2CHR-C_(13)H_8)MCl_2 (n=0, 1;R=H, alkenyl;R′=alkenyl, benzyl;M=Zr, HI) as self-immobilizing catalyst precursors for ethylene polymerization. J Organomet Chem, 1999, 580: 1~16.
    [114] Chabrand C J, Little I R, McNally J P. Catalyst compositions and process for preparing polyolefins [P] . USP 5714425, 1998-2-3.
    [115] Jung M, Air H G, Welch M B. Organo omega-alkenyl cyclopentacarbyl silane compounds [P] . USP 5856547, 1999-1-5.
    [116] Peifer B, Milius W, Alt H G. [J] . Selbstimmobilisierende Metallocenkatalysatoren. J Organomet Chem, 1998, 553: 205~220.
    [117] Antberg M, Herrmarm H F, Rohrmann J. Metallocene(co)polymers, process for preparation and their use as catalysts[P] . ES2116299T 1998-07-16.
    [118] 王家喜,韩利华,张留成,李云庆,杨利营.[J] .负载型二茂钛(锆)族催化剂催化苯乙烯聚合的研究.自然科学进展,1999,9(9):801~806.
    [119] 王家喜,韩利华,张留成,李云庆.[J] 聚苯乙烯负载茂钛催化剂的研究.高分子材料科学与工程,2000,16(2):51~54.
    [120] Zhu H B, Jin G X, Hu N H. [J] . Polymer immobilized silane bridged metallocene catalysts for ethylene polymerization. J Organomet Chem, 2002, 655: 167~171.
    [121] 诸海滨,金国新.[J] .高分子化Si桥联茂金属的合成及其催化乙烯聚合反应.化学学报,2002,60(3):509~513.
    [122] Jung M, Alt H G, Welch M B. Processes to produce metallocene compounds and polymerization processes therewith[P].USP 5726264,1998-3-10.
    [123] Welch M B, Alt H G, Peifer B, Palackal S J, Glass G L, Pettijohn T M, Hawley G R, Fahey D R. Method for making and using a supported metallocene catalyst system [P]. USP 5498581, 1996-3-12.
    [124] Nagy S, Tyrell J A. Polysiloxane supported metallocene catalysts [P]. USP 5747404, 1998-5-5.
    [125] Alt H G, Schertl P, KOppl A. [J]. Polymerization of ethylene with metallocene/ methylaluminoxane catalysts supported on polysiloxane micro gels and silica. J Organomet Chem, 1999,568:263-269.
    [126] Soga K, Arai T, Hoang B T. [J]. Olefin polymerization with metallocene catalysts supported on polysiloxane derivatives. Macromol Rapid Commun, 1995,16:905-911.
    [127] Arai T, Ban H T, Uozumi T, Soga K. [J]. Syntheses of polysiloxane-supported zirconocene catalysts and application to ethane polymerization. Macromol Chem Phys, 1997, 198:229~ 237.
    [128] Arai T, Ban H T, Uozumi T, Soga K. [J]. Syntheses of poly(siloxane)-supported zirconocene catalysts and application to olefin polymerizations. J Polym Sci Polym Chem Ed, 1998, 36: 421-428.
    [129] Soga K, Ban H T, Arai T, Uozumi T. [J]. Propene polymerization with zirconocene catalysts supported on siloxane copolymers. Macromol Chem Phys, 1997,198:2779-2787.
    [130] Di M, Anthony J. Polymer supported catalyst for olefin polymerization[P]. USP 5587439,1996-12-24.
    [131] Musikabhumma K, Uozumi T, Sano T, Soga K. [J]. Poly(4-vinylpyridine)-supported cationic bis(cyclopentadienyl)zirconocene catalyst: development of a new simple method to prepare polymer-supported cationic zirconocene and its application to ethylene polymerization. Macromol Rapid Commun, 2000,21:675-679.
    [132] Liu C B, Tang T, Huang B T. [J]. Preparation of macroporous functionalized polymer beads by a multistep polymerization and their application in zirconocene catalysts for ethylene polymerization. J Polym Sci Polym Chem Ed, 2003,41:873-880.
    [133] Ban T H, Uozumi T Sano T, Soga K. [J]. Synthesis of metallocene catalysts supported on poly[p-(silylene)phenylene] derivatives for the application to olefin polymerizations. Marcomol Chem Phys, 1999,200:1897-1902
    [134] Herrmann H F, Bachmann B, Hierholzer B, Spaleck W. Catalyst for the polymerization of olefins, process for its preparation and its use[P]. USP 5942586, 1999-8-24.
    [135] Lee D, Yoon K. [J]. Ethylene polymerization initiated with the Cp_2ZrCl_2-methyl- aluminoxane catalyst system supported on α-cyclodextrin. Macromol Rapid Commun, 1994, 15:841-843.
    [136] Morikawa M, Sano A, Shimizu H. Catalyst for olefin polymerization, its production and polymerization of olefin using the same[P]. JP7224115,1995-08-22.
    [137] Takahama T, Sugano T. Particle of thermoplastic polymeric elastomer and production thereof[P]. JP7233220,1995-9-5.
    [138] Kumamoto S, Shirashi H, Imai A. Carrier for olefin polymerization catalyst, olefin polymerization catalyst and process for producing olefin polymer[P].CN1153182, 1997-07-02.
    [139] Chien J C W, Wang B P. [J]. Metallocene-methylaluminoxane catalysts for olefin polymerization. V. Comparison of Cp_2ZrCl_2 and CpZrCl_3. J Polym Sci Polym Chem Ed, 1990, 28:15-38.
    [140] Chien J C W, Wang B P. [J]. Kinetics and stereochemical control of propylene polymerization initiated by ethylene bis(4,5,6,7-tetrahydro-l-indenyl) zirconium dichloride /methyl aluminoxane catalyst. J Polym Sci Polym Chem Ed,1991,29:459-470.
    [141] Estrada J M V, Hamielec A E. [J]. Modelling of ethylene polymerization with Cp_2ZrCl_2/ MAO catalyst. Polymer,1994,35,808~818.
    [142] Jiang S, Wang, L, Zhang P U, Feng L X. [J]. New kinetic model of ethene polymerization with catalyzed by Cp_2ZrCl_2-MAO. Macromol Theory Simul, 2002,11:1-7.
    [143] Wang Q, Weng J H, Xu L, Fan Z Q, Feng L X. [J] Multiple active sites model of ethylene polymerization with the Cp_2ZrCl_2-aluminoxanes catalytic system. Polymer, 1999,40:1863 -1870.
    [144] Kaminsky W. [J]. New polymers by metallocene catalysis. Macromol Chem Phys, 1996,197:3907-3945.
    [145] Ko Y S, Woo S I. [J]. Shape and diffusion of the monomer-controlled copolymerization of ethylene and α-olefins over Cp_2ZrCl_2 confined in the nanospace of the supercage of NaY. J Polym Sci Polym Chem Ed, 2003,41:2171~2179.
    [146] Przybyla C, Tesche B, Fink G. [J]. Ethylene/hexene copolymerization with the heterogeneous catalyst system SiO_2/MAO/rac-Me_2Si[2-Me-4-Ph-Ind]_2ZrCl_3: The filter effect. Macromol Rapid Commun, 1999,20:328-332.
    [147] Soga K, Kaminaka M. [J]. Copolymerization of olefins with SiO_(2~-), Al_2O_(3~-), and MgCl_2- supported metallocene catalysts activated by trialkylaluminiums. Macromol Chem Phys, 1994,195:1369-1379.
    [148] Chu K J, Shah C L P, Soares J B P, Penlidis A. [J] . Copolymerization of ethylene and 1-hexene with in-situ supported Et[Ind] _2ZrCl_2. Macromol Chem Phys, 1999, 200: 2372~2376.
    [149] De Fatima Vieira Marques M, Conte A, De Resende F C, Chaves E G. [J] . Copolymerization of ethylene and 1-octene by homogeneous and different supported metallocenic catalysts. J Appl Polym Sci, 2001, 82: 724~730.
    [150] Koivumaeki J, Fink G, Seppaelae J V. [J] . Copolymerization of ethene/1-dodecene and Ethene/1-octadecene with the stereorigid zirconium catalyst systems iPr[FluCp] ZrCl_2/MAO and Me_2Si[Ind] _2ZrCl_2/MAO: Influence of the comonomer chain length. Macromolecules, 1994, 27: 6254~6258.
    [151] 刘胜生,于广谦,黄葆同.[J] .聚合物载体茂锆催化剂与乙烯/α-烯烃共聚合.高分子材料科学与工程,1998,14(5):28~29.
    [152] Hodge P,Sherrington D C.(汤惠工,杨旭清译).有机合成中聚合物载体化反应[M] .化学工业版社.1988.
    [153] T Altares J R, Wyman D P, Allen V R, Meyersen K. [J] . Preparation and characterization of some star-and comb-type branched polystyrenes. J Polym Sci Polym Chem Ed, 1965, 3: 4131~4151.
    [154] 计兵,王立,封麟先.[J] .负载型茂锆烯烃聚合催化剂锆含量的分光光度法测定.化学通报网络版,2000,7 (00066).
    [155] 范志强,封麟先,杨士林.[J] .异相Ziegler-Natta催化剂的活性中心多分散性(Ⅰ):钛催化体系聚合物分子量分布的研究.高等化学学报,1991,12:1681~1685.
    [156] Miller s A.乙烯及其工业衍生物[M] ,化学工业出版社,1980.
    [157] Fan Z Q, Yasin T, Feng L X. [J] . Copolymerization of propylene with 1-octene catalyzed by rac-Me_2Si(2,4,6,-Me_3-Ind)_2ZrCl_2/Methyl Aluminoxane. J Polym Sci Polym Chem Ed, 2000, 38: 4299~4307.
    [158] Nomura K, Komatsu T, Imanishi Y. [J] . Ligand effect in olefin polymerization catalyzed by (cyclopentadienyl)(aryloxy)titanium(Ⅳ) complexes, Cp'TiCl_2(OAr)-MAO system Ethylene/1-hexene copolymerization by (1,3-tBu_2C_5H_3)TiCl_2(O-2,6-iPr_2C_6H_3)-MAO catalyst system. J Mol Catal A, 2000, 159: 127~137.
    [159] Miyata H, Yamaguchi M, Akashi M. [J] . Structure and viscoelastic properties of amorphous ethylene/1-hexene copolymer obtained with metallocene catalyst. Polymer, 2001, 42: 5763~5769.
    [160] Rudolph S, Giesemann J, Kressler J, Menke T J, Menge H, Arends R [J] . Copolymerizationand characterization of ethene-1-hexene copolymers prepared by using the (Me_5Cp)_2ZrCl_2 MAO catalyst system. J Appl Polym Sci, 1999, 74: 439~447.
    [161] Marques M D F V, Marinha A B A S. [J] . Zeolite-supported metallocene catalyst for ethylene/1-hexene copolymerization. J Polym Sci Polym Chem Ed, 2004, 42: 3038~3048.
    [162] Czaja K, Biatek M, Utrata A. [J] . Copolymerization of ethylene with 1-hexene over mtallocene catalyst supported on complex of magnesium chloride with tetrahydrofuran. J Polym Sci Polym Chem Ed, 2004, 42: 2512~2519.
    [163] Kim J D, Soares J B R [J] . Copolymerization of ethylene and 1-hexene with supported metallocene catalysts: effect of supported treatment. Marcromol Rapid Commun, 1999, 20: 347~350.
    [164] Chien J C W, Nozaki T. [J] . Ethylene-hexene copolymerization by heterogeneous and homogeneous Ziegler-Natta catalysts and the "comonomer" effect. J Polym Sci Polym Chem Ed, 1993, 34: 227~237.
    [165] Koivumaki J, Seppala J V. [J] . Observations on the rate enhancement effect with magnesium chloride/titanium tetrachloride and dicyclopentadienylzirconium dichloride (Cp_2ZrCl_2) catalyst systems upon 1-hexene addition Macromolecular, 1993, 26: 5535~5538
    [166] Santos J H K, Uozimi T, Teranishi T, Sano T, Soga K. [J] . Ethylene (co)polymerization with supported-metallocenes prepared by the sol-gel method. Polymer, 2001, 42: 4517~4525.
    [167] Randall J C. [J] . A review of high resolution liquid ~(13)carbon nuclear magnetic resonance characterizations of ethylene-based polymers. Macromol Chem Phys, 1989(C29): 201~317.
    [168] Hsieh E T, Randall J C. [J] . Monomer sequence distributions in ethylene-1-hexene copolymer. Macromolecules, 1982, 15: 1402~1406.
    [169] Cheng H N. [J] . Comonomer sequence distribution in ethylene/1-hexene copolymers. Polym Bull, 1991, 26: 325~332.
    [170] McAuley K B, MacGregor J F, Hamielec A E. [J] . A kinetic model for industrial gas-phase ethylene copolymerization. AIChE J, 1990, 36: 837~849.
    [171] Hutchinson R A, Chen C M, Ray W H. [J] . Polymerization of olefin through heterogeneous catalysis X: modeling of particle growth and morphology. J Appl Poly Sci, 1992, 44: 1389~1414.
    [172] Chakravarti S, Ray W H, Zhang S X. [J] . Kinetic study ofolefin polymerization with a supported metallocene catalyst. Ⅳ. Comparison of bridged and unbridged catalyst in gas phase. J Appl Poly Sci, 2001, 81: 1451~1459.
    [173] Vaino A R, Goodin D B, Janda K D. [J] . Investigation resions for solid phase organic synthesis: the relationship between swelling and microenvironment as probed by EPR and fluorescence spectroscopy. J. Comb. Chem. 2002, 2: 330~336.
    [174] 方征平,单旭亮,徐欢驰,许承威.[J] .聚苯乙烯/聚乙烯共混体系的研究.合成树脂及 塑料.1997,14(1):18~20.
    [175] 谢文炳,王韦,茅芸,王晨,夏燕敏.[J] .聚苯乙烯/聚乙烯共混物的力学和流变性能.石油化工.1998,27:173~182.
    [176] 游长江,石小华.[J] .嵌段共聚物对LDPE/PS共混物性能和形态的影响.高分子材料科学与工程,1998,14(1):58~61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700